Keldysh Institute « Publication search

Keldysh Institute preprints « Preprint No. 76, 2013

L EREN AR
=T

Aptekarev A.l., Denisov S.A.,
Tulyakov D.N.

Fejer convolutions for an
extremal problem in the
Steklov class

Recommended form of bibliographic references: Aptekarev A.l., Denisov S.A., Tulyakov D.N.
Fejer convolutions for an extremal problem in the Steklov class. Keldysh Institute preprints, 2013,

No. 76, 19 p. URL: http://llibrary.keldysh.ru/preprint.asp?id=2013-76&Ig=e



http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2013-76&lg=e
http://library.keldysh.ru/author_page.asp?aid=1031&lg=e
http://library.keldysh.ru/author_page.asp?aid=3207&lg=e
http://library.keldysh.ru/preprint.asp?id=2013-76&lg=e

POCCUNMCKAYA AKAJTEMISA HAVK

NMHCTUTYT ITPUKJIAJTHOM MATEMATUKN
M. M. B. KEJI/IBITITA

A.I. Aptekarev, S.A. Denisov, D.N. Tulyakov

Fejer convolutions
for an extremal problem
in the Steklov class

MOCKBA, 2013 .



AnrekapeB A.UN., /lenncoB C.A., Tynakos . H.
Ceépmru Detiepa Oan 00Hot sxcmpemarvhotl 3adavwu 6 xaacce Cmexaosa

Annorarus. Nssecrnas npobsema B.A. CTexiioBa TeCHO CBsI3aHa CO CJIELYIONIEH IKCTPe-
MaJIbHOI 3aj1adeil. Uiercs MakcuMyM MHOrOWIeHa (IpH (DUKCHPOBAHHOI CTETEHN ), OPTOHOP-
MHUPOBAHHOTO 10 Mepe u3 Kiacca CTek/oBa (T.e. KJacca BEPOSTHOCTHBIX MEP Ha €IMHUTHON
OKPY?KHOCTH C IUIOTHOCTBIO, OTTPAHUYEHHOW OT HyJsl B KayKJjoil JieberoBoit Touke). Mbr
UCCJIeyeM ACUMIITOTHKY HEKOTOPBIX TPUTOHOMETPUUECKUX MHOTOUJIEHOB, OIPEJIC/IAEMbIX C
OMOIITbI0 CBEPTOK Deftepa. DTU MHOTOUIEHBI MOTYT UCIIOJIb30BATHCSI IPU TIOCTPOSHIH ACHMII-
TOTUYCCKUX PEIICHUI 3TON 9KCTPEeMaIbHON 3a/1a9u.

KiroueBsbie cijioBa. HpO6JI€Ma CTeKJIOBa; OPTOI'OHaJIbHbIE MHOI'OYJIEHbI Ha OKPY2K-

HoctH; cBépTKU Deiiepa.

Aptekarev A.I., Denisov S. A., Tulyakov D. N.
Fejer convolutions for an extremal problem in the Steklov class !

Abstract. The famous problem of V.A. Steklov is intimately related with the following
extremal problem. Fix degree and find a maximum of the orthonormal polynomial with
respect to measure from the Steklov class (i.e. class of probability measures on the unit
circle, such that its density is bounded away from zero at every Lebesgue point. We study
asymptotics of certain trigonometric polynomials defined by the Fejer convolutions. These
polynomials can be used to construct asymptotical solutions of the above extremal problem.

Key words. Steklov problem; orthogonal polynomials on the circle; Fejer convolu-

tion.
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1 Introduction

Let {¢,} be a sequence of polynomials of z = e * orthonormal on the unit circle

2

/gbnamda(e) =y, nom=0,1,2... (1.1)
0

with respect to measures from the Steklov class S5 defined as the class of prob-
ability measures o on the unit circle satisfying

o > 4/(2n) (1.2)

at every Lebesgue point. The famous conjecture of V.A. Steklov (see [1], [2])
stated that polynomials ¢, generated by a measure from the Steklov class have
to be (uniformely in n) bounded on the support of the orthogonality measure.
This conjecture was disproved by E.A. Rakhmanov [3]. In [4] Rakhmanov also
has raised a problem about possible growth of orthogonal polynomials whose
weight is bounded away from zero. An important role in this problem is played
by the following extremal problem. For a fixed n, define

M, 5 = sup ||¢n(2; 0)| £ () (1.3)

0€ESs

The trivial estimate from above is

In [4] Rakhmanov proved

1
C\/—”t) <M,5, C>0. (1.5)
6 In°n ’

Thus the Rakhmanov’s result left very narrow gap where the magnitude of M,, s
can live. The main result of our paper [5] is

Theorem 1.1 For any 6 € (0,dy) with dy sufficiently small, we have

M, s> C(6)v/n. (1.6)

We recall, that in the frame of proof of Theorem 1.1 in [5] we introduced an
explicit form of the asymptotically extremal polynomial ¢,,. The polynomial ¢,
was defined by means of its *-polynomial, i.e.

O = 2"Pn(1/7) .

3




Let ¢! be as follows
On(2) = Cuful(2),  [fa(2) = Pn(2) + Qu(2) + @ (2) (1.7)

where P, and @), are certain polynomials of degrees 2m — 1 and m — 1 corre-
spondingly, and m = [§;n] where d; > 0 is small enough. Notice here that Q,
is defined by applying the n-th order star operation. The constant C), should
be chosen in such a way that

/ 671726 = 2r

(i.e. a measure of orthogonality corresponding to ¢,, is probabilistic). One of the
main technical difficulty in the proof of the Theorem 1.1 in [5] was verification

of
v 1/2
C, = (/ ]fn|‘2d9> ~1, (1.8)
uniformly in n.

Here in order to diversify approaches for overcoming the technical difficul-
ties of the proof of the Theorem 1.1 we introduce another (than in [5]) explicit
form for polynomial @,, in (1.7) (see Section 3) and we prove estimates of @,
and its derivatives which are used for obtaining (1.8) (see Sections 4, 5, 6).

2 Structure of the asymptotically extremal polynomial

We explain assignment of the different terms constituting the polynomial ¢,, in
(1.7). If all zeros of @, are outside from the unit disk D then all (exactly n)
zeros of @, + @), are on the unit circle T. Since the polynomial ¢ defined by
(1.7) expected to be orthogonal on T then zeros of @, + Q% in (1.7) have to be
pushed away out from D, by means of a polynomial P, chosen by an appropriate
way. This "pushing" polynomial P,, has no any other assignments and it has
a small modulus. Thus the main contribution in the polynomial ¢,, on the unit
circle is performed by @Q,, + Q7,. Let us find an appropriate representation for
this term. We have

Qm + Q;, = |Qm| exp(i Arg (Qm)) + |Qm| exp(ind — i Arg (Qr))
= 2|Qm| exp (%) coS (%9 — Arg (Qm))

= exp (48) 24/ A(0) - cos ((n/2 — m + 1)0 + ©(0)) .

Here we have denoted
A(0) = 1Q(e)?,  @(0) == Arg Q" ("), 0 €(0,2m).

4



In order to control this term from below we need to obtain convenient expressions
for the argument of (), and its derivative. We have

27
1 [A(p) =0
o) = — 1 d 2.1
0 = 3= [ G5 in £ de 2.)
0
and ,
L[ (AN ] -
d'(0) = — 1 de . 2.2
0= 5 [ (&) o o7 22
0
In order to prove (2.1) we have
oy 0 LoQu ()
P —(m—1)0 — A M ==-(m—1)+ =1 :
—1 (z + €)dz 5
= V.p. — In |Qn
g [ S wlQu )
|z|=1
] 27
:V.p._—/ln|Qm(ei‘P)\200t¢_ dep.
4
0
Since cot L is the odd function with respect to ¢, then
2w 0
V.p. /Const cotgp; dp =0, V Const,
0
and we can continue
27
2w
p—0 Alp) ¢ —0
p. |1 t dp= |1 t dp =
v.p {nﬂ(gp) co © /nA(G) cot —o—dyp
0
Al) 0T A 4
zln—SOZh’l Singp —2/ Ld In singp ‘d
AW 2 |, ") A 2

The first term is equal zero and we arrive to (2.1). Representation (2.2) can be
proven in a similar way.

Thus we see from this representations, that to control @, + @), we need
to have good estimates form above and below for |@,,|? and its two derivatives.

5



3 Definitions for |Q,,|> and statements of the results

In [5] the polynomial @, was defined as an analytic polynomial without zeroes
in D which gives Fejer-Riesz factorization of

Qu(2)? = G (8) + [Rim.as2) (), (3.1)
1 7 1 s
G1n(8) = Fn(6) + 55 (v- E> + 5% (0+ E> , (3.2)
where R 4) is the Taylor approximation to the function (1 — 2)7¢, i.e.
k .
Rieoy(2) = co+ ) ¢;7, (3.3)
j=1
and JF,, is the Fejer kernel
27
sin? e
Talp) = ot S0 =m, [ Faode=m 3
msin® & )

We see that the first term G, in (3.1) (we shall call it "shapochka" ) provides a
desirable growth of the orthonormal polynomial

[@n(1)] ~ v/n.

In our construction the trigonometric polynomial (), have to keep a large mod-
ulus on the interval of order 1/m. We need it to keep bounded derivative of the
polynomial and therefore to have a reasonably smooth Szego function to provide
the Steklov condition for othogonality measure. Since the Fejer kernel decays
very fast we meet this requirement taking a sum of the kernels (see (3.2)). We
also need that outside of this interval the polynomial has a controlled decay,
which is again has to be not so fast as the decay of the Fejer kernel. In (3.1) it
is an assignment for polynomial R, ,/2) (we shall call it "wings" ).

Estimates from above and below for the trigonometric polynomial @),
(defined in (3.1), — (3.3)) and estimates from above for its first and second
derivatives have been done in Appendices A and B of [5] (see Lemmas 5.2,
5.3 and proof of Lemma 6.1). These rather technical estimates lead to the
key Lemma 6.1 of [5] (required to prove (1.8)), which controls @, the phase of
Qm(e?), for |0] < v, where v is some small positive and fixed number

©(0)] S m. (3.5)



Here, preserving the same general requirements for the polynomial (), as

described above, we introduce another constructions for the parts of @), than
(3.2) and (3.3). We define

A0) = 1Q(")* = (¢® Fun) (9), (3.6)
where ® is convolution with Fejer kernel F,,, — (3.4) of the function:
q(0) = me ™ 2 4 (m72 +sin?(0/2)) 2 = ¢ + qo, (3.7)

which is split in two terms (in accordance with (3.1)), i.e. ¢; "shapochka" and ¢
"wings" . Our aim now is to obtain the estimations corresponding to those from
the Appendices of [5], which are necessary to get (3.5) and eventually to check
(1.8) in new settings (3.6), (3.7). In this section we state the result obtained.

We start with the "shapochka"

™

Ar(2) = (0 ® Fo)() = / 0 Tl — ) dt,  qu(t) = me 0 E

Before to state a result about asymptotics of the derivatives Aﬁp )(:13), for p =

0,1,2, as m — oo, we introduce a sequence of entire functions {F;}:
2

Eyr)=@—-1)e", E@r)=r@r—1)e", Br)=F—-1)2"-1)e".
Denote {c§l>} coefficients of the power series expansion of Fj(r) at r = 1:
E(r) = ch)(l — 7).
j=1

Then we form two another sets of entire functions

Cit) = (=1)7ele ;. §i(t) =Y (—1)s)e+!
v=0 v=0
with coefficients

0) - NOP

|
e Z(j+2u+1)!’ S Z(j+2u+2)!'

Lemma 3.1 For any € > 0, when m — oo we have

2
~ 1
mﬁx Co(mzx) + O(mx), lz|m < —,
« 92 ey 5
sin” =
2
Ai(z) = 4 cos M
| VT (1 - ) 1 1
— £ + 0 ,lxlm = =,
m gin Z m2x? 3
\ 2



and for the derivatives

e 2 X x?
\ sin 5
and
( —/mz? 1
m?—Y—— (Co(mz) + Co(mz)) + O(m™?), |z|m < =,
2sin® = £
) 2
A7 (@) = 4
1 1
mﬁcos”f+o<_3> | e|m >
e qipn2s mx £
\
Moreover, the function 50(5) is even and
Co(€) >0, VEER (3.8)
Then we pass to the "wings"
AQ =2 @ :-Trm = /QQ(t) Sjm(e — t) dt.
Lemma 3.2
1 —
As(0) < max <—, |9\) , 0 € [—m, 7). (3.9)
m

For the derivatives Ay = ¢, ® F,,, A} = ¢ ® F,, we have obtained just
estimation from above (compare with Lemma 5.2 from [5])

1 a+1
AL(H)] < m* ' min (1 —) :

mo

Lemma 3.3

and



4 Asymptotics for the "shapochka" and its derivatives

Here we prove the Lemma 3.1 about asymptotics of

™

A @)= [ O Fulo -0yt =012 (4.1)
where we recall
_m2sin2t Sin2 %
q1(t) = me 2, Fl(p) = ——=.
msin® £

We start with a general approach to estimations of (4.1) for arbitrary p. Then
we specify the general result for p = 0,1,2. The general approach consists on
the following steps.

1. We split the integral (4.1) in two parts

m=2/3
‘Agp) = / + / = ﬁ/lp + ﬁ/lpa
—m=2/3 = x]\[-m~2/3 m~2/3]

where the second integral is estimated as

= m2/3
A, =0 <m2+2pe a ) : (4.2)
2. We denote
m2t?\ sin® Z(x —t) q(m (t) (52 :
Sm(xat) = €Xp (_ A ) i—t 2 ) fp(x7t) = im2t2 ( 22 )x—t
(T) me~ 1 sin 7)
Thus
m—2/3
A, = Fol@, ) Sz, 1) dt (4.3)
_m—2/3
We take an expansion
fola,t) = Fpj(x,m)t/ (4.4)
5=0

and we note that coefficients F},; are bounded for x € (—m, 7). Now we keep
the first N terms in the Taylor expansion and estimate the rest of the sum by
using the bound [t| < m~2/3 .

folz,t) = Z ﬁp,j(x,m) t+ Z O(m"i)th . (4.5)

J<N >N



The sharpness of the asymptotics we get will depend on N.
3. Next we substitute (4.5) in (4.3) and using estimation like in (4.2) we
extend the interval of integration in (4.3) from [—m~%/3, m=2/3] to [~o0, o0] :

— Zﬁm(x, (z,m) + ZO 1) Ji, (z,m) (4.6)

J<N j>N

where
Ji(z,m) ::/thm(:r,t)dt, Ji(x,m) ::/|t\jSm(x,t)dt

This representation easily implies
Jor(x,m) = jgk(x,m) >0, z€R, keN. (4.7)

4. Then we proceed with the integrals J;. We use an identity

sin? ( Lo
= 2m //cos rm(x—t)) drds = 2m2//cos(rm(:1:—t)) dsdr .
2 0 r

It gives us

1

1 oo
Jj(a:,m):2m2//tje e / s(rm(x —t))dsdtdr .
0 —oo

r

Evaluating the integrals in s and ¢ we get

( )k+1\/_2k+2 ’

Jop = D cos(rmzx) Faoy(r) dr ;
0
(4.8)
1
-1 k+1 T .
Jok+1 = (7)717\/_ oF+3 sin(rmax) Eogy1(r) dr |

where Fj(r) are entire functions:

2 2 2

Ey:=(r—1e", Ei=r(r—1)e", Ey=—-12r"-1)e",

Thus to conclude the description of the general approach we have to explain how
to get asymptotics of Jy(z, m), when m — oco. We shall do it in two regions:

1 1
|:L'|m<g and |:1:|m>g for Ve > 0.

10



5. For bounded |x|m, we take the power series expansion of the entire
function Ej(r) at the point ¢ = 1:

oo

E(r)=Y "1 -ry,

j=1

and substitute it in (4.8). Expanding the obtained integrals

/ i — 5 (Z1) G ma)
O/COS(T””") (I —rydr= ZO (j+2v+1)

. i 0 (—1)”j!(m$)2y+1
0/s1n(7“mx) (1 —r)dr= VZ:; Grawtal

we construct another entire functions

Gt = SR Gi(e) = 3 (sl
v=0 v=0

with coeflicients

l) . l) .

00 (1) 4 00 (1) 4
=) . _ € J () € J
) = , 5= : :
Y ;(j+21/+1)! jz;(j+21/+2)!

Thus for finite |x|m we get the following representation for the integrals (4.8)
—1 k+1 7T2k+2 . —1 k+1 7T2k+3 _
( )m%\{: Cor(mz), Jopq1(z, m) = (=) Q\k/_ Sort1(mx) .

(4.9)

Jop(z,m) =

If k = 0, the first formula above along with (4.7) give (3.8).
6. For growing |z|m we perform integration by parts in (4.8). We have

4
CRMT 1) (mx)~% + = sinma(max) >+

€ €

Jolz,m) = —4y/7m { (

1
+(ma)™* g(l — cosmx) + 4/(COS rmx — 1)Ps5(r) e " dr :
0

where P5(r) is some polynomial deg P5 = 5. Thus

Jo(z,m) = 4v/7m (1—Cosmx) ( ! +O< ! ) (4.10)

e mx)? m2ax3

11



Analogously

8T . 1 1
Ji(x,m) = — \e/_ sin max (1)’ +0 (W) : (4.11)

and so on:

8y/T [cosmx 1 1
Joliw,m) = m ( e +1> (m:z;)2+0<m4x3>’

Jg(aj’m):mﬁ (sinmx—mx) 1 2+O<L> |

m? e (mx)

Now we are prepared to analyse the special cases of A}, for p = 0,1,2. We shall
use the notations:

. z/2 \’ 2 e 2% cos(x/2) — 2w sin(z/2)
al@) = (sin(x/Q)) - ble)i= 4sin®(z/2) '

The case p = 0. We have

Jo(z,t) = exp {mitQ — m” sin® (%) } ca(r —t) = a(z) + b(x) t + O(1) P+

LO) 8 + <%a(x) m? +0(1)> o

We note, that exponents in this series have the following periodic structure
O(m%) 754k : O(m2k) t4k+1 ’ O(ka) t4k+2 : O(m2k) t4k:+3 : EeN.
Thus
fo(z,t) =alzx)+O(1)t, te [—m_2/3, m_2/3] :

It gives us

Ar = a(x) Jo(x,m) + O(1) Jy(z,m)

where O(1) is bounded as function of = and m. From here using (4.9) and (4.10)
we arrive to the statement of the Lemma 3.1 for p = 0.

The case p = 1. We have

iet) =~ esp {”T -’ Sin2<t/2>} sint-ale — 1) = -m? 2 4
) 2 Ot 01 i - (”"456@ + 0<1>m2> O

12



Thus
a(z)

f1<£13, t) - _mQTt + O(mz) t2 , te [_m_2/37 m_2/3] :

It gives us
A = -2 g 0 )+ O?) . m).

From here using (4.9) and (4.11) we arrive to the statement of the Lemma 3.1
for p = 1.

The case p = 2. We have

P 242
fo(z,t) = _mj exp {m4

—m? sin2(t/2)} - (2cost —m?sin’t) -a(z —t) .

Expansion by ¢ implies

falz,t) = ) (1 - ﬁ) _ 2@ (t - m2t3) +

2 2 2 2
6
-|——m alz) +om3y, te[-m72BP mH.
192
It gives us
2 b 2
A = o (=) =) (5 ) 0.

Performing integration by parts we get

1
2
Jo — %Jg = —8/mm /cos(rmx) rr—1)e " dr =
0

8 1 1
:—ﬁmcosmx—QJrO( ),

e (max) m3xt

and

1
2
D= gy = =16yEm [ sin(rme) (e + D = D2 dr =
0

= 32V (2(30877123—}-6);—{—0 (L> :

e (mx)3 mixd
>From here and (4.9)we obtain the statement of the Lemma 3.1 for p = 2.
Lemma 3.1 is proved.

13



5 Asymptotics for the "wings"

Here we prove the Lemma 3.2 about asymptotics of

™

Ay =T, = /qg(t) Fon(0 —t)dt.

—T

We start with estimations from below. We have for the Fejer kernel

4n T
9 ‘t’ -
T
Fn(t) >
0, [t|>=
Therefore (due to positivity of ¢s)
0+7 0+

(g2 ® F)(0) > /%%(ﬂdt} /4_7; (l+

/i n

33
3

5)
2

where we used the fact that a > 0. There are two options:

n 2

1 L\
\t9|<z = |t|s- = <—+U> = n®
n n

or

Lo _ 1 9

\0|>E = —+— =< —+— =< |6].
n n

2 n 2
Thus the estimate from below in (3.9) is proven.

Now we proceed with estimations from above. We have for the Fejer kernel

Fn(t) < S

Therefore
o+=

men0< [ o) s [ 2 (1

)_a (0 itt)?*

TN dt
(M . L4+ L+1s.
+/n<7r> 017 1+ i2+ 13

(5.1)



Using symmetry we can suppose 6 € (0,7/2). The case § € (7/2,7) can be
handled similarly. For the first integral we have

0<E = h=29<1l =
n m

™o

I = (L+hn)"+1=n)"") < n°

l -«
where we used the fact that a < 1, and

\0|>E = h>1 =
n

™o

Il — ((h + 1)1—a . (h . 1)1—04)

X

neh= = |67 .

1l -«
To proceed with Is we change the variables

u - = —.

Then

nb né

™ 1 9 kg 1 Y
12:/( )(9“+ > du:”—n—ae—a*/(“+ ) du .
no u n u

0 [}

T—60 T—0
We note, that integrand (“—Zl)_a € (0, 1), therefore
09>" = L=0 (n'07*"'ng) = O(6~*)
n
or

0] <

313

= I <—7fae a= 1/ u“du = O
0

To proceed with I3 we change the variables

1 U

U — =—.

0—t 0

We have
nd nd
[ (72 (0 |1—ul\ p2te o Y
]3:/<%> <%‘ - ) du = 61+a/u\1—u| du .

= =

15



We estimate this integral in the three cases. The first case is

no

2a7T2+a
= |1—-u/ %<2 = 13<—a/uo‘du~no‘.
T

NO| —

The second case is

1 _nb
L —<1 =
2 o
; 1
I3 < (n ) /uo‘(l —u) “du = oot T4 pa
m sin T

0
In the third case we split the integral in the three parts:

o

1
nb U @ o
1< — I 1— @ —1—-—
- = I3< 91+ /u u) du+/[<u_1) u} du
0

1

U n91+a

2+a
—i—/(l—g)du :L(Const( )—i——e—l—alnn—e)wea.

1

Lemma 3.2 is proved.

6 Bounds for the derivatives of the "wings"

Here we prove the Lemma 3.3 about upper bounds for

1 £\ 2
Ay =y @F, Ay =q¢) ®F,, where ¢ = (— + sin® —) .
m

2
We have
, a 1 5t 21
gy = 1 sint (W + sin 5) ,
and
a2 a1
qy = 04(041—2—2) sin? ¢ <% + sin? %) — % cost <% + sin’ %) :

Using inequality (some kind of inequality between geometrical and arithmetical
means):

1 7,8271 1 5/2
a 2
a < 2 +a2) =T ( 1m5 2) (Bm*)""? <
m #_{_CLQ m2 +a



B+1
1 2

a2 77L2ﬁ
Tz TPI e ,
< (Bm?2)P/? —“5+a —5+a — (Bm2)P2(8 + 1 —oH ’
() — (B?)2(8 + 1)
we can bound g¢4(t) and ¢5(t) from above for t € [—m, 7] :
—2q
ot 1 AN a [(a+1)ot
|q2\<§sm§ <ﬁ+sm 3 <§ Wm '
and
ala+ 2) t (1 AR AN
lq5| < 1 sin’ 3 (W + sin? §> 1 <W + sin? 5) <

a+4
« a+2\ 2
<_ 2 a+2.
4( +<oz—|—4) ) "

We also can make an estimations from above using powers of ¢

()] < S 1 <<%>2> R O‘WZH oL
() < 2ot ((%)) X ((g)) o

a+2

aT WQ
= 1 2)— | [t 2.
— (1427 )

a+1 a+2
|q;<t>rsmm(m,1) | \q;'<t>|smm(m,§|) |

]
Now we can proceed with Af and Aj on [—m, 7). We split the integral in two
parts

Thus

0/2 0/2+m
250 = [ 5u0 -0t = [ G5 0-0d+ [ Go 5.0,
T 0/2—mx 0/2
and we have
0/2 0/2

ALO)] < D) dt - F,.(t F,.(t)] dt- L) .
A5(6) /\qzmw x| Tn(t)]+ / Tl dt _ max [a;(0)

0/2—m 0/2—m
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We use periodicity of F, qéj ),Aéj ) and their symmetry with respect to zero. Now
we recall (5.1)

1 2
5 (t)] < - min <m1) tel-ma].

m i1

Then we fix > 0, fix period such that /2 is in middle of the period, and we

continue
1 or\? [ m\ "
A5(0)] < — min (m, —) : /min <m, —) dt+
’ m 10l 2]
-7
m
9 a+1 1 2
+ min <m, —7T> . /—min (m, 1) dt <
o) ) m 0
1 2 1 a+1
< m**! min (1 —9> + m®™ min (1 —9> :
m m
Since

1 2 1 a+1
. 1 < . 1 =
min ( m@) S min < m@) ;

we can keep here just the second term.
For AJ we do the same with change of the degrees o 4+ 1 for a + 2.

AS(0)| < m*min ( 1, L 2+m°‘+2 min | 1 L -
2V " mb " mb ’

but for this case we have to keep the first term.
Lemma 3.1 is proved.
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