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Crenennas TeOMETPUA U SJUTUITUYECKNE PA3JIOZKEHUS pelleHnil ypaBHenuii
[TenseBe

PaccmarpuBaercst obbikHOBeHHOE jnddepennnaibioe ypasaenune (O1Y),
KOTOpOE MOYKeT OBbITh 3alliCaHo B BHJE€ MHOIOYJIEHa OT IEePEeMEHHbIX U
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We consider an ordinary differential equation (ODE) which can be written as
a polynomial in variables and derivatives. Several types of asymptotic expansions
of its solutions can be found by algorithms of 2D Power Geometry. They are power,
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1. Universal Nonlinear Analysis

We develop a new Calculus based on Power Geometry [1-4]. Now it allows
to compute local and asymptotic expansions of solutions to nonlinear equations
of three classes: (A) algebraic, (B) ordinary differential, (C) partial differential,
as well as to systems of such equations.

Principal ideas and algorithms are common for all classes of equations.
Computation of asymptotic expansions of solutions consists of 3 following steps
(we describe them for one equation f = 0).

1. Isolation of truncated equations f;d) = (0 by means of faces of the convex
polyhedron I'(f) which is a generalization of the Newton polyhedron. The first
term of the expansion of a solution to the initial equation f = 0 is a solution to

the corresponding truncated equation f;d) = 0.

2. Finding solutions to a truncated equation f ) = 0 which is quasiho-
mogenous. Using power and logarithmic transformatlons of coordinates we can
reduce the equation f = 0 to such simple form that can be solved. Among
the solutions found we must select appropriate ones which give the first terms
of asymptotic expansions.

3. Computation of the tail of the asymptotic expansion. Each term in the
expansion is a solution to a linear equation which can be written down and
solved.

Applications

Class A. 1. Sets of stability of multiparameter problems [5]6].

Class B. 2. Asymptotic forms and expansions of solutions to the Painlevé equa-
tions [4,7,8].
3. Periodic motions of a satellite around its mass center moving along an
elliptic orbit [9].
4. New properties of motion of a top [10].
5. Families of periodic solutions of the restricted three-body problem and
distribution of asteroids [11}/12].
6. Integrability of ODE systems [13].

Class C. 7. Boundary layer on a needle [14].
8. Evolution of the turbulent flow [15].

A survey of these applications see in [24].

2. Introduction

Let w(u) be a formal elliptic asymptotic form of a solution to an ODE.
The form w(u) is suitable if it can be extended into power asymptotic expansion



OO .
v = w(u) + > bju~’/, where b; = b;j(u) are some functions. The expansion is
j=1

regular, if all b; are not branching functions of w(u) and its derivatives. If all
functions b;(w, w) have no branching, then they are elliptic functions with the
same periods as w(u). Selection of such cases is our aim. For given w(u) and fixed
point w’ (including infinity), we can compute power-logarithmic expansions of
functions b;(w,w) near w = w". In these expansions logarithmic branching
can appear, only if w’ is a singular point, and algebraic branching (of finite
order) can be for subsingular points w". To each singular point w” and suitable
asymptotic form w(u), we assign unique regular expansion v = o(w", w(u)), so
called basic, and we are looking for such basic expansions near singular point
w, which have not branching.

We propose algorithms for: (1) finding all formal elliptic asymptotic forms,
(2) finding all suitable elliptic asymptotic forms, (3) calculation of power-logarith-
mic expansions of functions b;(w,w) near a singular point w’ and selection of
basic expansions without branching. All algorithms are based on 3D Power
Geometry.

Application of these algorithms to the Painlevé equations Pi,...,Fs gives
following.

1. P, P», Py have continuum of 2-parameter families of elliptic asymptotic
forms each, P3 has three and P; has two of them. P does not have.

2. P, P, Py have countable sets of families of suitable asymptotic forms
each, and all 5 forms of P; and P; are suitable.

3. Basic expansions for all suitable forms have not branching for P;, for
P, if the independent variable tends to infinity, for Ps if condition C is fulfilled
and for Pj if condition D is fulfilled and a = b =0, d # 0.

Expansions are formal, their convergence is not considered.

Here we consider application of Power Geometry to calculation of elliptic
expansions of solutions to the Painlevé equations.

A hundred years ago, Boutroux [16] found 2 families of elliptic asymptotic
forms of solutions to the Painlevé equations P, and P». During last 5 years
we found 6 additional families of elliptic asymptotic forms of solutions to Pj
(three) [17,/18], P, (one) [19], P5 (two) [20]. Moreover the Painlevé equations
P, P, P, have continuum of families of elliptic asymptotic forms each, and
I proposed a criterion for selection suitable asymptotic forms, witch can be
extended as asymptotic expansions. All 8 known elliptic asymptotic forms are
suitable. Solutions to the equation Py have not elliptic asymptotic forms at all.

Near infinity of the independent variable, the Painlevé equations P;—Ps5 have
12 families of suitable asymptotic forms and near zero of the independent variable
equations P;, P», P, have countable sets of such families each. Next I extend



these suitable elliptic asymptotic forms w(u) into power-elliptic expansions

OO .
v =w(u)+ Y bju~’, where coeflicients b; are functions of the corresponding
j=1

elliptic asymptotic forms and their derivatives. To each family of suitable elliptic
asymptotic forms, I put in correspondence unique basic formal power-elliptic
expansion near w’ = oo for P,—Ps, near w” = 0 for P3Ps and near w°’ = 1 for
Ps5. Obstacles (logarithmic branching) in calculations of these basic expansions
appeared only for P, if the independent variable tends to zero, for P, and for
Ps if |a| 4+ [b] #£ 0 or d = 0.

Thus, near infinity of the independent variable there are 10 families of
regular (i.e. without branching) elliptic expansions of solutions to equations
P—PFs: 4 for Py, 2 for P, 3 for P and 1 for P5. Existence of these expansions for
two Boutroux families of asymptotic forms was proven in [21]. Near zero of the
independent variable there is countable set of families of such expansions for P;.
The results were obtained by means of algorithms of 3D Power Geometry [17-23],
realized in very cumbersome calculations.

Here I introduce the third variant of 3D Power Geometry. The first was
in [17,|19,23], the second was in [18}20-22].

Main applications of the Painlevé equations: many soliton equations of
Mathematical Physics can be reduced to Painlevé equations. For example:

the Korteweg-de Vries equation is reduced to P; and Ps;

the nonlinear Schrodinger equation is reduced to P, and Pj;

the Sine-Gordon equation is reduced to P3 and Pj;

the Boussinesq and Kadomtsev-Petviashvili equations are reduced to P,
P2 and P4;

e the Ernst equations are reduced to P, P; and F.

3. 3D Power Geometry

Let x be independent and y be dependent variables, x,y € C. A differential
monomial a(z,y) is a product of an ordinary monomial cz™y"2, where ¢ =
const € C, (r1,72) € R?, and a finite number of derivatives of the form d'y/dx!,
[ € N. The sum of differential monomials

) =Y aey) (1)

is called the differential sum.Let n be the maximal value of [ in f(x,y).

In [2-4] it was shown that as 2 - 0 (w = —1) oras z — oo (w = 1)
solutions y = ¢(z) to the ODE f(z,y) = 0, where f(z,y) is a differential sum,
can be found by means of algorithms of Plane (2D) Power Geometry, if

D (dlgp/dxl) =po(p(x)) =1, 1=1,...,n,



where the order
Pu(p(z)) = wlimsup log |ip(w)]
00 wlog|z]
on a ray argx = const and n is the maximal order of derivatives in f(z,y).
Order of the power function ¢(z) = x* with a € C is p,, (%) = Rea.
Here we introduce algorithms, which allow to calculate solutions y = ¢(x)
with the property

Puw (dlgp/dxl) - pOJ(SD(I)) - l’}/w, [ = L...,n, (2)
where 7, € R.
Theorem 1. w — w7y, = 0.

For example, 7, = 0 for ¢ = sinx and v_; = 2 for ¢ = sin(1/x). Note, that
in Plane Power Geometry we had v, =1, i. e. w — w7, = 0. So, new interesting
possibilities correspond to w — w7y, > 0.

Problem
Select leading terms in the sum (I)) after substitution y = ¢(z) with property (2).

Below we describe algorithms for solution of the problem. To each differen-
tial monomial a;(x,y), we assign its (3D) power exponent Q(a;) = (q1,q2,q3) €
R3 by the following rules:

g3 = sum of orders of all derivatives;
qo = order of y;
q1 = difference of order of x and gs.

Then the 2D vector @ = (q1, ¢2) is the same as in 2D Power Geometry [2-4]
and g3 corresponds to the total order of derivatives. The power exponent of the
product of differential monomials is the sum of power exponents of factors:

Q(araz) = Q(a1) + Q(az).
The set S(f) of power exponents Q(a;) of all differential monomials a;(z, y)
presented in the differential sum f(z,y) is called the 3D support of the sum

f(x,y). Obviously, S(f) C R3. The convex hull T'(f) of the support S(f) is
called the polyhedron of the sum f(x,y). The boundary OI'( f) of the polyhedron

I'(f) consists of the vertices Fgo)’ the edges I‘S-l) and the faces I‘;Q). They are
(d)
J
of the face, and the lower one is its number. Each face I'
3D truncated sum

, where the upper index indicates the dimension
(d)

J

called (generalized) faces T

corresponds to the

f;d)(az,y) = Zai(x, y) over Q(a;) € I‘gd) NS(f).



All these definitions are applied to differential equation

f(z,y) = 0. (3)
(@)

Thus, each generalized face L, corresponds to the truncated equation

f 9z, y) = 0.

(2)

Let N; = (n1,n2,n3) be the external normal to two-dimensional face I';”.

We will consider only normals with n; # 0.

Example 1. Consider the second Painlevé equation P,

fay) — "+ 2 + 2y +a =0, (4)

where a is the complex parameter.
If a # 0, the 3D support S(f) consists of 4 points

Q. = (_2’172)7 Q2 = (073:0)7 Q3 = (17170)7 Q,=0.

They are shown in Figure [I]
Their convex hull I'(f) is a tetrahedron. It has 4 vertices Q1—Qy, 6 edges

Fgl) and 4 faces F§-2). Face 1“§2) = [Q1, Qq, Q3] is distinguished in Fig. , its
external normal N; = (2,1,3) and its truncated equation

)= =y 42 +ay =0,

Edge I‘gl) = [Q1, Qq] is also distinguished in Fig. , its truncated equation

@y = -y +2° =0

Let y = ¢(x) be a solution to equation (3 with property (2)) and p = p,(¢),
v = 7u(p), then the order of a monomial a(x,y) with Q(a) = (¢1, g2, q3) is

91+Q2P+Q3(1_’Y):<P,Q>,

where P = (1,p,1 — 7) and (-,-) is the scalar product. Leading terms of
the sum after substitution y = ¢(x) are monomials a(x,y), for which

~

w(P,Q) = (wP, Q) reaches the maximal value on the support S(f). Here
wP = (w,wp,,w(l —7,)) and w(l —~,) = 0 according to Theorem 1. On the



Figure 1. 3D support g( f) and polyhedron I'(f) of equation P, (). The grey

face is I‘?), the grey edge is 1“51). Projection on the plane (¢, ¢2) is shown by
dotted lines.

support S(f) = {Q;} maximum of the scalar product (wP, Q;) is achieved on a
generalized face F;d) of the polyhedron T'(f).

By R? we denote the 3D real space, where ly power exponents Q, and by
R3 we denote the space dual (conjugate) to R®. We will denote points in R? as
R = (r1,79,73). Then we have the scalar product

(Q,R) = q1r1 + 172 + q3r3.

Each face I‘g-d) corresponds to its normal cone [2]

o _ [ (@RI=(Q"R).Q.Q T
J <QI; R> S <Q”/,R> ;QH/ c F\F§d)

Thus, normal cone U§2) of the face I‘f) is a ray spanned on the exterior
;2), normal cone Uél) of the edge I‘g-l) is 2D angle spanned

on rays Ugf) and UZ(Z), where I‘g.l) = I‘,(f) N I‘Z(Z); normal cone UE-O) of the vertex

normal N of the face I



I‘§0) is a 3D angle spanned on exterior normals Ny of all 2D faces I‘,(f) containing

the vertex I‘EO) (see [2]).
Thus, selection of the truncated sums f;d)(a:, y) can be made by following

method. First we compute the support §( f) of the initial sum f(z,y). Using

support g(f), we compute the polyhedron I'( f) of sum f(x,y), i.e. all its vertices

I‘g-o), edges I‘g-l) and faces I‘f). Next we compute their normal cones Ug-d) and

select only such truncated equations f;d)(x, y) = 0 for which the intersection

Ug-d) N {p3 = 0} # (). But truncated equations f;d)(x, y) = 0 with p3 = 0 can be
studied by algorithms of 2D Power Geometry. So 3D Power Geometry studies

truncated equations fj(d) (z,y) = 0 with nonempty intersection Uﬁd) N {ps > 0}.

Example 2 (continuation of Example 1). Polyhedron I'(f) for equation
Py has 4 following faces with exterior normals

T = [Q1, Qs Q] N; = (2,1,3),
T =[Q1, Qs Q4 Ny = (2,-2,3),
Iy =[Qi, Qs Q4 N3 = (—1,0,—1),
T =[Q2, Qs, Q4. N, = (0,0, —1)

Only two of them, Ny and Ny, have r3 > 0. Hence, all edges exept I‘él) = [Q2, Q4]

(0)

and all vertices I’ have vectors R = (r1,re,r3) with 73 > 0 in their normal

j
cones Ug.l) and Ug.O). [ ]
4. Power transformations

If the face I‘§d> has the normal IN; = (1,0,1) then the corresponding trun-

cation f;d)(x, y) = x%g(y), where the differential sum g(y) contains y and its
derivatives but does not contain x. In that case the full sum f(x,y) can be writ-
ten as f(x,y) = x%9(y) + 29 "h(x,y), where r > 0 and h(z,y) is a differential
sum.

Remark 1

If y(z) is a solution to the equation g(y) = 0 with the property

0<e<ly@] Iy (@)]....[y" () < (5)

then y(z) can be the asymptotic form of the solutions to the full equation ({3)).
Here ¢ is a small real number. We call y(z) as formal asymptotic form.
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Let the power transformation of variables z,y — u,v :

1
y=x%, u= Bajﬂ, (6)

transform f(z,y) into f*(u,v): f*(u,v) = f(z,y).

Theorem 2. Let the face I‘Ed) of T'(f) have the exterior normal N; = (n1,ns, ng)
with

n 7é 0, ns > 0, (7)
then the power transformation @ with o = na/ny, B = n3/ny transforms the
truncation fi(d)(x,y) of f(x,y) into the truncation

71 (u,0) = uig(v)
of f*(u,v), corresponding to the face I‘*Z(-d) of T'(f*) with the exterior normal
N* = (1,0,1). Here fi*(d)(u,v) equals fi(d)(x,y) after substitution

W18 gl !
instead of y) = d'y/dx!.

So, if v = p(u) is a solution to the equation g(v) = 0 and |¢(u)| is bounded
from zero and infinity as |y| in (7)), then the initial equation f(z,y) = 0 can
have a solution with the asymptotic form

y ~ %2’ /B), ¥ = oco.

Herewith the power transformation (6] induces the following formulas for
derivatives:

o+p—-1, 1

! —
Yy == U+ ax® o,

y// _ x25+a—21-}- + (204 + ﬁ _ 1)$ﬂ+a_21} + Oé(Oé _ 1)xa—2v7

(8)

where v = dv/du.

Theorem 3. Let an equation of order n

have a solution of the form
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where w = w(u) is the solution to the truncated equation

g(w) =0 (11)

with the property

0<e<|wl dw d”w<1<oo
du| T | dun 3
Then b;(w) satisfies the linear equation
Z (u)bj(w) + 0;(w) = 0, (12)

§
where L (u) = 5—9 , 0;(w) is a polynomial on w depending on g(w), hi(w)
v v=w

and bl(.l)(w) fori<jandl=0,1.2,...,n. dg/0v is the first variation.

Solution v = ¢ (u) to the transformed equation f*(u,v) = 0 is expanded
into series with integer j only if the transformed equation f*(u,v) = 0
divided by u? has form (9) with integer j. In that case, solutions v = w(u) to
the truncated equation g(v) = 0 are suitable asymptotic forms for continuation
by power expansion ((10) and corresponding normal N; is also suitable.

External normal N; = (ny,n9,n3) to 2D face I‘Z(-Q) is unique up to positive
scalar factor. Hence, power transformation () of Theorem [2]is unique and we

must only check that the transformed equation has form (9) with integer j. The
(1)

external normal N = (ny,ng,n3) to 1D edge I';”’ belongs to the normal cone

Ugl). Hence, in the cone UZ(-l) we must select suitable vectors N with mentioned
property of integer j. Things for a vertex I‘;O) are the same, but usually solutions
v = w(u) to corresponding equation g(v) = 0 are so simple, that do not give
interesting expansion.

Let S(f) = {Qu.---, Qu}, S(F”) = {Qu. . Qu} 0 < L < M,N =

(ny,m9,m3) C U9 and ny # 0, ng > 0. Denote

Q=Qru—-Q, [=1,....M—L
and N = (ny/n3, ny/n3,1).

Theorem 4. The transformed equation (9)) has the property of integer j iff all
numbers

—<N,Ql>, I=1.. . M—L

are natural.
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There are 8 essentially different polyhedrons for Painlevé equations P;—
P5 [18]. Each of them has exactly one 2D face which truncated equation has
elliptic solutions. It was shown [22] that all those elliptic asymptotic forms are
suitable. Among 8 polyhedrons only 3 have an edge which truncated equation has
elliptic solutions. These are P, P, and Py. No truncated equations corresponding
to vertices of these 8 polyhedrons have elliptic solutions.

Example 3 (continuation of examples 1, 2). Polyhedron I'(f) of equation

P, () has edge I‘gl) = [Q1, Qo] with truncated equation flm(x, Y) o y"+2y% = 0.

Its first integral is
y? =y +Cy = P(y), (13)

where (Y is arbitrary constant. If Cy # 0, solutions to equation ([13)) are elliptic
functions. The same will be true after any power transformation (). Let us

apply Theorem 4 to the edge 1“5”. The edge I‘gl) = FP N I‘gz). So normal cone
Ugl) is the conic hull of two normals Ny = (2,1,3) and N3 = (—1,0, —1), i.e. up
to positive scalar factor, vectors N & Ug” have the form

N=»xN;+(1—2)Ng= 3sc—1,504x—1),0< 22 < 1.
Here M =4, L =2, Q1 = (3,0,-2), Qs = —Q1 = (2, -1, —2),
o 3x—1 x
N = 1].
(4%—1’4%—17 )

Conditions of Theorem 4 are

<N,Q1>:M_z =1 _

4dc — 1 :4%—1:
o o 2(3»2—1) » 3
< Qo doe—1  4dse—1 4 — 1 ’
here k£ and [ are natural numbers. Hence s = k+1 = : lLe.l=k+1
N ' T+l a—3 vt T ’

k=12, ...
We can write N’ = (2 — k, k + 1,3). Condition (7)) of Theorem [2] means
that k #2. If k=1, thenn; > 0,1i.e. x = o0; if £ > 2, then ny < 0,i.e. x — 0.

So there is a countable set of suitable normals N’ to edge I‘gD. According to

Theorem 2], here

kE+1 3
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5. Computation of expansions

Below we consider the case when the truncated equation g(w) = 0 has the
first integral of the form

A
w? = P(w) &t Zpkwk, pr = const € C. (15)
k=0

Differentiating with respect to u and dividing by 2w, we obtain

i — %P’(w). (16)

Here and below the prime denotes the derivative with respect to w.

Using the equations and , any power series R of w and its deriva-
tives d'w/du! can be written as the sum R = R*(w) + wR**(w), where R*(w)
and R**(w) are power series only of w. Let b;(w) = F;(w) + wG;(w), where F)
and G; are functions only of w. Then, omitting the index j, by and ([L6)),
we obtain

. 1
b:F%+PG+§PQ

17)
b= PF" 4+ §P’F’ + w <PG” + §P’G’ + §P”G> )

Further derivatives of b does not need us here, because we consider only equations
(@ of the second order. In our case

Zb=7(w)F(w) + vw¥(w)G(w).

Thus, the equation ((12) splits in two

F () Fj(w) + 6;(w)
G (w)Gj(w) + 07" (w)

0,
18
N (18)

where 0;(w) = 07 (w)+w8;*(w). Note that in equations differential operators
F(w) and ¥ (w) are operators on w and do not depend on wu. If polynomial
P(w) in does not have multiple roots and its degree A\ is greater than one,
1. e.

A>1 and A(P)#0,

where A(P) is discriminant of the polynomial P(w), then solution w(u) to the
truncated equation is periodic (if A = 2), or elliptic (if A = 3 or 4) or
hyperelliptic (if A > 5) function.
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0

Near some point w = w"” we will compute asymptotic expansions of fund-

tions Fj(w) and G;(w)

oo

Fy= Y ¢ut, Gi= it (19)

z:—aj 1=— j

where £ = w — w’ if w” # oo and £ = w! if w" = oco. If initial equation (9]
is a differential sum then according to Theorem 3.1 [3] coeflicients ¢;; and ~j;
are either constants or polynomial of log &, i. e. expansions are either power
or power-logarithmic |3]. Moreover, according to Theorem 3.4 [3] (see proof in
Theorem 1.7.2. [4]) power expansions converge for small |].

If the solutions Fj(w) and G,(w) to the system have no branching,
then they are also periodic or (hyper)elliptic functions. Finally, if for the se-
quence of equations with j = 1,2, ..., there exist solutions Fj;(w) and G,(w)
without branching, the solutions to the equation (9) have a regular asymptotic
ezpansion ((10)).

Let operators .# ~1(w) and ¢~ !(w) be inverse to operators .% (w) and ¥ (w)
respectively. Then the solutions of the equations are of forms

Fj(w) = =7 H(w)0;(w), Gjw)=-4"(w)f;"(w). (20)
In our case the initial ODE (9] has order two. Hence operators .# (w) and ¢ (w)
are of the second order. Moreover, in our case factors of I in .% and of G” in
4 are the same. Denote it as R(w). Singular points w® of operators .# and ¢
are roots of R(w). Indeed R(w) = r(w)P(w), where r(w) is a simple polynomial.
So roots w® of r(w) and w’ = oo will be singular points of operators .% and
4, but roots w’ of polynomial P(w) different of singular points will be their
subsingular points.

Theorem 5. If functions 0 (w) and 07" (w) are regular then the solutions to the
equations can have logarithmic branching only at infinity w = oo and at
singular points of the operators % (w) and ¢ (w) but they can have algebraic
branching can be in singular and subsingular points only.

For the existence of a regular expansion ({10)) we need to prove the existence
of a sequence of functions Fj(w) and Gj(w) that do not have branching. From
other side, if it is shown that F;(w) or Gj(w) have branching, then it proves the
absence of regular expansion.

In [18]22], for each polyhedron of the Painlevé equations, we selected suit-
able 2D faces, for each of them we wrote the equation ({9)), operators .# (w) and
4 (w) and inverse ones .# 1(w) and ¢! (w). We found their singular points
and the conditions on the parameters of the equation and on the solution w(u)
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under which the functions Fi(w) and G;(w) do not have logarithmic branching,
as well as the conditions under which at least one of these functions has such
branching. It is wonder that for each Painlevé equation P, the operators .% and
¢ are expressed in the same way in terms of polynomial P(w) and different
cases distinguish only by this polynomial. At the same time, for all cases of
faces I‘Z(-d) of five Painleve equations P, — P5, there are only four different pairs
of operators .% and ¥.

Singular point of operators .% and ¢ are w® = oo for P,—P5 and w” = 1 for
P;—P5; and w = 1 for Ps. To each suitable elliptic asymptotic form and to each
singular point w’ we assign one basic formal asymptotic expansion (10). Our
aim: to show existence or nonexistence of regular basic expansions by means of
calculation of expansions near the singular points.

0

6. Expansions for P,
Details of calculation of expansions will be explained for equation P

fla,y) € =y +20° +ay+a=0 (21)
and its truncated equation
F(1 def
@y = -y +25° =0

First, according to ((14) and Theorem [2| we make power transformation y = z%v,
u=2"/B (f)) using formulas (§), and obtain equation P in the form (9)

g(v) 4+ hy(v)ut + ho(v)u? + hy(v)u™" + hypa (V)u " =0,

where 5 |
O e
hi(v) = B~", hir1(v) = aB™1,
P(w) = w*+Cy, Cy#0. (23)

Here © = dv/du, and Cj is arbitrary complex constant.
Operators —% ! and —¥¢~! are

1 1
_ pl/2 * _ 1/2 g
F; = pY /P3/2/9jdwdw, Gj = /—P3/2/p 2o dwdw.  (24)

Here r(w) = 1 [22] and singular points of operators are only infinity.
Let us introduce a function

H(w) = /P_3/2dw = const - w® + const - w C 4 ... (25)
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Here the integral is determined by mentioned asymptotic expansion near w = o0.
Solutions of system or have 4 arbitrary constants C;—Cy:

F=CP"?4+0C,PPPH+F, G=0Cs+CyH+ G, (26)
where F? and G° are fixed solutions. Here expansions near w = oo are
P2 = const - w? + .. ., PY2H = const - w™> + . ..

So we will assume that power expansion for F” does not contain terms const - w?
and const-w 3 but expansion for G° does not contain terms const and const-w™°.
If it is necessary we can change constants C;—Cy. Now the functions FjQ and G?
are unique and ezpansion (10)) is called basic if there all b; = F ]Q + ng. Below

we compute these basic expansion only.

Lemma 1. If C; = Cy = 0, then solutions to equations for Py are
reqular in subsingular points (if 0 and 03" are also regular in them,).

Let Qj(w) and 9;“*(10) be power series on decreasing power exponents of w
and A;w’ and B;w™ be their terms with maximal power exponents o; and 7;
correspondingly, 0 # A;, B; € C, 04,75 € R. F; and G; contain logw, if

oj=—1or4and 7, =—3or 2. (27)

So these numbers are critical for operators .# ! and ¥4~

We will compute §;(w), (9}‘, 6;* as functions of b; = F; + w'G;, h; for i < j
and also will compute leading terms of F; and G, i.e. power exponents o; and
7; and constants A; and B;.

For that we will use following expansions

by by by b
V=Wt =+ =ttt
Uu Uu Uu . u

by by —b; b3 —2by, by —3b
1_|_2 1_|_3 2_|_4 3_|_.

by by—2by by —4by+2by by — Gby + 6b
=W+t 2y S " F
u u u u
3w?by  3wb? + 3w?by  3w?bz + 6wbiby + b3
i S L 1 i 2 3 ! 102 T 01
u u u

3w?by + 6wbibs + 3wb3 + 3b2b
+w4 w1i4 wWoy 12+.”
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3
Case k > 4. According to (22)), hi(v) = ——ai), hence, 0 = 0, 07 = —3a/f.

5
According to and we obtain F; =0, G; = %w‘2 + .... Next,
) 3a- —1
0y = 2by + Gut? — 205, — =D

5 52
Hence, according to ([17)

05 = (2 — 3_a> (%P’Gl + PG&) + 6wGIP — Mw

s 32
:_%w—i—..., 65" = 0.
ala+2)

According to ([24)), F» = — w '+ ..., Gy =0. Next,

1232

03 = 4by — 2by + 2 (6wbyiby + b)) — %O‘ (62 — bl> _ola D),

Hence, 65 = 0, according to ((17)),

2(a+1)° = 3a(a+1) +ala—1)
BQ

ala+ 2)
6,32

o+ 4
5

+ 12wG1F2 + QPG? = —

(9;:* = F2/ — G+

w*2+....

ala+ 2)

—4
2452 w T+

According to (24)), F3 =0, G5 =
Next,

04 = Gbg — Gby + 2 (3w + Gwbi by + 3biby) — Ea <b3 - 252) ot Dy,

Hence, according to (|17)

. Sla+2) /1 a+2)(a+3
0, = % (EPIGg—FPGg) + 12w PG G3 —( ;(2 )F2+
+6WEE + 6PFHG =0w ' + ... A

Here power exponent —1 of leading term in @} is critical for operator . ! but
A4 = 0. Hence F} has not logarithmic branching.
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Now we take in account terms hy(v) and hjii(v) from (23). For j =
4,...,k—1 power exponents o; and 7; for F; and G; are small enough to neglect

them. So

bi by bp  bpr1r o bigo
V=W kS b (28)

We can write corresponding expansions for ©, 4, v3. Then

1

0 = B Rw 4+ .., 0;* = 0, hence Fj, = _G_Bkw_l +..., G, =0.
Opi1 = (k — 1)bk + 12wbi by, + —— 5k+1 ﬁk’ hence

* a —
QkH:W—l— .andFkH——sz—i—...,

. 1 1
00 = (k—l)F,é+12wG1Fk—|—ﬁkG1 —S—Bkw 24 and Gy = 125kw RS
Orro = 2(k+1)bjy1—k(k+1)bp+12wb, bys 1 +12wboby+6b2b— (k+1) (bkﬂ — kbk> —
ala+1) 1
Tbk + @52

* 1 pr / Oé(Oé - 1) 1

Hence 6, = (k+1) (3P'Gpy1 + PG ;) — B—FH 7 — B+ 120PG1 Gy +

12w Fs Fy, + GPG%Fk =0 -w+.
Kok Oé(Oé T 1)

0o = (b + DF., — 5—

0-w34...

It means that Fj,» and Gj42 have not branching at w = oo and o; < —1 and

T, < =3fork+2<j<2k.
So we neglect b; for j =k +2,...,2k — 1 and consider

Gk + 120G Fyy1 + 120G, + 6PGAG), =

by by bk bps1 . brya by
vEWA A st oE T e T T ek

We have
O = 6whs + ...

Hence, according to results after (28)),

05, = 6wF? + w4 = Agw

- 365%

1
632
expansion does not exist.

For k = 4, we must add 8~ *w to the computed value of #}, but it does not
change result on existence of logarithmic branching in Fg.

where Ay = —= # 0, and Fy; has the logarithmic branching, i. e. the regular
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Case k = 3 is close to the case k > 4 and it has branching in Fj.
Case k = 1 was calculated separately. It has not branching.

Case k = 0 corresponds to 2D face I‘gQ). It has not branching.

Thus, for equation P, (21)), basic formal expansions are regular for two suitable
asymptotic forms with £ = 0 and £ = 1 when z — oc.

Theorem 6. For P», the reqular basic families of formal power-elliptic expan-
sions exist only for two suitable elliptic asymptotic forms with k =0 and k = 1,
1. €. when x — o0.

It is possible to prescribe power exponents o; and 7; of leading terms in
0 and 0;*. So we can compute such numbers j* and j*, that o; < —1 for
Jj>j"and 7; < =3 for j > j**. Here —1 and —3 are smaller critical values
of operators .Z ! and ¢~'. And it is enough to calculate F; and G; up to

J = max(j*, 7*).

7. Nonbasic expansions for P,

Basic expansions were defined by formulas (24)), (26) with C; = Cy =
C3 = Cy = 0. According to Lemma [I], condition C; = Cy = 0 guarantees
regularity of F; and G in subsingular points. Now we want to study cases with
nonzero Cf.

Example 4. Let us show that C3 # 0 in G gives the logarithmic branching
in w = oo for G49. For j = 1, we put C3 = A # 0. According to formulas for
case k > 4, we obtain

F =0, G1:A+gw_2+...,

20
., 2—a /(1 ala—1)
2—a, . . a > ala—1)
Sav + 2 a? 4+ 2
G A2..5 3
= 6A“w° + 5 Aw? + 25 w ...
da + 2

Hence, F2:A2w3— Aw+ ..., Gy = F3=0.

46
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Next,
a+4( 5 9 5a+2> 2 ( ol _2>
03" = 3A w* — —— A+ —w
P 48 52 28
a+4 (v +4)(5a + 2) 2
12wGH1 Fy + 2PGi + ... = 3A%w® — A——=A
+ wG o + 1 + /6 46 /82
Sa 42 ’
+ 12w (A—I—%w 2> (A2w3— &4; Aw)—|—2w4 (A—I—ﬁw 2) +...
Power exponent 2 is critical for ¥~ (see (27)). Coefficient for w? in 65 is
3(a—2 k+1
—L)AQ. It is equal to zero only for a = 2, but a = 5 + = i.e. k=1. But
k > 4, then G5 has logarithmic branching. |

8. Equation P,

flay) = =y +37 +2=0.

Support g(f) consists of 3 points Q; = (—2,1,2), Q2 = (0,2,0), Q3 = (1,0,0).
Its polyhedron I'(f) is a triangle with normal N = (4,2,5). So the equation is

its own truncation. The edge F = [Q1, Q2] of the triangle T' corresponds to
the truncated equation

Ay S -y +37 =0,
which has the first integral
y? =2y’ + C)
with elliptic solutions.
Suitable normals N to the edge I‘(l) are N, = (4—k,2(k+1),5),k=1.2,...

2(k +1
and ny # 0 if & # 4. Here a = (+),B 5kandoz:2(6—1),

4 —k
v =20 = a + 2, the transformed equation is

5 dafa—1
S - gt 2O e gk
Y Y

P =2 (w®+ (), operators Z ! and ¢! are again (24) and r(w) = 1 [22].
Hence there is only one singular point w” = oo and Lemma [1] is true for P;.
Here H(w) = const -w~"/2 + ... and integral critical numbers are o; = —1 and
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7; = 1. Formulas — again define basic expansions. If k > 6 then F; = 0,

-8
Glzgw_l—f—..., F2:Oé(Oé—2)+7 GQZF?,:O,
gl Gy : ) (o )
ala+4 ala+4) (a” + 24a + 48
G3:(—3)w_2+...,F4:— 1 w_1+...,G4=F5:
3y 60
0,
ala+4) (302 + 5602 + 200a + 192 o
Gs = at )w‘3+. 0 = 0w 4. Agw 4+
180~°
., Ag = 0. Hence, Fy has not logarithmic branching, if £ > 6.
2k
Similarly to the end of Sectionﬁ (see (28)), we obtain 0; = — + ..., Fj =
Y
2k k+11)2F
_5_,Y1<;w_1+ GG =11 =0,Gpp1 = %M_S—i—. by =0w
oj < —1, 7 < 1for j > k+ 2 and the regular expansion exists. If 4 < k < 7,

then the regular expansion exists, the same is true for £k = 1,2,3. Case k = 0
corresponds to 2D face and to other P = 2 (w3 +w + C’o), but Ag = 0. Thus,
equation P; has regular basic families of elliptic expansions corresponding to all
suitable asymptotic forms. Thus we have

Theorem 7. To each suitable elliptic asymptotic form of Py there corresponds
the basic family of formal power-elliptic expansions, which is regqular.

9. Equation P4

Fay) % —ayy + 2y =y + ag® + by + cay’ + dx =0 (29)

has 3 different polyhedrons depending on values of coefficients a, b, ¢, d [18],22].
Case cd # 0, Figure 2|
Here only one truncated equation

— ayy" + 2y’ + cayt + dr =0

corresponding to the distinguished 2D face in Figure [2| has elliptic solutions.

Here the power transformation @ is identical.
The equation with cd # 0 is of the form (9) with m = 1, where

g(v) Y vi+ 2+t +d=0, h =—vd+av®+ b,
P(w) = cu* + Couw? —d, A(P) = —cd (C2 + 4ed)” /16 # 0.

Solutions to the equations are of the form

1/2 0; Pl/QQ;*
F;=P P3/2 —dwdw, Gj= P3/2 dw dw. (30)
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o1 43

Figure 2. 3D support §( f) and polyhedron T'(f) of equation P (29) with all

a,b,c,d # 0. The grey face is 1“9. All dotted lines are in the plane ¢, ¢o, they
show projections of I'(f) on the plane (g1, g2).

Here r(w) = w? [22], so there are 2 singular points w’ = oo and w’ = 0. This is
2

true for all cases of P;. Near the singular point w’ = oo, H(w) = [ mdw =

const - w3 + .... So P2 = const - w? + ..., P"?H = const - w™! + ... and
expansions for F}Q and G? do not contain terms const - w?, const - w~! and
0 const - w3 correspondingly. Critical numbers for 0 and 07" are 2,
5 and 0, 3 correspondingly. Moreover, 85 = 0-w?*+ ..., 03* =0-w + ... and
0j <2,7; <0for j > 2. So expansion has not logarithmic branching at w = oo.

w2

Near the singular point w’ = 0 we have H'(w) = [ de = const - w? +

O(w"). Here we have 4 constants CV,... ,CY and basic expansion if all C? = 0.
Here Lemma [1] is correct for Pj.

const - w
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2

" T w
Condition C. [ de = 0.
0
Theorem 8. If the Condition C s satisfied then basic expansions for Ps are

reqular.

3
Case c = 0, ad # 0. After the power transformation y = z'/3v, u = 5:1:2/3, the

equation (29) with ¢ = 0 takes the form (9) with m = 1, where

3
g(v) = —vi +9* — av® +d, hy = §bv — V0,
P(w) =2aw® + Cow® —d,  A(P) =4d (Cj — 27a*d) # 0.

Formula is valid here. At w = oo, 0 and 07" have critical number 2.
05 = 0-w?+ ... and orders of 0%, 07" are less than 2 for j > 2.

The same is at w” = 0. Thus, here formal basic expansion is regular.
Lemma [I] and Theorem [§ are true.
Case c =d =0, ab # 0. After the power transformation y = v, u = 2z'/?,
equation (29)) with ¢ = d = 0 takes the form @ with m = 1, where

g(v) = —vi + v + av’® + bu, hy = —v0/2,
P(w) =2 (aw® + Cow — bw) , A(P) = 2'9* (Cf + 16ab) # 0.

At w° = oo critical values for 07 and 07 are 2, 05 =0 - w*+ ..., 05, 7, <2 for
J > 2. So here basic expansion has not branching.

The same is at w” = 0. Lemma [1] and theorem [§ are true.

Each of 3 polyhedrons has exactly one 2D face corresponding to a truncated
equation with elliptic solutions [17,[18,[22]. They have different first integrals
()? = P(w), but common operators .# ! and ¢! with singularities in two
points w = 0 and w = oc.

10. Equation P,

Fla,y) =20y + 2 + 3y  +82° +4 (2 —a) > + 20 = 0.

If complex parameters a, b # 0, its support §( f) consists of 6 points, polyhedron

I'(f) is a tetrahedron and has one 2D face I‘gQ) and one edge I‘gl) with truncated

equations
FPE =2y + () + 3y + 8wy’ + 4%y = 0,

F L oy + (i) + 3y* =0,
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having elliptic solutions [18,/19,22]. Normal to I‘gQ) is Nog = (1,1,2), suitable
normals to 1“§1> are N = (1 —k,k+1,2), k =2,3,... After power transforma-

k+1 P!
tion () with o = L , B = 7= = a + 1 we obtain the equation (9) with
m =6
L o . 4 a2—a) 5 _ 8 4 _ 4a N
2 4 1 2, —2 3, —k 2 —(k+1
— 2004+ 0" 4+ 30" — —vou + ———vu T+ vt — k+1vu(+)+
B B B
4 2b

gt e M =0, Plw) = w4 Cow, Co 0, k=23,

Here solutions to equations (18] are

P1/2 / / —Ldwdw, G;= / / P1/20;<*dwdw
P3/2 P3/2

( ) = w [22], so there are two singular points w’ = oo and w” = 0. Near

=00 H=| de = const - w™* + ... Critical numbers for #* and 6**

are 1,5 and —1,3 correspondingly. If k > 3, F; = 0, G; = %wQ + ..., =

OK(OZ + 2) -1 Kok -1
—T/BQ’U} +...,G2:0,F3:0,03 :OU} +
1
Now we compute expansion of the form (28). Then Fj, = —E—F. ., GL=0,
20 . . 4a(2a — 1)
Fk+1:36k—|—1w +...,Gk+1:36k_‘_1w +...,0k+2:WUJ+...,
da(2a — 1 . :
0y = 0-w '+ ... Thus, Ajp = % = 0 only if 2aa — 1 = 0, i.e.

k = —1/3, that is impossible. Thus, F} o has logarithmic branching and the
regular basic expansion is absent. The same is true for £ = 3,2 and for £ = 0,
when P = w?* + 4w? + 4w? + Cyw.

11. Equation F;

def Sy —1 2
flz,y) = —2yly— 1)y +2° 5y —wyly = y'+

+(y — 1) (ay” +b) + cxy’(y — 1) + da’y(y +1) = 0,

where a, b, ¢, d are complex parameters, has two different polyhedrons depending
on values of parameter d [20,22]. Each of the polyhedrons has only one 2D face
with elliptic solutions.
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Case d # 0. Here transformation (6) is identical y = v, # = u. So, in equa-
tion (9) m = 2,

g(v) = —v(v — )i + (3v — 1)9*/2 + dv*(v + 1),
hi = —v(v—1)o+c’(v—1), hy=(v—1)°(av*+0),
P = —2dw [Co(w —1)* +w], A(P)=(2d)'Cj(1 —4Cp) # 0
Solutions to equations are

—1)2 0*
_ pl)2 w(w —1) j
F; =P / 732 wZ(w — 1>3dwdw,

B w(w . 1)2 P1/29*>«<
G —/ 732 /wQ(w— o dwdw.

0

(31)

Here r(w) = w(w —1)? [22], so singular points are w
point w’ = oo

= 00,0,1 Near the singular

H = / P3/2 dw = const - w2 +

critical numbers for 67 and 67" are 4 and 3 correspondingly. If a # 0, then 05
contains the term —3aw?* and [, has logarithmic branching. If a = 0, then
0j <4 and 7; < 3 for all j > 0. Thus, the basic expansion is regular. Similarly
basic expansions are regular near w® = 0 iff b = 0 and near w" = 1 without
restrictions.

Condition D.

1 0
w(w w(w — 1)
[ = [ =0
0 1

Theorem 9. If in equation Ps with d # 0 and with a = b =0 Condition D is
fulfilled then basic expansions are reqular. If one of these conditions is violated
then all basic expansions are nonreqular.

Case d = 0,c # 0. After the change y = v, u = 22'/%, equation Pj takes the
form (9) with m = 2, where

3v—1

g(v) = —v(v = 1)i + 0* +ev(v - 1),

hi = —v(v—1)0, hy=(v—1)7>(av®+b),
P = —2cw(w—1)[Co(w —1)+1], A(P)= (Co—1)*#0,Cy # 0.

Formulas (31) are again valid. Here basic expansions near w” = oo are regular
iff a = 0, near w’ = 0 iff b = 0 and near w = 1 are always non regular.
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12. Equation F;

in generic case has polyhedron I' with ten 2D faces FEQ), but all external normals

to them N = (ny,n9,n3) do not satisfy conditions ny # 0, ng > 0. Moreover,

(1)

all edges I';”” have no suitable normals. The same is true for degenerate cases.

13. Summary

Thus, all basic expansions are regular for P; without additional restrictions
(Theorem[7)), for P, if x — oo (Theorem|f]), for P under Condition C (Theorem )
and for P; with a = b =0 and d # 0 under Condition D (Theorem [J).

As next step it is necessary to study convergence of found regular formal
power-elliptic expansions.
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