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Степенная геометрия и эллиптические разложения решений уравнений
Пенлеве

Рассматривается обыкновенное дифференциальное уравнение (ОДУ),
которое может быть записано в виде многочлена от переменных и
производных. Следующие типы асимптотических разложений его решений
могут быть найдены алгоритмами двумерной степенной геометрии: степенные,
степенно-логарифмические, экзотические и сложные. Здесь разрабатывается
трехмерный вариант степенной геометрии и она применяется для вычисления
степенно-эллиптических разложений решений ОДУ. Среди них выделяются
регулярные разложения и дается обзор всех таких разложений решений
уравнений Пенлеве 𝑃1,. . . ,𝑃6.
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We consider an ordinary differential equation (ODE) which can be written as
a polynomial in variables and derivatives. Several types of asymptotic expansions
of its solutions can be found by algorithms of 2D Power Geometry. They are power,
power-logarithmic, exotic and complicated expansions. Here we develop 3D Power
Geometry and apply it for calculation power-elliptic expansions of solutions to an
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1. Universal Nonlinear Analysis
We develop a new Calculus based on Power Geometry [1–4]. Now it allows

to compute local and asymptotic expansions of solutions to nonlinear equations
of three classes: (A) algebraic, (B) ordinary differential, (C) partial differential,
as well as to systems of such equations.

Principal ideas and algorithms are common for all classes of equations.
Computation of asymptotic expansions of solutions consists of 3 following steps
(we describe them for one equation 𝑓 = 0).

1. Isolation of truncated equations 𝑓
(𝑑)
𝑗 = 0 by means of faces of the convex

polyhedron Γ(𝑓) which is a generalization of the Newton polyhedron. The first
term of the expansion of a solution to the initial equation 𝑓 = 0 is a solution to

the corresponding truncated equation 𝑓
(𝑑)
𝑗 = 0.

2. Finding solutions to a truncated equation 𝑓
(𝑑)
𝑗 = 0 which is quasiho-

mogenous. Using power and logarithmic transformations of coordinates we can

reduce the equation 𝑓
(𝑑)
𝑗 = 0 to such simple form that can be solved. Among

the solutions found we must select appropriate ones which give the first terms
of asymptotic expansions.

3. Computation of the tail of the asymptotic expansion. Each term in the
expansion is a solution to a linear equation which can be written down and
solved.

Applications

Class A. 1. Sets of stability of multiparameter problems [5, 6].
Class B. 2. Asymptotic forms and expansions of solutions to the Painlevé equa-

tions [4, 7, 8].
3. Periodic motions of a satellite around its mass center moving along an
elliptic orbit [9].
4. New properties of motion of a top [10].
5. Families of periodic solutions of the restricted three-body problem and
distribution of asteroids [11,12].
6. Integrability of ODE systems [13].

Class C. 7. Boundary layer on a needle [14].
8. Evolution of the turbulent flow [15].

A survey of these applications see in [24].

2. Introduction
Let 𝑤(𝑢) be a formal elliptic asymptotic form of a solution to an ODE.

The form 𝑤(𝑢) is suitable if it can be extended into power asymptotic expansion
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𝑣 = 𝑤(𝑢) +
∞∑︀
𝑗=1

𝑏𝑗𝑢
−𝑗, where 𝑏𝑗 = 𝑏𝑗(𝑢) are some functions. The expansion is

regular, if all 𝑏𝑗 are not branching functions of 𝑤(𝑢) and its derivatives. If all
functions 𝑏𝑗(𝑤, 𝑤̇) have no branching, then they are elliptic functions with the
same periods as 𝑤(𝑢). Selection of such cases is our aim. For given 𝑤(𝑢) and fixed
point 𝑤0 (including infinity), we can compute power-logarithmic expansions of
functions 𝑏𝑗(𝑤, 𝑤̇) near 𝑤 = 𝑤0. In these expansions logarithmic branching
can appear, only if 𝑤0 is a singular point, and algebraic branching (of finite
order) can be for subsingular points 𝑤0. To each singular point 𝑤0 and suitable
asymptotic form 𝑤(𝑢), we assign unique regular expansion 𝑣 = 𝑣(𝑤0, 𝑤(𝑢)), so
called basic, and we are looking for such basic expansions near singular point
𝑤0, which have not branching.

We propose algorithms for: (1) finding all formal elliptic asymptotic forms,
(2) finding all suitable elliptic asymptotic forms, (3) calculation of power-logarith-
mic expansions of functions 𝑏𝑗(𝑤, 𝑤̇) near a singular point 𝑤0 and selection of
basic expansions without branching. All algorithms are based on 3D Power
Geometry.

Application of these algorithms to the Painlevé equations 𝑃1,. . . ,𝑃6 gives
following.

1. 𝑃1, 𝑃2, 𝑃4 have continuum of 2-parameter families of elliptic asymptotic
forms each, 𝑃3 has three and 𝑃5 has two of them. 𝑃6 does not have.

2. 𝑃1, 𝑃2, 𝑃4 have countable sets of families of suitable asymptotic forms
each, and all 5 forms of 𝑃3 and 𝑃5 are suitable.

3. Basic expansions for all suitable forms have not branching for 𝑃1, for
𝑃2 if the independent variable tends to infinity, for 𝑃3 if condition C is fulfilled
and for 𝑃5 if condition D is fulfilled and 𝑎 = 𝑏 = 0, 𝑑 ̸= 0.

Expansions are formal, their convergence is not considered.
Here we consider application of Power Geometry to calculation of elliptic

expansions of solutions to the Painlevé equations.
A hundred years ago, Boutroux [16] found 2 families of elliptic asymptotic

forms of solutions to the Painlevé equations 𝑃1 and 𝑃2. During last 5 years
we found 6 additional families of elliptic asymptotic forms of solutions to 𝑃3

(three) [17, 18], 𝑃4 (one) [19], 𝑃5 (two) [20]. Moreover the Painlevé equations
𝑃1, 𝑃2, 𝑃4 have continuum of families of elliptic asymptotic forms each, and
I proposed a criterion for selection suitable asymptotic forms, witch can be
extended as asymptotic expansions. All 8 known elliptic asymptotic forms are
suitable. Solutions to the equation 𝑃6 have not elliptic asymptotic forms at all.

Near infinity of the independent variable, the Painlevé equations 𝑃1–𝑃5 have
12 families of suitable asymptotic forms and near zero of the independent variable
equations 𝑃1, 𝑃2, 𝑃4 have countable sets of such families each. Next I extend
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these suitable elliptic asymptotic forms 𝑤(𝑢) into power-elliptic expansions

𝑣 = 𝑤(𝑢) +
∞∑︀
𝑗=1

𝑏𝑗𝑢
−𝑗, where coefficients 𝑏𝑗 are functions of the corresponding

elliptic asymptotic forms and their derivatives. To each family of suitable elliptic
asymptotic forms, I put in correspondence unique basic formal power-elliptic
expansion near 𝑤0 = ∞ for 𝑃1–𝑃5, near 𝑤

0 = 0 for 𝑃3–𝑃5 and near 𝑤0 = 1 for
𝑃5. Obstacles (logarithmic branching) in calculations of these basic expansions
appeared only for 𝑃2 if the independent variable tends to zero, for 𝑃4 and for
𝑃5 if |𝑎|+ |𝑏| ≠ 0 or 𝑑 = 0.

Thus, near infinity of the independent variable there are 10 families of
regular (i. e. without branching) elliptic expansions of solutions to equations
𝑃1–𝑃6: 4 for 𝑃1, 2 for 𝑃2, 3 for 𝑃3 and 1 for 𝑃5. Existence of these expansions for
two Boutroux families of asymptotic forms was proven in [21]. Near zero of the
independent variable there is countable set of families of such expansions for 𝑃1.
The results were obtained by means of algorithms of 3D Power Geometry [17–23],
realized in very cumbersome calculations.

Here I introduce the third variant of 3D Power Geometry. The first was
in [17,19,23], the second was in [18,20–22].

Main applications of the Painlevé equations: many soliton equations of
Mathematical Physics can be reduced to Painlevé equations. For example:

∙ the Korteweg-de Vries equation is reduced to 𝑃1 and 𝑃2;
∙ the nonlinear Schrödinger equation is reduced to 𝑃2 and 𝑃4;
∙ the Sine-Gordon equation is reduced to 𝑃3 and 𝑃4;
∙ the Boussinesq and Kadomtsev-Petviashvili equations are reduced to 𝑃1,
𝑃2 and 𝑃4;

∙ the Ernst equations are reduced to 𝑃3, 𝑃5 and 𝑃6.

3. 3D Power Geometry
Let 𝑥 be independent and 𝑦 be dependent variables, 𝑥, 𝑦 ∈ C. A differential

monomial 𝑎(𝑥, 𝑦) is a product of an ordinary monomial 𝑐𝑥𝑟1𝑦𝑟2, where 𝑐 =
const ∈ C, (𝑟1, 𝑟2) ∈ R2, and a finite number of derivatives of the form 𝑑𝑙𝑦/𝑑𝑥𝑙,
𝑙 ∈ N. The sum of differential monomials

𝑓(𝑥, 𝑦) =
∑︁

𝑎𝑖(𝑥, 𝑦) (1)

is called the differential sum.Let 𝑛 be the maximal value of 𝑙 in 𝑓(𝑥, 𝑦).
In [2–4] it was shown that as 𝑥 → 0 (𝜔 = −1) or as 𝑥 → ∞ (𝜔 = 1)

solutions 𝑦 = 𝜙(𝑥) to the ODE 𝑓(𝑥, 𝑦) = 0, where 𝑓(𝑥, 𝑦) is a differential sum,
can be found by means of algorithms of Plane (2D) Power Geometry, if

𝑝𝜔
(︀
𝑑𝑙𝜙/𝑑𝑥𝑙

)︀
= 𝑝𝜔(𝜙(𝑥))− 𝑙, 𝑙 = 1, . . . , 𝑛,
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where the order

𝑝𝜔(𝜙(𝑥)) = 𝜔 lim sup
𝑥𝜔→∞

log |𝜙(𝑥)|
𝜔 log |𝑥|

on a ray arg 𝑥 = const and 𝑛 is the maximal order of derivatives in 𝑓(𝑥, 𝑦).
Order of the power function 𝜙(𝑥) = 𝑥𝛼 with 𝛼 ∈ C is 𝑝𝜔 (𝑥

𝛼) = Re𝛼.
Here we introduce algorithms, which allow to calculate solutions 𝑦 = 𝜙(𝑥)

with the property

𝑝𝜔
(︀
𝑑𝑙𝜙/𝑑𝑥𝑙

)︀
= 𝑝𝜔(𝜙(𝑥))− 𝑙𝛾𝜔, 𝑙 = 1, . . . , 𝑛, (2)

where 𝛾𝜔 ∈ R.

Theorem 1. 𝜔 − 𝜔𝛾𝜔 > 0.

For example, 𝛾1 = 0 for 𝜙 = sin𝑥 and 𝛾−1 = 2 for 𝜙 = sin(1/𝑥). Note, that
in Plane Power Geometry we had 𝛾𝜔 = 1, i. e. 𝜔− 𝜔𝛾𝜔 = 0. So, new interesting
possibilities correspond to 𝜔 − 𝜔𝛾𝜔 > 0.

Problem
Select leading terms in the sum (1) after substitution 𝑦 = 𝜙(𝑥) with property (2).

Below we describe algorithms for solution of the problem. To each differen-
tial monomial 𝑎𝑖(𝑥, 𝑦), we assign its (3D) power exponent Q(𝑎𝑖) = (𝑞1, 𝑞2, 𝑞3) ∈
R3 by the following rules:

𝑞3 = sum of orders of all derivatives;
𝑞2 = order of 𝑦;
𝑞1 = difference of order of 𝑥 and 𝑞3.

Then the 2D vector 𝑄 = (𝑞1, 𝑞2) is the same as in 2D Power Geometry [2–4]
and 𝑞3 corresponds to the total order of derivatives. The power exponent of the
product of differential monomials is the sum of power exponents of factors:
Q(𝑎1𝑎2) = Q(𝑎1) +Q(𝑎2).

The set S̃(𝑓) of power exponents Q(𝑎𝑖) of all differential monomials 𝑎𝑖(𝑥, 𝑦)
presented in the differential sum 𝑓(𝑥, 𝑦) is called the 3D support of the sum
𝑓(𝑥, 𝑦). Obviously, S̃(𝑓) ⊂ R3. The convex hull Γ(𝑓) of the support S̃(𝑓) is
called the polyhedron of the sum 𝑓(𝑥, 𝑦). The boundary 𝜕Γ(𝑓) of the polyhedron

Γ(𝑓) consists of the vertices Γ
(0)
𝑗 , the edges Γ

(1)
𝑗 and the faces Γ

(2)
𝑗 . They are

called (generalized) faces Γ
(𝑑)
𝑗 , where the upper index indicates the dimension

of the face, and the lower one is its number. Each face Γ
(𝑑)
𝑗 corresponds to the

3D truncated sum

𝑓
(𝑑)
𝑗 (𝑥, 𝑦) =

∑︁
𝑎𝑖(𝑥, 𝑦) over Q(𝑎𝑖) ∈ Γ

(𝑑)
𝑗 ∩ S̃(𝑓).
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All these definitions are applied to differential equation

𝑓(𝑥, 𝑦) = 0. (3)

Thus, each generalized face Γ
(𝑑)
𝑗 corresponds to the truncated equation

𝑓
(𝑑)
𝑗 (𝑥, 𝑦) = 0.

Let N𝑗 = (𝑛1, 𝑛2, 𝑛3) be the external normal to two-dimensional face Γ
(2)
𝑗 .

We will consider only normals with 𝑛1 ̸= 0.

Example 1. Consider the second Painlevé equation 𝑃2

𝑓(𝑥, 𝑦)
def
= − 𝑦′′ + 2𝑦3 + 𝑥𝑦 + 𝑎 = 0, (4)

where 𝑎 is the complex parameter.
If 𝑎 ̸= 0, the 3D support ̃︀S(𝑓) consists of 4 points

Q1 = (−2,1,2),Q2 = (0,3,0),Q3 = (1,1,0),Q4 = 0.

They are shown in Figure 1.
Their convex hull Γ(𝑓) is a tetrahedron. It has 4 vertices Q1–Q4, 6 edges

Γ
(1)
𝑗 and 4 faces Γ

(2)
𝑗 . Face Γ

(2)
1 = [Q1,Q2,Q3] is distinguished in Fig. 1, its

external normal N1 = (2,1,3) and its truncated equation

𝑓
(2)
1 (𝑥, 𝑦)

def
= − 𝑦′′ + 2𝑦3 + 𝑥𝑦 = 0.

Edge Γ
(1)
1 = [Q1,Q2] is also distinguished in Fig. 1, its truncated equation

𝑓
(1)
1 (𝑥, 𝑦)

def
= − 𝑦′′ + 2𝑦3 = 0. �

Let 𝑦 = 𝜙(𝑥) be a solution to equation (3) with property (2) and 𝑝 = 𝑝𝜔(𝜙),
𝛾 = 𝛾𝜔(𝜙), then the order of a monomial 𝑎(𝑥, 𝑦) with Q(𝑎) = (𝑞1, 𝑞2, 𝑞3) is

𝑞1 + 𝑞2𝑝+ 𝑞3(1− 𝛾) = ⟨𝑃,Q⟩ ,

where 𝑃 = (1, 𝑝,1 − 𝛾) and ⟨·, ·⟩ is the scalar product. Leading terms of
the sum (1) after substitution 𝑦 = 𝜙(𝑥) are monomials 𝑎(𝑥, 𝑦), for which

𝜔 ⟨𝑃,Q⟩ = ⟨𝜔𝑃,Q⟩ reaches the maximal value on the support ̃︀S(𝑓). Here
𝜔𝑃 = (𝜔, 𝜔𝑝𝜔, 𝜔(1 − 𝛾𝜔)) and 𝜔(1 − 𝛾𝜔) > 0 according to Theorem 1. On the
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Figure 1. 3D support ̃︀S(𝑓) and polyhedron Γ(𝑓) of equation 𝑃2 (4). The grey

face is Γ
(2)
1 , the grey edge is Γ

(1)
1 . Projection on the plane (𝑞1, 𝑞2) is shown by

dotted lines.

support ̃︀S(𝑓) = {Q𝑖} maximum of the scalar product ⟨𝜔𝑃,Q𝑖⟩ is achieved on a

generalized face Γ
(𝑑)
𝑗 of the polyhedron Γ(𝑓).

By R3 we denote the 3D real space, where ly power exponents Q, and by
R3

* we denote the space dual (conjugate) to R3. We will denote points in R3
* as

R = (𝑟1, 𝑟2, 𝑟3). Then we have the scalar product

⟨Q,R⟩ = 𝑞1𝑟1 + 𝑞1𝑟2 + 𝑞3𝑟3.

Each face Γ
(𝑑)
𝑗 corresponds to its normal cone [2]

U
(𝑑)
𝑗 =

{︃
R :

⟨Q′,R⟩ = ⟨Q′′,R⟩ ,Q′,Q′′ ∈ Γ
(𝑑)
𝑗 ,

⟨Q′,R⟩ > ⟨Q′′′,R⟩ ,Q′′′ ∈ Γ∖Γ(𝑑)
𝑗

}︃
.

Thus, normal cone U
(2)
𝑗 of the face Γ

(2)
𝑗 is a ray spanned on the exterior

normalN𝑗 of the face Γ
(2)
𝑗 , normal cone U

(1)
𝑗 of the edge Γ

(1)
𝑗 is 2D angle spanned

on rays U
(2)
𝑘 and U

(2)
𝑙 , where Γ

(1)
𝑗 = Γ

(2)
𝑘 ∩ Γ

(2)
𝑙 ; normal cone U

(0)
𝑗 of the vertex
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Γ
(0)
𝑗 is a 3D angle spanned on exterior normals N𝑘 of all 2D faces Γ

(2)
𝑘 containing

the vertex Γ
(0)
𝑗 (see [2]).

Thus, selection of the truncated sums 𝑓
(𝑑)
𝑗 (𝑥, 𝑦) can be made by following

method. First we compute the support ̃︀S(𝑓) of the initial sum 𝑓(𝑥, 𝑦). Using

support ̃︀S(𝑓), we compute the polyhedron Γ(𝑓) of sum 𝑓(𝑥, 𝑦), i. e. all its vertices

Γ
(0)
𝑗 , edges Γ

(1)
𝑗 and faces Γ

(2)
𝑗 . Next we compute their normal cones U

(𝑑)
𝑗 and

select only such truncated equations 𝑓
(𝑑)
𝑗 (𝑥, 𝑦) = 0 for which the intersection

U
(𝑑)
𝑗 ∩ {𝑝3 > 0} ≠ ∅. But truncated equations 𝑓

(𝑑)
𝑗 (𝑥, 𝑦) = 0 with 𝑝3 = 0 can be

studied by algorithms of 2D Power Geometry. So 3D Power Geometry studies

truncated equations 𝑓
(𝑑)
𝑗 (𝑥, 𝑦) = 0 with nonempty intersection U

(𝑑)
𝑗 ∩ {𝑝3 > 0}.

Example 2 (continuation of Example 1). Polyhedron Γ(𝑓) for equation
𝑃2 (4) has 4 following faces with exterior normals

Γ
(2)
1 = [Q1,Q2,Q3] , N1 = (2,1,3),

Γ
(2)
2 = [Q1,Q3,Q4] , N2 = (2,−2,3),

Γ
(2)
3 = [Q1,Q2,Q4] , N3 = (−1,0,−1),

Γ
(2)
4 = [Q2,Q3,Q4] , N4 = (0,0,−1).

Only two of them,N1 andN2, have 𝑟3 > 0. Hence, all edges exept Γ
(1)
6 = [Q2,Q4]

and all vertices Γ
(0)
𝑗 have vectors 𝑅 = (𝑟1, 𝑟2, 𝑟3) with 𝑟3 > 0 in their normal

cones U
(1)
𝑗 and U

(0)
𝑗 . �

4. Power transformations

If the face Γ
(𝑑)
𝑗 has the normal N𝑗 = (1,0,1) then the corresponding trun-

cation 𝑓
(𝑑)
𝑗 (𝑥, 𝑦) = 𝑥𝑞𝑔(𝑦), where the differential sum 𝑔(𝑦) contains 𝑦 and its

derivatives but does not contain 𝑥. In that case the full sum 𝑓(𝑥, 𝑦) can be writ-
ten as 𝑓(𝑥, 𝑦) = 𝑥𝑞𝑔(𝑦) + 𝑥𝑞−𝑟ℎ(𝑥, 𝑦), where 𝑟 > 0 and ℎ(𝑥, 𝑦) is a differential
sum.
Remark 1
If 𝑦(𝑥) is a solution to the equation 𝑔(𝑦) = 0 with the property

0 < 𝜀 < |𝑦(𝑥)|, |𝑦′(𝑥)|, . . . , |𝑦(𝑛)(𝑥)| < 𝜀−1, (5)

then 𝑦(𝑥) can be the asymptotic form of the solutions to the full equation (3).
Here 𝜀 is a small real number. We call 𝑦(𝑥) as formal asymptotic form.
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Let the power transformation of variables 𝑥, 𝑦 → 𝑢, 𝑣 :

𝑦 = 𝑥𝛼𝑣, 𝑢 =
1

𝛽
𝑥𝛽, (6)

transform 𝑓(𝑥, 𝑦) into 𝑓 *(𝑢, 𝑣): 𝑓 *(𝑢, 𝑣) = 𝑓(𝑥, 𝑦).

Theorem 2. Let the face Γ
(𝑑)
𝑖 of Γ(𝑓) have the exterior normal N𝑖 = (𝑛1, 𝑛2, 𝑛3)

with
𝑛1 ̸= 0, 𝑛3 > 0, (7)

then the power transformation (6) with 𝛼 = 𝑛2/𝑛1, 𝛽 = 𝑛3/𝑛1 transforms the

truncation 𝑓
(𝑑)
𝑖 (𝑥, 𝑦) of 𝑓(𝑥, 𝑦) into the truncation

𝑓
*(𝑑)
𝑖 (𝑢, 𝑣) = 𝑢𝑞𝑔(𝑣)

of 𝑓 *(𝑢, 𝑣), corresponding to the face Γ*(𝑑)
𝑖 of Γ(𝑓 *) with the exterior normal

N*
𝑖 = (1,0,1). Here 𝑓

*(𝑑)
𝑖 (𝑢, 𝑣) equals 𝑓

(𝑑)
𝑖 (𝑥, 𝑦) after substitution

𝑢[𝛼+𝑙(𝛽−1)]/𝛽 𝑑𝑙𝑣/𝑑𝑢𝑙

instead of 𝑦(𝑙) = 𝑑𝑙𝑦/𝑑𝑥𝑙.

So, if 𝑣 = 𝜙(𝑢) is a solution to the equation 𝑔(𝑣) = 0 and |𝜙(𝑢)| is bounded
from zero and infinity as |𝑦| in (5), then the initial equation 𝑓(𝑥, 𝑦) = 0 can
have a solution with the asymptotic form

𝑦 ∼ 𝑥𝛼𝜙(𝑥𝛽/𝛽), 𝑥𝜔 → ∞.

Herewith the power transformation (6) induces the following formulas for
derivatives:

𝑦′ = 𝑥𝛼+𝛽−1𝑣̇ + 𝛼𝑥𝛼−1𝑣,

𝑦′′ = 𝑥2𝛽+𝛼−2𝑣 + (2𝛼 + 𝛽 − 1)𝑥𝛽+𝛼−2𝑣̇ + 𝛼(𝛼− 1)𝑥𝛼−2𝑣,
(8)

where 𝑣̇ = 𝑑𝑣/𝑑𝑢.

Theorem 3. Let an equation of order 𝑛

𝑔(𝑣) +
𝑚∑︁
𝑗=1

ℎ𝑗(𝑣)𝑢
−𝑗 = 0 (9)

have a solution of the form

𝑣 = 𝑤 +
∞∑︁
𝑗=1

𝑏𝑗(𝑤)𝑢
−𝑗, (10)
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where 𝑤 = 𝑤(𝑢) is the solution to the truncated equation

𝑔(𝑤) = 0 (11)

with the property

0 < 𝜀 < |𝑤|,
⃒⃒⃒⃒
𝑑𝑤

𝑑𝑢

⃒⃒⃒⃒
, . . . ,

⃒⃒⃒⃒
𝑑𝑛𝑤

𝑑𝑢𝑛

⃒⃒⃒⃒
<

1

𝜀
<∞.

Then 𝑏𝑗(𝑤) satisfies the linear equation

L (𝑢)𝑏𝑗(𝑤) + 𝜃𝑗(𝑤) = 0, (12)

where L (𝑢) =
𝛿𝑔

𝛿𝑣

⃒⃒⃒⃒
𝑣=𝑤

, 𝜃𝑗(𝑤) is a polynomial on 𝑤(𝑙) depending on 𝑔(𝑤), ℎ𝑖(𝑤)

and 𝑏
(𝑙)
𝑖 (𝑤) for 𝑖 < 𝑗 and 𝑙 = 0,1,2, . . . , 𝑛. 𝛿𝑔/𝛿𝑣 is the first variation.

Solution 𝑣 = 𝜓(𝑢) to the transformed equation 𝑓 *(𝑢, 𝑣) = 0 is expanded
into series (10) with integer 𝑗 only if the transformed equation 𝑓 *(𝑢, 𝑣) = 0
divided by 𝑢𝑞 has form (9) with integer 𝑗. In that case, solutions 𝑣 = 𝑤(𝑢) to
the truncated equation 𝑔(𝑣) = 0 are suitable asymptotic forms for continuation
by power expansion (10) and corresponding normal N𝑖 is also suitable.

External normal N𝑖 = (𝑛1, 𝑛2, 𝑛3) to 2D face Γ
(2)
𝑖 is unique up to positive

scalar factor. Hence, power transformation (6) of Theorem 2 is unique and we
must only check that the transformed equation has form (9) with integer 𝑗. The

external normal N = (𝑛1, 𝑛2, 𝑛3) to 1D edge Γ
(1)
𝑖 belongs to the normal cone

U
(1)
𝑖 . Hence, in the cone U

(1)
𝑖 we must select suitable vectors N with mentioned

property of integer 𝑗. Things for a vertex Γ
(0)
𝑗 are the same, but usually solutions

𝑣 = 𝑤(𝑢) to corresponding equation 𝑔(𝑣) = 0 are so simple, that do not give
interesting expansion.

Let ̃︀S(𝑓) = {Q1, . . . ,Q𝑀}, ̃︀S(𝑓 (𝑑)𝑗 ) = {Q1, . . . ,Q𝐿}, 0 < 𝐿 < 𝑀 , N =

(𝑛1, 𝑛2, 𝑛3) ⊂ U
(𝑑)
𝑖 and 𝑛1 ̸= 0, 𝑛3 > 0. Denote

Q̊𝑙 = Q𝐿+𝑙 −Q1, 𝑙 = 1, . . . ,𝑀 − 𝐿

and N̊ = (𝑛1/𝑛3, 𝑛2/𝑛3,1).

Theorem 4. The transformed equation (9) has the property of integer 𝑗 iff all
numbers

−
⟨
N̊, Q̊𝑙

⟩
, 𝑙 = 1, . . . ,𝑀 − 𝐿

are natural.
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There are 8 essentially different polyhedrons for Painlevé equations 𝑃1–
𝑃5 [18]. Each of them has exactly one 2D face which truncated equation has
elliptic solutions. It was shown [22] that all those elliptic asymptotic forms are
suitable. Among 8 polyhedrons only 3 have an edge which truncated equation has
elliptic solutions. These are 𝑃1, 𝑃2 and 𝑃4. No truncated equations corresponding
to vertices of these 8 polyhedrons have elliptic solutions.

Example 3 (continuation of examples 1, 2). Polyhedron Γ(𝑓) of equation

𝑃2 (4) has edge Γ
(1)
1 = [Q1,Q2] with truncated equation 𝑓

(1)
1 (𝑥, 𝑦)

def
= 𝑦′′+2𝑦3 = 0.

Its first integral is

𝑦′2 = 𝑦4 + 𝐶0
def
= 𝑃 (𝑦), (13)

where 𝐶0 is arbitrary constant. If 𝐶0 ̸= 0, solutions to equation (13) are elliptic
functions. The same will be true after any power transformation (6). Let us

apply Theorem 4 to the edge Γ
(1)
1 . The edge Γ

(1)
1 = Γ

(2)
1 ∩ Γ

(2)
3 . So normal cone

U
(1)
1 is the conic hull of two normals N1 = (2,1,3) and N3 = (−1,0,−1), i. e. up

to positive scalar factor, vectors N ∈ U
(1)
1 have the form

N = κN1 + (1− κ)N3 = (3κ − 1,κ,4κ − 1) , 0 < κ < 1.

Here 𝑀 = 4, 𝐿 = 2, Q̊1 = (3,0,−2), Q̊2 = −Q1 = (2,−1,−2),

N̊ =

(︂
3κ − 1

4κ − 1
,

κ
4κ − 1

,1

)︂
.

Conditions of Theorem 4 are⟨
N̊, Q̊1

⟩
=

3(3κ − 1)

4κ − 1
− 2 =

κ − 1

4κ − 1
= −𝑘,⟨

N̊, Q̊2

⟩
=

2(3κ − 1)

4κ − 1
− κ

4κ − 1
− 2 = − 3κ

4κ − 1
= −𝑙,

where 𝑘 and 𝑙 are natural numbers. Hence κ =
𝑘 + 1

4𝑘 + 1
=

𝑙

4𝑙 − 3
, i. e. 𝑙 = 𝑘 + 1,

𝑘 = 1,2, . . .
We can write N′ = (2 − 𝑘, 𝑘 + 1,3). Condition (7) of Theorem 2 means

that 𝑘 ≠ 2. If 𝑘 = 1, then 𝑛1 > 0, i. e. 𝑥→ ∞; if 𝑘 > 2, then 𝑛1 < 0, i. e. 𝑥→ 0.

So there is a countable set of suitable normals N′ to edge Γ
(1)
1 . According to

Theorem 2, here

𝛼 =
𝑘 + 1

2− 𝑘
, 𝛽 =

3

2− 𝑘
= 𝛼 + 1. � (14)
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5. Computation of expansions
Below we consider the case when the truncated equation 𝑔(𝑤) = 0 has the

first integral of the form

𝑤̇2 = 𝑃 (𝑤)
def
=

𝜆∑︁
𝑘=0

𝑝𝑘𝑤
𝑘, 𝑝𝑘 = const ∈ C. (15)

Differentiating with respect to 𝑢 and dividing by 2𝑤̇, we obtain

𝑤̈ =
1

2
𝑃 ′(𝑤). (16)

Here and below the prime denotes the derivative with respect to 𝑤.
Using the equations (15) and (16), any power series 𝑅 of 𝑤 and its deriva-

tives 𝑑𝑙𝑤/𝑑𝑢𝑙 can be written as the sum 𝑅 = 𝑅*(𝑤) + 𝑤̇𝑅**(𝑤), where 𝑅*(𝑤)
and 𝑅**(𝑤) are power series only of 𝑤. Let 𝑏𝑗(𝑤) = 𝐹𝑗(𝑤) + 𝑤̇𝐺𝑗(𝑤), where 𝐹𝑗

and 𝐺𝑗 are functions only of 𝑤. Then, omitting the index 𝑗, by (15) and (16),
we obtain

𝑏̇ = 𝐹 ′𝑤̇ + 𝑃𝐺′ +
1

2
𝑃 ′𝐺,

𝑏̈ = 𝑃𝐹 ′′ +
1

2
𝑃 ′𝐹 ′ + 𝑤̇

(︂
𝑃𝐺′′ +

3

2
𝑃 ′𝐺′ +

1

2
𝑃 ′′𝐺

)︂
.

(17)

Further derivatives of 𝑏 does not need us here, because we consider only equations
(9) of the second order. In our case

L 𝑏 = F (𝑤)𝐹 (𝑤) + 𝑤̇G (𝑤)𝐺(𝑤).

Thus, the equation (12) splits in two

F (𝑤)𝐹𝑗(𝑤) + 𝜃*𝑗 (𝑤) = 0,

G (𝑤)𝐺𝑗(𝑤) + 𝜃**𝑗 (𝑤) = 0,
(18)

where 𝜃𝑗(𝑤) = 𝜃*𝑗 (𝑤)+𝑤̇𝜃
**
𝑗 (𝑤). Note that in equations (18) differential operators

F (𝑤) and G (𝑤) are operators on 𝑤 and do not depend on 𝑢. If polynomial
𝑃 (𝑤) in (15) does not have multiple roots and its degree 𝜆 is greater than one,
i. e.

𝜆 > 1 and Δ(𝑃 ) ̸= 0,

where Δ(𝑃 ) is discriminant of the polynomial 𝑃 (𝑤), then solution 𝑤(𝑢) to the
truncated equation (11) is periodic (if 𝜆 = 2), or elliptic (if 𝜆 = 3 or 4) or
hyperelliptic (if 𝜆 > 5) function.
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Near some point 𝑤 = 𝑤0 we will compute asymptotic expansions of fund-
tions 𝐹𝑗(𝑤) and 𝐺𝑗(𝑤)

𝐹𝑗 =
∞∑︁

𝑖=−𝑎𝑗

𝜙𝑗𝑖𝜉
𝑖, 𝐺𝑗 =

∞∑︁
𝑖=−𝑏𝑗

𝛾𝑗𝑖𝜉
𝑖, (19)

where 𝜉 = 𝑤 − 𝑤0 if 𝑤0 ̸= ∞ and 𝜉 = 𝑤−1 if 𝑤0 = ∞. If initial equation (9)
is a differential sum then according to Theorem 3.1 [3] coefficients 𝜙𝑗𝑖 and 𝛾𝑗𝑖
are either constants or polynomial of log 𝜉, i. e. expansions (19) are either power
or power-logarithmic [3]. Moreover, according to Theorem 3.4 [3] (see proof in
Theorem 1.7.2. [4]) power expansions (19) converge for small |𝜉|.

If the solutions 𝐹𝑗(𝑤) and 𝐺𝑗(𝑤) to the system (18) have no branching,
then they are also periodic or (hyper)elliptic functions. Finally, if for the se-
quence of equations (18) with 𝑗 = 1,2, . . ., there exist solutions 𝐹𝑗(𝑤) and 𝐺𝑗(𝑤)
without branching, the solutions to the equation (9) have a regular asymptotic
expansion (10).

Let operators F−1(𝑤) and G −1(𝑤) be inverse to operators F (𝑤) and G (𝑤)
respectively. Then the solutions of the equations (12) are of forms

𝐹𝑗(𝑤) = −F−1(𝑤)𝜃*𝑗 (𝑤), 𝐺𝑗(𝑤) = −G −1(𝑤)𝜃**𝑗 (𝑤). (20)

In our case the initial ODE (9) has order two. Hence operators F (𝑤) and G (𝑤)
are of the second order. Moreover, in our case factors of 𝐹 ′′ in F and of 𝐺′′ in
G are the same. Denote it as 𝑅(𝑤). Singular points 𝑤0 of operators F and G
are roots of 𝑅(𝑤). Indeed 𝑅(𝑤) = 𝑟(𝑤)𝑃 (𝑤), where 𝑟(𝑤) is a simple polynomial.
So roots 𝑤0 of 𝑟(𝑤) and 𝑤0 = ∞ will be singular points of operators F and
G , but roots 𝑤0 of polynomial 𝑃 (𝑤) different of singular points will be their
subsingular points.

Theorem 5. If functions 𝜃*𝑗 (𝑤) and 𝜃
**
𝑗 (𝑤) are regular then the solutions to the

equations (20) can have logarithmic branching only at infinity 𝑤 = ∞ and at
singular points of the operators F (𝑤) and G (𝑤) but they can have algebraic
branching can be in singular and subsingular points only.

For the existence of a regular expansion (10) we need to prove the existence
of a sequence of functions 𝐹𝑗(𝑤) and 𝐺𝑗(𝑤) that do not have branching. From
other side, if it is shown that 𝐹𝑗(𝑤) or 𝐺𝑗(𝑤) have branching, then it proves the
absence of regular expansion.

In [18,22], for each polyhedron of the Painlevé equations, we selected suit-
able 2D faces, for each of them we wrote the equation (9), operators F (𝑤) and
G (𝑤) and inverse ones F−1(𝑤) and G −1(𝑤). We found their singular points
and the conditions on the parameters of the equation and on the solution 𝑤(𝑢)
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under which the functions 𝐹1(𝑤) and 𝐺1(𝑤) do not have logarithmic branching,
as well as the conditions under which at least one of these functions has such
branching. It is wonder that for each Painlevé equation 𝑃𝑙 the operators F and
G are expressed in the same way in terms of polynomial 𝑃 (𝑤) and different
cases distinguish only by this polynomial. At the same time, for all cases of

faces Γ
(𝑑)
𝑖 of five Painleve equations 𝑃1 – 𝑃5, there are only four different pairs

of operators F and G .
Singular point of operators F and G are 𝑤0 = ∞ for 𝑃1–𝑃5 and 𝑤

0 = 1 for
𝑃3–𝑃5 and 𝑤 = 1 for 𝑃5. To each suitable elliptic asymptotic form and to each
singular point 𝑤0 we assign one basic formal asymptotic expansion (10). Our
aim: to show existence or nonexistence of regular basic expansions by means of
calculation of expansions (19) near the singular points.

6. Expansions for 𝑃2

Details of calculation of expansions (10) will be explained for equation 𝑃2

𝑓(𝑥, 𝑦)
def
= − 𝑦′′ + 2𝑦3 + 𝑥𝑦 + 𝑎 = 0 (21)

and its truncated equation

𝑓
(1)
1 (𝑥, 𝑦)

def
= − 𝑦′′ + 2𝑦3 = 0.

First, according to (14) and Theorem 2 we make power transformation 𝑦 = 𝑥𝛼𝑣,
𝑢 = 𝑥𝛽/𝛽 (6) using formulas (8), and obtain equation 𝑃2 (21) in the form (9)

𝑔(𝑣) + ℎ1(𝑣)𝑢
−1 + ℎ2(𝑣)𝑢

−2 + ℎ𝑘(𝑣)𝑢
−𝑘 + ℎ𝑘+1(𝑣)𝑢

−𝑘−1 = 0,

where

𝑔(𝑣) = −𝑣 + 2𝑣3, ℎ1(𝑣) = −3𝛼

𝛽
𝑣̇, ℎ2 = −𝛼(𝛼− 1)

𝛽2
𝑣,

ℎ𝑘(𝑣) = 𝛽−𝑘𝑣, ℎ𝑘+1(𝑣) = 𝑎𝛽−𝑘−1,

(22)

𝑃 (𝑤) = 𝑤4 + 𝐶0, 𝐶0 ̸= 0. (23)

Here 𝑣̇ = 𝑑𝑣/𝑑𝑢, and 𝐶0 is arbitrary complex constant.
Operators −F−1 and −G −1 (20) are

𝐹𝑗 = 𝑃 1/2

∫︁
1

𝑃 3/2

∫︁
𝜃*𝑗𝑑𝑤𝑑𝑤, 𝐺𝑗 =

∫︁
1

𝑃 3/2

∫︁
𝑃 1/2𝜃**𝑗 𝑑𝑤𝑑𝑤. (24)

Here 𝑟(𝑤) ≡ 1 [22] and singular points of operators (24) are only infinity.
Let us introduce a function

𝐻(𝑤) =

∫︁
𝑃−3/2𝑑𝑤 = const · 𝑤−5 + const · 𝑤−6 + . . . (25)
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Here the integral is determined by mentioned asymptotic expansion near 𝑤 = ∞.
Solutions of system (18) or (24) have 4 arbitrary constants 𝐶1–𝐶4:

𝐹 = 𝐶1𝑃
1/2 + 𝐶2𝑃

1/2𝐻 + 𝐹 0, 𝐺 = 𝐶3 + 𝐶4𝐻 +𝐺0, (26)

where 𝐹 0 and 𝐺0 are fixed solutions. Here expansions near 𝑤 = ∞ are

𝑃 1/2 = const · 𝑤2 + . . . , 𝑃 1/2𝐻 = const · 𝑤−3 + . . .

So we will assume that power expansion for 𝐹 0 does not contain terms const ·𝑤2

and const·𝑤−3 but expansion for𝐺0 does not contain terms const and const·𝑤−5.
If it is necessary we can change constants 𝐶1–𝐶4. Now the functions 𝐹 0

𝑗 and 𝐺0
𝑗

are unique and expansion (10) is called basic if there all 𝑏𝑗 = 𝐹 0
𝑗 + 𝑤̇𝐺0

𝑗 . Below
we compute these basic expansion only.

Lemma 1. If 𝐶1 = 𝐶4 = 0, then solutions (26) to equations (24) for 𝑃2 are
regular in subsingular points (if 𝜃*𝑗 and 𝜃**𝑗 are also regular in them).

Let 𝜃*𝑗 (𝑤) and 𝜃
**
𝑗 (𝑤) be power series on decreasing power exponents of 𝑤

and 𝐴𝑗𝑤
𝜎𝑗 and 𝐵𝑗𝑤

𝜏𝑗 be their terms with maximal power exponents 𝜎𝑗 and 𝜏𝑗
correspondingly, 0 ̸= 𝐴𝑗, 𝐵𝑗 ∈ C, 𝜎𝑗, 𝜏𝑗 ∈ R. 𝐹𝑗 and 𝐺𝑗 contain log𝑤, if

𝜎𝑗 = −1 or 4 and 𝜏𝑗 = −3 or 2. (27)

So these numbers are critical for operators F−1 and G −1.
We will compute 𝜃𝑗(𝑤), 𝜃

*
𝑗 , 𝜃

**
𝑗 as functions of 𝑏𝑖 = 𝐹𝑖 + 𝑤′𝐺𝑖, ℎ𝑖 for 𝑖 < 𝑗

and also will compute leading terms of 𝐹𝑗 and 𝐺𝑗, i. e. power exponents 𝜎𝑗 and
𝜏𝑗 and constants 𝐴𝑗 and 𝐵𝑗.

For that we will use following expansions

𝑣 = 𝑤 +
𝑏1
𝑢
+
𝑏2
𝑢2

+
𝑏3
𝑢3

+
𝑏4
𝑢4

+ . . . ,

𝑣̇ = 𝑤̇ +
𝑏̇1
𝑢
+
𝑏̇2 − 𝑏1
𝑢2

+
𝑏̇3 − 2𝑏2
𝑢3

+
𝑏̇4 − 3𝑏3
𝑢4

+ . . . ,

𝑣 = 𝑤̈ +
𝑏̈1
𝑢
+
𝑏̈2 − 2𝑏̇1
𝑢2

+
𝑏̈3 − 4𝑏̇2 + 2𝑏1

𝑢3
+
𝑏̈4 − 6𝑏̇3 + 6𝑏2

𝑢4
+ . . . ,

𝑣3 = 𝑤3 +
3𝑤2𝑏1
𝑢

+
3𝑤𝑏21 + 3𝑤2𝑏2

𝑢2
+

3𝑤2𝑏3 + 6𝑤𝑏1𝑏2 + 𝑏31
𝑢3

+

+
3𝑤2𝑏4 + 6𝑤𝑏1𝑏3 + 3𝑤𝑏22 + 3𝑏21𝑏2

𝑢4
+ . . .
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Case k > 4. According to (22), ℎ1(𝑣) = −3𝛼

𝛽
𝑣̇, hence, 𝜃*1 = 0, 𝜃**1 = −3𝛼/𝛽.

According to (23) and (24) we obtain 𝐹1 = 0, 𝐺1 =
𝛼

2𝛽
𝑤−2 + . . .. Next,

𝜃2 = 2𝑏̇1 + 6𝑤𝑏21 −
3𝛼

𝛽
𝑏̇1 −

𝛼(𝛼− 1)

𝛽2
𝑤.

Hence, according to (17)

𝜃*2 =

(︂
2− 3𝛼

𝛽

)︂ (︂
1

2
𝑃 ′𝐺1 + 𝑃𝐺′

1

)︂
+ 6𝑤𝐺2

1𝑃 − 𝛼(𝛼− 1)

𝛽2
𝑤

= −𝛼(𝛼 + 2)

2𝛽2
𝑤 + . . . , 𝜃**2 = 0.

According to (24), 𝐹2 = −𝛼(𝛼 + 2)

12𝛽2
𝑤−1 + . . ., 𝐺2 = 0. Next,

𝜃3 = 4𝑏̇2 − 2𝑏1 + 2
(︀
6𝑤𝑏1𝑏2 + 𝑏31

)︀
− 3𝛼

𝛽

(︁
𝑏̇2 − 𝑏1

)︁
− 𝛼(𝛼− 1)

𝛽2
𝑏1.

Hence, 𝜃*3 = 0, according to (17),

𝜃**3 =
𝛼 + 4

𝛽
𝐹 ′
2 −

2 (𝛼 + 1)2 − 3𝛼(𝛼 + 1) + 𝛼(𝛼− 1)

𝛽2
𝐺1+

+ 12𝑤𝐺1𝐹2 + 2𝑃𝐺3
1 = −𝛼(𝛼 + 2)

6𝛽2
𝑤−2 + . . . .

According to (24), 𝐹3 = 0, 𝐺3 =
𝛼(𝛼 + 2)

24𝛽2
𝑤−4 + . . ..

Next,

𝜃4 = 6𝑏̇3 − 6𝑏2 + 2
(︀
3𝑤𝑏22 + 6𝑤𝑏1𝑏3 + 3𝑏21𝑏2

)︀
− 3𝛼

𝛽

(︁
𝑏̇3 − 2𝑏2

)︁
− 𝛼(𝛼− 1)

𝛽2
𝑏2.

Hence, according to (17)

𝜃*4 =
3(𝛼 + 2)

𝛽

(︂
1

2
𝑃 ′𝐺3 + 𝑃𝐺′

3

)︂
+ 12𝑤𝑃𝐺1𝐺3 −

(𝛼 + 2)(𝛼 + 3)

𝛽2
𝐹2+

+ 6𝑤𝐹 2
2 + 6𝑃𝐹2𝐺

2
1 = 0𝑤−1 + . . .

def
= 𝐴4𝑤

−1 + . . .

Here power exponent −1 of leading term in 𝜃*4 is critical for operator F−1 but
𝐴4 = 0. Hence 𝐹4 has not logarithmic branching.
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Now we take in account terms ℎ𝑘(𝑣) and ℎ𝑘+1(𝑣) from (23). For 𝑗 =
4, . . . , 𝑘−1 power exponents 𝜎𝑗 and 𝜏𝑗 for 𝐹𝑗 and 𝐺𝑗 are small enough to neglect
them. So

𝑣 = 𝑤 +
𝑏1
𝑢
+
𝑏2
𝑢2

+
𝑏𝑘
𝑢𝑘

+
𝑏𝑘+1

𝑢𝑘+1
+
𝑏𝑘+2

𝑢𝑘+2
+ . . . (28)

We can write corresponding expansions for 𝑣̇, 𝑣, 𝑣3. Then

𝜃*𝑘 = 𝛽−𝑘𝑤 + . . ., 𝜃**𝑘 = 0, hence 𝐹𝑘 = − 1

6𝛽𝑘
𝑤−1 + . . ., 𝐺𝑘 = 0.

𝜃𝑘+1 = (𝑘 − 1)𝑏̇𝑘 + 12𝑤𝑏1𝑏𝑘 +
𝑎

𝛽𝑘+1
+
𝑏1
𝛽𝑘

, hence

𝜃*𝑘+1 =
𝑎

𝛽𝑘+1
+ . . . and 𝐹𝑘+1 = − 𝑎

4𝛽𝑘+1
𝑤−2 + . . .,

𝜃**𝑘+1 = (𝑘−1)𝐹 ′
𝑘+12𝑤𝐺1𝐹𝑘+

1

𝛽𝑘
𝐺1 = − 1

3𝛽𝑘
𝑤−2+. . . and𝐺𝑘+1 =

1

12𝛽𝑘
𝑤−4+. . .;

𝜃𝑘+2 = 2(𝑘+1)𝑏̇𝑘+1−𝑘(𝑘+1)𝑏𝑘+12𝑤𝑏1𝑏𝑘+1+12𝑤𝑏2𝑏𝑘+6𝑏21𝑏𝑘−(𝑘+1)
(︁
𝑏̇𝑘+1 − 𝑘𝑏𝑘

)︁
−

𝛼(𝛼 + 1)

𝛽2
𝑏𝑘 +

1

𝛽𝑘
𝑏2.

Hence 𝜃*𝑘+2 = (𝑘+1)
(︀
1
2𝑃

′𝐺𝑘+1 + 𝑃𝐺′
𝑘+1

)︀
−𝛼(𝛼− 1)

𝛽2
𝐹𝑘+

1

𝛽𝑘
𝐹2+12𝑤𝑃𝐺1𝐺𝑘+1+

12𝑤𝐹2𝐹𝑘 + 6𝑃𝐺2
1𝐹𝑘 = 0 · 𝑤−1 + . . .,

𝜃**𝑘+2 = (𝑘 + 1)𝐹 ′
𝑘+1 − 𝛼(𝛼− 1)

𝛽2
𝐺𝑘 + 12𝑤𝐺1𝐹𝑘+1 + 12𝑤𝐹2𝐺𝑘 + 6𝑃𝐺2

1𝐺𝑘 =

0 · 𝑤−3 + . . ..
It means that 𝐹𝑘+2 and 𝐺𝑘+2 have not branching at 𝑤 = ∞ and 𝜎𝑗 < −1 and
𝜏𝑗 < −3 for 𝑘 + 2 < 𝑗 < 2𝑘 .

So we neglect 𝑏𝑗 for 𝑗 = 𝑘 + 2,. . . ,2𝑘 − 1 and consider

𝑣 = 𝑤 +
𝑏1
𝑢
+
𝑏2
𝑢2

+
𝑏𝑘
𝑢𝑘

+
𝑏𝑘+1

𝑢𝑘+1
+
𝑏𝑘+2

𝑢𝑘+2
+
𝑏2𝑘
𝑢2𝑘

+ . . .

We have
𝜃2𝑘 = 6𝑤𝑏2𝑘 + . . .

Hence, according to results after (28),

𝜃*2𝑘 = 6𝑤𝐹 2
𝑘 + . . . =

6

36𝛽2𝑘
𝑤−1 + . . . = 𝐴2𝑘𝑤

−1 + . . . ,

where 𝐴2𝑘 =
1

6𝛽2𝑘
≠ 0, and 𝐹2𝑘 has the logarithmic branching, i. e. the regular

expansion does not exist.
For k = 4, we must add 𝛽−4𝑤 to the computed value of 𝜃*4, but it does not

change result on existence of logarithmic branching in 𝐹8.
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Case k = 3 is close to the case 𝑘 > 4 and it has branching in 𝐹6.
Case k = 1 was calculated separately. It has not branching.

Case k = 0 corresponds to 2D face Γ
(2)
1 . It has not branching.

Thus, for equation 𝑃2 (21), basic formal expansions are regular for two suitable
asymptotic forms with 𝑘 = 0 and 𝑘 = 1 when 𝑥→ ∞.

Theorem 6. For 𝑃2, the regular basic families of formal power-elliptic expan-
sions exist only for two suitable elliptic asymptotic forms with 𝑘 = 0 and 𝑘 = 1,
i. e. when 𝑥→ ∞.

It is possible to prescribe power exponents 𝜎𝑗 and 𝜏𝑗 of leading terms in
𝜃*𝑗 and 𝜃**𝑗 . So we can compute such numbers 𝑗* and 𝑗**, that 𝜎𝑗 < −1 for
𝑗 > 𝑗* and 𝜏𝑗 < −3 for 𝑗 > 𝑗**. Here −1 and −3 are smaller critical values (27)
of operators F−1 and G −1. And it is enough to calculate 𝐹𝑗 and 𝐺𝑗 up to
𝑗 = max(𝑗*, 𝑗**).

7. Nonbasic expansions for 𝑃2

Basic expansions (10) were defined by formulas (24), (26) with 𝐶1 = 𝐶2 =
𝐶3 = 𝐶4 = 0. According to Lemma 1, condition 𝐶1 = 𝐶4 = 0 guarantees
regularity of 𝐹𝑗 and 𝐺𝑗 in subsingular points. Now we want to study cases with
nonzero 𝐶3.

Example 4. Let us show that 𝐶3 ̸= 0 in 𝐺𝑗 gives the logarithmic branching
in 𝑤 = ∞ for 𝐺𝑗+2. For 𝑗 = 1, we put 𝐶3 = 𝐴 ̸= 0. According to formulas for
case 𝑘 > 4, we obtain

𝐹1 = 0, 𝐺1 = 𝐴+
𝛼

2𝛽
𝑤−2 + . . .,

𝜃*2 =
2− 𝛼

2𝛽

(︂
1

2
𝑃 ′𝐺1 + 𝑃𝐺′

1

)︂
+ 6𝑤𝐺2

1𝑃 − 𝛼(𝛼− 1)

𝛽2
𝑤 + . . .

=
2− 𝛼

2𝛽
2𝑤3𝐴+ 6𝑤5

(︂
𝐴+

𝛼

2𝛽
𝑤−2

)︂2

− 𝛼(𝛼− 1)

𝛽2
𝑤 + . . .

= 6𝐴2𝑤5 +
5𝛼 + 2

𝛽
𝐴𝑤3 +

𝛼2 + 2𝛼

2𝛽2
𝑤 + . . .

Hence, 𝐹2 = 𝐴2𝑤3 − 5𝛼 + 2

4𝛽
𝐴𝑤 + . . ., 𝐺2 = 𝐹3 = 0.
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Next,

𝜃**3 =
𝛼 + 4

𝛽

(︂
3𝐴2𝑤2 − 5𝛼 + 2

4𝛽

)︂
− 2

𝛽2

(︂
𝐴+

𝛼

2𝛽
𝑤−2

)︂
+ 12𝑤𝐺1𝐹2 + 2𝑃𝐺3

1 + . . . =
𝛼 + 4

𝛽
3𝐴2𝑤2 − (𝛼 + 4)(5𝛼 + 2)

4𝛽
𝐴− 2

𝛽2
𝐴

+ 12𝑤

(︂
𝐴+

𝛼

2𝛽
𝑤−2

)︂ (︂
𝐴2𝑤3 − 5𝛼 + 2

4𝛽
𝐴𝑤

)︂
+ 2𝑤4

(︂
𝐴+

𝛼

2𝛽
𝑤−2

)︂3

+ . . .

Power exponent 2 is critical for G −1 (see (27)). Coefficient for 𝑤2 in 𝜃**3 is

−3(𝛼− 2)

𝛽
𝐴2. It is equal to zero only for 𝛼 = 2, but 𝛼 =

𝑘 + 1

2− 𝑘
, i. e. 𝑘 = 1. But

𝑘 > 4, then 𝐺3 has logarithmic branching. �

8. Equation 𝑃1

𝑓(𝑥, 𝑦)
def
= − 𝑦′′ + 3𝑦2 + 𝑥 = 0.

Support ̃︀S(𝑓) consists of 3 points Q1 = (−2,1,2), Q2 = (0,2,0), Q3 = (1,0,0).
Its polyhedron Γ(𝑓) is a triangle with normal N = (4,2,5). So the equation is

its own truncation. The edge Γ
(1)
1 = [Q1,Q2] of the triangle Γ corresponds to

the truncated equation

𝑓
(1)
1 (𝑥, 𝑦)

def
= − 𝑦′′ + 3𝑦2 = 0,

which has the first integral

𝑦′2 = 2
(︀
𝑦3 + 𝐶0

)︀
with elliptic solutions.

Suitable normals N to the edge Γ
(1)
1 are N𝑘 = (4−𝑘,2(𝑘+1),5), 𝑘 = 1,2, . . .

and 𝑛1 ≠ 0 if 𝑘 ̸= 4. Here 𝛼 =
2(𝑘 + 1)

4− 𝑘
, 𝛽 =

5

4− 𝑘
and 𝛼 = 2(𝛽 − 1),

𝛾 = 2𝛽 = 𝛼 + 2, the transformed equation is

− 𝑣 + 3𝑣2 − 5𝛼

𝛾
𝑣̇𝑢−1 − 4𝛼(𝛼− 1)

𝛾2
𝑣𝑢−2 + 2𝑘𝛾−𝑘𝑢−𝑘 = 0,

𝑃 = 2
(︀
𝑤3 + 𝐶0

)︀
, operators F−1 and G −1 are again (24) and 𝑟(𝑤) ≡ 1 [22].

Hence there is only one singular point 𝑤0 = ∞ and Lemma 1 is true for 𝑃1.
Here 𝐻(𝑤) = const · 𝑤−7/2 + . . . and integral critical numbers are 𝜎𝑗 = −1 and
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𝜏𝑗 = 1. Formulas (24)–(26) again define basic expansions. If k > 6 then 𝐹1 = 0,

𝐺1 =
𝛼

𝛾
𝑤−1 + . . ., 𝐹2 =

𝛼(𝛼− 8)

6𝛾2
+ . . ., 𝐺2 = 𝐹3 = 0,

𝐺3 =
𝛼(𝛼 + 4)

3𝛾3
𝑤−2+ . . ., 𝐹4 = −

𝛼(𝛼 + 4)
(︀
𝛼2 + 24𝛼 + 48

)︀
60𝛾4

𝑤−1+ . . ., 𝐺4 = 𝐹5 =

0,

𝐺5 =
𝛼(𝛼 + 4)

(︀
3𝛼3 + 56𝛼2 + 200𝛼 + 192

)︀
180𝛾5

𝑤−3+. . ., 𝜃*6 = 0·𝑤−1+. . .
def
= 𝐴6𝑤

−1+

. . ., 𝐴6 = 0. Hence, 𝐹6 has not logarithmic branching, if 𝑘 > 6.

Similarly to the end of Section 6 (see (28)), we obtain 𝜃*𝑘 =
2𝑘

𝛾𝑘
+ . . ., 𝐹𝑘 =

− 2𝑘

5𝛾𝑘
𝑤−1+ . . .,𝐺𝑘 = 𝐹𝑘+1 = 0,𝐺𝑘+1 =

(𝑘 + 11)2𝑘

75𝛾𝑘
𝑤−3+ . . ., 𝜃*𝑘+2 = 0 ·𝑤−1+ . . .,

𝜎𝑗 < −1, 𝜏𝑗 < 1 for 𝑗 > 𝑘 + 2 and the regular expansion exists. If 4 < 𝑘 < 7,
then the regular expansion exists, the same is true for 𝑘 = 1,2,3. Case 𝑘 = 0
corresponds to 2D face and to other 𝑃 = 2

(︀
𝑤3 + 𝑤 + 𝐶0

)︀
, but 𝐴6 = 0. Thus,

equation 𝑃1 has regular basic families of elliptic expansions corresponding to all
suitable asymptotic forms. Thus we have

Theorem 7. To each suitable elliptic asymptotic form of 𝑃1 there corresponds
the basic family of formal power-elliptic expansions, which is regular.

9. Equation 𝑃3

𝑓(𝑥, 𝑦)
def
= − 𝑥𝑦𝑦′′ + 𝑥𝑦′2 − 𝑦𝑦′ + 𝑎𝑦3 + 𝑏𝑦 + 𝑐𝑥𝑦4 + 𝑑𝑥 = 0 (29)

has 3 different polyhedrons depending on values of coefficients 𝑎, 𝑏, 𝑐, 𝑑 [18, 22].
Case cd ̸= 0, Figure 2.

Here only one truncated equation

− 𝑥𝑦𝑦′′ + 𝑥𝑦′
2
+ 𝑐𝑥𝑦4 + 𝑑𝑥 = 0

corresponding to the distinguished 2D face in Figure 2 has elliptic solutions.
Here the power transformation (6) is identical.

The equation (29) with 𝑐𝑑 ̸= 0 is of the form (9) with 𝑚 = 1, where

𝑔(𝑣)
def
= − 𝑣𝑣 + 𝑣̇2 + 𝑐𝑣4 + 𝑑 = 0, ℎ1 = −𝑣𝑣̇ + 𝑎𝑣3 + 𝑏𝑣,

𝑃 (𝑤) = 𝑐𝑤4 + 𝐶0𝑤
2 − 𝑑, Δ(𝑃 ) = −𝑐𝑑

(︀
𝐶2

0 + 4𝑐𝑑
)︀2
/16 ̸= 0.

Solutions to the equations (18) are of the form

𝐹𝑗 = 𝑃 1/2

∫︁
𝑤2

𝑃 3/2

∫︁
𝜃*𝑗
𝑤3

𝑑𝑤 𝑑𝑤, 𝐺𝑗 =

∫︁
𝑤2

𝑃 3/2

∫︁
𝑃 1/2𝜃**𝑗
𝑤3

𝑑𝑤 𝑑𝑤. (30)
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Figure 2. 3D support ̃︀S(𝑓) and polyhedron Γ(𝑓) of equation 𝑃3 (29) with all

𝑎, 𝑏, 𝑐, 𝑑 ̸= 0. The grey face is Γ
(2)
1 . All dotted lines are in the plane 𝑞1, 𝑞2, they

show projections of Γ(𝑓) on the plane (𝑞1, 𝑞2).

Here 𝑟(𝑤) = 𝑤2 [22], so there are 2 singular points 𝑤0 = ∞ and 𝑤0 = 0. This is

true for all cases of 𝑃3. Near the singular point 𝑤0 = ∞, 𝐻(𝑤) =
∫︀ 𝑤2

𝑃 3/2
𝑑𝑤 =

const · 𝑤−3 + . . .. So 𝑃 1/2 = const · 𝑤2 + . . ., 𝑃 1/2𝐻 = const · 𝑤−1 + . . . and
expansions for 𝐹 0

𝑗 and 𝐺0
𝑗 do not contain terms const · 𝑤2, const · 𝑤−1 and

const · 𝑤0, const · 𝑤−3 correspondingly. Critical numbers for 𝜃*𝑗 and 𝜃**𝑗 are 2,

5 and 0, 3 correspondingly. Moreover, 𝜃*2 = 0 · 𝑤2 + . . ., 𝜃**2 = 0 · 𝑤 + . . . and
𝜎𝑗 < 2, 𝜏𝑗 < 0 for 𝑗 > 2. So expansion has not logarithmic branching at 𝑤 = ∞.

Near the singular point 𝑤0 = 0 we have 𝐻0(𝑤) =
∫︀ 𝑤2

𝑃 3/2
𝑑𝑤 = const · 𝑤3 +

𝑂(𝑤4). Here we have 4 constants 𝐶0
1 ,. . . ,𝐶

0
4 and basic expansion if all 𝐶0

𝑖 = 0.
Here Lemma 1 is correct for 𝑃3.
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Condition C.
∞∫︀
0

𝑤2

𝑃 3/2
𝑑𝑤 = 0.

Theorem 8. If the Condition C is satisfied then basic expansions for 𝑃3 are
regular.

Case c = 0, ad ̸= 0. After the power transformation 𝑦 = 𝑥1/3𝑣, 𝑢 =
3

2
𝑥2/3, the

equation (29) with 𝑐 = 0 takes the form (9) with 𝑚 = 1, where

𝑔(𝑣) = −𝑣𝑣 + 𝑣̇2 − 𝑎𝑣3 + 𝑑, ℎ1 =
3

2
𝑏𝑣 − 𝑣𝑣̇,

𝑃 (𝑤) = 2𝑎𝑤3 + 𝐶0𝑤
2 − 𝑑, Δ(𝑃 ) = 4𝑑

(︀
𝐶3

0 − 27𝑎2𝑑
)︀
̸= 0.

Formula (30) is valid here. At 𝑤 = ∞, 𝜃*𝑗 and 𝜃**𝑗 have critical number 2.

𝜃*2 = 0 · 𝑤2 + . . . and orders of 𝜃*𝑗 , 𝜃
**
𝑗 are less than 2 for 𝑗 > 2.

The same is at 𝑤0 = 0. Thus, here formal basic expansion is regular.
Lemma 1 and Theorem 8 are true.

Case c = d = 0, ab ̸= 0. After the power transformation 𝑦 = 𝑣, 𝑢 = 2𝑥1/2,
equation (29) with 𝑐 = 𝑑 = 0 takes the form (9) with 𝑚 = 1, where

𝑔(𝑣) = −𝑣𝑣 + 𝑣̇2 + 𝑎𝑣3 + 𝑏𝑣, ℎ1 = −𝑣𝑣̇/2,
𝑃 (𝑤) = 2

(︀
𝑎𝑤3 + 𝐶0𝑤 − 𝑏𝑤

)︀
, Δ(𝑃 ) = 24𝑏2

(︀
𝐶2

0 + 16𝑎𝑏
)︀
̸= 0.

At 𝑤0 = ∞ critical values for 𝜃*𝑗 and 𝜃**𝑗 are 2, 𝜃*2 = 0 · 𝑤2 + . . ., 𝜎𝑗, 𝜏𝑗 < 2 for
𝑗 > 2. So here basic expansion has not branching.

The same is at 𝑤0 = 0. Lemma 1 and theorem 8 are true.
Each of 3 polyhedrons has exactly one 2D face corresponding to a truncated

equation with elliptic solutions [17, 18, 22]. They have different first integrals
(𝑤̇)2 = 𝑃 (𝑤), but common operators F−1 and G −1 with singularities in two
points 𝑤 = 0 and 𝑤 = ∞.

10. Equation 𝑃4

𝑓(𝑥, 𝑦)
def
= − 2𝑦𝑦′′ + 𝑦′2 + 3𝑦4 + 8𝑥𝑦3 + 4

(︀
𝑥2 − 𝑎

)︀
𝑦2 + 2𝑏 = 0.

If complex parameters 𝑎, 𝑏 ̸= 0, its support ̃︀S(𝑓) consists of 6 points, polyhedron

Γ(𝑓) is a tetrahedron and has one 2D face Γ
(2)
1 and one edge Γ

(1)
1 with truncated

equations

𝑓
(2)
1

def
= − 2𝑦𝑦′′ + (𝑦′)2 + 3𝑦4 + 8𝑥𝑦3 + 4𝑥2𝑦2 = 0,

𝑓
(1)
1

def
= − 2𝑦𝑦′′ + (𝑦′)2 + 3𝑦4 = 0,
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having elliptic solutions [18, 19, 22]. Normal to Γ
(2)
1 is N0 = (1,1,2), suitable

normals to Γ
(1)
1 are N𝑘 = (1− 𝑘, 𝑘 + 1,2), 𝑘 = 2,3, . . . After power transforma-

tion (6) with 𝛼 =
𝑘 + 1

1− 𝑘
, 𝛽 =

2

1− 𝑘
= 𝛼 + 1 we obtain the equation (9) with

𝑚 = 6

− 2𝑣𝑣 + 𝑣̇2 + 3𝑣4 − 4𝛼

𝛽
𝑣𝑣̇𝑢−1 +

𝛼(2− 𝛼)

𝛽2
𝑣2𝑢−2 +

8

𝛽𝑘
𝑣3𝑢−𝑘 − 4𝑎

𝛽𝑘+1
𝑣2𝑢−(𝑘+1)+

+
4

𝛽2𝑘
𝑣2𝑢−2𝑘+

2𝑏

𝛽2(𝑘+1)
𝑢−2(𝑘+1) = 0, 𝑃 (𝑤) = 𝑤4+𝐶0𝑤, 𝐶0 ̸= 0, 𝑘 = 2,3, . . .

Here solutions to equations (18) are

𝐹𝑗 =
1

2
𝑃 1/2

∫︁
𝑤

𝑃 3/2

∫︁
𝜃*𝑗
𝑤2
𝑑𝑤𝑑𝑤, 𝐺𝑗 =

1

2

∫︁
𝑤

𝑃 3/2

∫︁
𝑃 1/2𝜃**𝑗
𝑤2

𝑑𝑤𝑑𝑤,

𝑟(𝑤) = 𝑤 [22], so there are two singular points 𝑤0 = ∞ and 𝑤0 = 0. Near

𝑤0 = ∞ 𝐻 =
∫︀ 𝑤

𝑃 3/2
𝑑𝑤 = const · 𝑤−4 + . . . Critical numbers for 𝜃* and 𝜃**

are 1,5 and −1,3 correspondingly. If k > 3, 𝐹1 = 0, 𝐺1 =
𝛼

2𝛽
𝑤−2 + . . ., 𝐹2 =

−𝛼(𝛼 + 2)

12𝛽2
𝑤−1 + . . ., 𝐺2 = 0, 𝐹3 = 0, 𝜃**3 = 0 · 𝑤−1 + . . ..

Now we compute expansion of the form (28). Then 𝐹𝑘 = − 1

𝛽𝑘
+ . . .,𝐺𝑘 = 0,

𝐹𝑘+1 =
2𝑎

3𝛽𝑘+1
𝑤−1 + . . ., 𝐺𝑘+1 =

1

3𝛽𝑘+1
𝑤−3 + . . ., 𝜃*𝑘+2 =

4𝛼(2𝛼− 1)

𝛽𝑘+2
𝑤 + . . .,

𝜃**𝑘+2 = 0 · 𝑤−1 + . . . Thus, 𝐴𝑘+2 =
4𝛼(2𝛼− 1)

𝛽𝑘+2
= 0 only if 2𝛼 − 1 = 0, i. e.

𝑘 = −1/3, that is impossible. Thus, 𝐹𝑘+2 has logarithmic branching and the
regular basic expansion is absent. The same is true for 𝑘 = 3,2 and for 𝑘 = 0,
when 𝑃 = 𝑤4 + 4𝑤3 + 4𝑤2 + 𝐶0𝑤.

11. Equation 𝑃5

𝑓(𝑥, 𝑦)
def
= − 𝑥2𝑦(𝑦 − 1)𝑦′′ + 𝑥2

3𝑦 − 1

2
𝑦′

2 − 𝑥𝑦(𝑦 − 1)𝑦′+

+ (𝑦 − 1)3(𝑎𝑦2 + 𝑏) + 𝑐𝑥𝑦2(𝑦 − 1) + 𝑑𝑥2𝑦2(𝑦 + 1) = 0,

where 𝑎, 𝑏, 𝑐, 𝑑 are complex parameters, has two different polyhedrons depending
on values of parameter 𝑑 [20,22]. Each of the polyhedrons has only one 2D face
with elliptic solutions.
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Case d ̸= 0. Here transformation (6) is identical 𝑦 = 𝑣, 𝑥 = 𝑢. So, in equa-
tion (9) 𝑚 = 2,

𝑔(𝑣) = −𝑣(𝑣 − 1)𝑣 + (3𝑣 − 1)𝑣̇2/2 + 𝑑𝑣2(𝑣 + 1),

ℎ1 = −𝑣(𝑣 − 1)𝑣̇ + 𝑐𝑣2(𝑣 − 1), ℎ2 = (𝑣 − 1)3
(︀
𝑎𝑣2 + 𝑏

)︀
,

𝑃 = −2𝑑𝑤
[︀
𝐶0(𝑤 − 1)2 + 𝑤

]︀
, Δ(𝑃 ) = (2𝑑)4𝐶2

0(1− 4𝐶0) ̸= 0.

Solutions to equations (18) are

𝐹𝑗 = 𝑃 1/2

∫︁
𝑤(𝑤 − 1)2

𝑃 3/2

∫︁
𝜃*𝑗

𝑤2(𝑤 − 1)3
𝑑𝑤𝑑𝑤,

𝐺𝑗 =

∫︁
𝑤(𝑤 − 1)2

𝑃 3/2

∫︁
𝑃 1/2𝜃**𝑗

𝑤2(𝑤 − 1)3
𝑑𝑤𝑑𝑤.

(31)

Here 𝑟(𝑤) = 𝑤(𝑤−1)2 [22], so singular points are 𝑤0 = ∞,0,1 Near the singular
point 𝑤0 = ∞

𝐻 =

∫︁
𝑤(𝑤 − 1)2

𝑃 3/2
𝑑𝑤 = const · 𝑤−1/2 + . . .

critical numbers for 𝜃*𝑗 and 𝜃**𝑗 are 4 and 3 correspondingly. If 𝑎 ̸= 0, then 𝜃*2
contains the term −3𝑎𝑤4 and 𝐹2 has logarithmic branching. If 𝑎 = 0, then
𝜎𝑗 < 4 and 𝜏𝑗 < 3 for all 𝑗 > 0. Thus, the basic expansion is regular. Similarly
basic expansions are regular near 𝑤0 = 0 iff 𝑏 = 0 and near 𝑤0 = 1 without
restrictions.
Condition D.

1∫︁
0

𝑤(𝑤 − 1)2

𝑃 3/2
𝑑𝑤 =

∞∫︁
1

𝑤(𝑤 − 1)2

𝑃 3/2
𝑑𝑤 = 0.

Theorem 9. If in equation 𝑃5 with 𝑑 ̸= 0 and with 𝑎 = 𝑏 = 0 Condition D is
fulfilled then basic expansions are regular. If one of these conditions is violated
then all basic expansions are nonregular.

Case d = 0, c ̸= 0. After the change 𝑦 = 𝑣, 𝑢 = 2𝑥1/2, equation 𝑃5 takes the
form (9) with 𝑚 = 2, where

𝑔(𝑣) = −𝑣(𝑣 − 1)𝑣 +
3𝑣 − 1

2
𝑣̇2 + 𝑐𝑣2(𝑣 − 1),

ℎ1 = −𝑣(𝑣 − 1)𝑣̇, ℎ2 = (𝑣 − 1)3(𝑎𝑣2 + 𝑏),

𝑃 = −2𝑐𝑤(𝑤 − 1) [𝐶0(𝑤 − 1) + 1] , Δ(𝑃 ) = (𝐶0 − 1)2 ̸= 0, 𝐶0 ̸= 0.

Formulas (31) are again valid. Here basic expansions near 𝑤0 = ∞ are regular
iff 𝑎 = 0, near 𝑤0 = 0 iff 𝑏 = 0 and near 𝑤 = 1 are always non regular.
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12. Equation 𝑃6

in generic case has polyhedron Γ with ten 2D faces Γ
(2)
𝑖 , but all external normals

to them N = (𝑛1, 𝑛2, 𝑛3) do not satisfy conditions (7) 𝑛1 ̸= 0, 𝑛3 > 0. Moreover,

all edges Γ
(1)
𝑖 have no suitable normals. The same is true for degenerate cases.

13. Summary
Thus, all basic expansions are regular for 𝑃1 without additional restrictions

(Theorem 7), for 𝑃2 if 𝑥→ ∞ (Theorem 6), for 𝑃3 under Condition C (Theorem 8)
and for 𝑃5 with 𝑎 = 𝑏 = 0 and 𝑑 ̸= 0 under Condition D (Theorem 9).

As next step it is necessary to study convergence of found regular formal
power-elliptic expansions.
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