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JlnHamudeckasi MOJIeJb CIIYTHUKA C COJIHEYHOM MaHEIbI0 B ABYXCTEIIEHHOM
apHupe

PaccmaTpuBaercsi COyTHHK, UMEIONIMHA  OJIHY COJIHEUHYIO  [aHENb,
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Dynamical model of a satellite with 2DOF solar panel

Satellite with 2DOF solar panel is considered. The panel hinge consists of a
motor capable of panel attitude control. Satellite and solar panel are rigid bodies both.
The work is aimed at the satellite-panel system attitude dynamical model
construction.
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Introduction

Presence of a movable solar array attached to the satellite body with a
controlled hinge leads to significant complication of the satellite dynamics. A
mathematical model and corresponding software for numerical investigation of the
satellite arbitrary movements are necessary. However one can estimate steady-state
motion of the satellite at specified relative motion of the array using asymptotic
analysis methods for a mathematical model of the satellite motion about its center of
mass.

A key point of the mathematical model formulation is introduction of the
properties of the satellite elements which consists of the satellite bus (hereinafter
referred to as bus) and the solar array (SA). The bus and array are connected with
two-degree-of-freedom hinge and are affected by external forces and torques. The
forces determine the satellite orbital motion and the torques applied to the bus and SA
determine their angular motion. The SA mass is 7% of the bus mass, it measures less
than 2.5 meters, the structure is rigid while the Formosat-7 satellite is considered as a
prototype. It gives reason to consider the SA a rigid body for the dynamics analysis.
Examination of the system consisting of the bus, SA and hinge helps to ascertain the
main contribution of the articulated structure in comparison with the satellite
approximation by a rigid body.

The problem of a complex dynamical model is considered in detail both in
theoretical papers and applied projects. Nevertheless, for the dynamics analysis of a
specific satellite we should develop a model which would realize specified,
analyzable geometric and dynamical topology of the system. So, one needs to derive
the motion equations and introduce appropriate variables to describe the phase state

of the satellite bus and SA, and necessary reference frames.
1. Generic dynamical model

There is a number of approaches applicable for the equations derivation. The

paper [1] contains the basic methods of derivation of motion equations for a satellite



supplied with a solar array or other movable elements. In particular, there are some
approaches (described in detail in [2; 3]) based on momentum and angular
momentum variation laws, d'Alembert principle, Lagrange, Hamilton, Boltzmann-
Homel, Gibbs equations and using particular linear and angular velocities [1]. In
papers [4; 5] a general approach for motion equations derivation, including those for
flexible constructions, is presented. However, the application of these equations is
limited by their unhandiness caused by large generality of the system under
consideration. We use a method applying the basic dynamic equation (d’Alembert

principle) for a system with ideal constraints
(m r,—F,)r,=0

Here or, is elementary displacement of 1™ particle, F, is the resultant of all active

forces affecting this particle. It has the same advantage as Lagrange equations: the
ideal constraints reactions are not present in the final motion equations. The
coordinates which the motion equations are written for, can be easily interpreted.
Dynamic equations should be supplemented by kinematic relations for
parameters which specify the satellite attitude. Euler angles and directional cosines
matrix are convenient for the analytical analysis, while quaternions are better suited

for the numerical study. Let quaternion q:(k,ﬂo) specify the satellite position, then

the kinematic relations take the form

CI=%941, (1.1)

0 w, -0 o
—o; 0 (OO
0, - 0 of

-, —o, -, 0

Relationship of the matrix of directional cosines and the quaternions elements

can be written as follows:



1247 =28 A4k +AA) Adds—Ah)
D=| 2044 —2hy) 1-22 =222 20ds+AA)|. (12)
244+ 44) 2AMA—AA) 1-24"-24

Kinematic equations (1.1) must be integrated together with the dynamic
equations as the former ones include the angular velocity components and the latter
ones contain the elements of the directional cosines matrix which can be calculated
when using quaternions by means of (1.2).

Determination of the satellite steady motion is also of special interest. At
given relative motion of the SA it can be determined using asymptotic analysis
methods for the mathematical model of the satellite motion about the center of mass.
If determined, the steady motion can also be used for the model verification. Steady-
state motions and equilibrium positions of the system under consideration in
gravitational field is studied in many papers. The ones of V. Sarychev [6-8] cover
determination of the equilibrium positions of satellite—pendulum system at a circular
orbit. There is a double pendulum considered in [6], satellite—asymmetric pendulum
system in [7] and satellite and asymmetrical pendulum with an arbitrary inertia tensor
in [8]. In all cases, under some additional conditions, all equilibrium positions are
determined.

The papers of M. Lavagna and A.E. Finzi [9; 10] cover the analysis of
systems made up of three bodies bound by hinges. Equilibrium positions are

determined for this configuration and their stability is examined.
2. Assumptions, reference frames, equations of motion

Consider rather general kinematic scheme of the satellite body connection
with SA (Fig. 1.1)



Fig. 1.1. Geometry of two bodies bound by hinges

The satellite (body with center of mass at point O,) and SA (body with center
of mass at point O,) are bound by two weightless absolutely rigid rods connected
together with hinges bodies P, (i =1 2,3), each with one degree of freedom.

Superposing the hinges at one point one can implement a hinge connecting the
satellite to a SA with two or three degrees of freedom.

To derive motion equations we represent the mechanical system in a form of
material particles set. For each particle the following equation
mrt,=F,+R,
is satisfied where F, and R are resultant factors of active (external) forces and

reactions affecting the particle. The constraints imposed on the system are considered

ideal. Then at any virtual displacement or, compatible with the constraints the

following relation holds
Y R,or,=0
y7i
and we obtain general dynamics equation

> (mr,—F,)or,=0.

H
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Sum separately over particles of the first body (2(1)), the second one (2(2))

and connecting hinges (2(3)). Taking into account zero mass of the connecting links,

obtain

> ®(mr,~F,)er, +z()(m r,—F,)or, Z“”F or, = (2.1)

U

Introduce following notations:
My = >_“m, for the bodies masses (i=1,2);

Ioi :—Z(')m r for radius-vectors of the bodies centers of mass (i=1,2);
M,

a=0P, b,=RPP,, b,=P,R,, a,=P0,;
e, for unit vectors along the hinge axis P (i=12,3);
op: for virtual changes of the slewing angles in the hinge P.
Then virtual displacement of the u™ particle belonging to the first body
(satellite) is written as follows
SY, =3, +0, x(r, -1, )
where 60, is the satellite virtual rotation. For virtual displacement of 4™ particle
belonging to the second body (SA) obtain
ST, =6y, + 00, xa, +(50, +e,¢, ) xb, +
+(50, +e,0p, +€,0p,)xb, +
+( 50, +e,00, +e,0p, +e,0p,) X (a2 +r, —roz) =
=0l + 00, x ( a,+b, +b,+a,+r, —r02)+
+e1><( +b,+a,+r, —r02)5gol+
+e x(b +a,+r, 02)5¢2+
+e5x(a, +1, 1y, ) Op;.
Denote also

F =Y ©F, as resultant vectors of external forces applied to the bodies (i=1,2);



M, =>""(r, —ry; )xF, as resultant torques of external forces about the center of
mass of corresponding body (i=1,2);
K. :Z(‘)mﬂ(rﬂ _rOi)X(ry —rOi) as the bodies angular moments about the center of

mass of corresponding body (i=1,2);

Substituting or, in (2.1) and taking into account that the connecting links are

affected only by control torques in the hinges M, (i=12,3), that is

3
2. OF.8r, =) Mdp,
17 i=1
obtain

;(1) (mﬂrﬂ — Fﬂ)[érm + 00, x(rﬂ —TIy, )} + Z(Z) (myi‘ﬂ —Fﬂ)ér01 +

pr
+Z(2)(mﬂrﬂ —Fﬂ)_éﬁlx(aﬁbﬁbz +a,+r, —roz)]+
. i

+Z(Z) (mﬂrﬂ N F,U) € X(bl +b,+a, + r,— roz):|5(p1
7

+Z(2) (mr,—F, E x(b, +a, +r, - roz)]é(pz +

i
)
+Z (mﬂrﬂ - Fu
7]
and after transformation

(m01r01 + mozroz - Fl - F2)5r01 +
+[K1+ K,-M,—-M, +(a, +b, +b, +a,)x(my,k,, —Fz)]c%1 +

+{:K2 -M, +(b1 +b, +a2)x(m02r02 - FZ)]el - Mu1}5(01 + (2.2)
:Kz —M, +(b, +a,)x(my,t,, — Fz)]e2 —~ Mu2}5(p2 +

+{_Kz_l\/lz"‘az Mook — ]e u3}5§03
As magnitudes or,,, d0,, o¢, op,, Sp, are independent, relation (2.2) is

N~—

N—

:e a +r 02 :|5(D3 ZMwé‘(D 0

+

——

true only when



My Tor + Moslos _Fl _Fz =0,
K, +K,—M,-M, +(a, +b, +b, +a, ) x(my,ty, —F,)=0,

:Kz —M, +(b, +b, +a,)x(my,t,, — Fz)]e1 -M,, =0, (2.3)
:Kz o Mz +(b2 +a2)x(mozroz - Fz)Jez - |\/|u2 =0,

K, =M, +a, x(My,ky, —F,) Je; = M,; =0.

The obtained equations must be supplemented by kinematic relations
r, =r, +a +b,+b,+a,,
Foy =Fo @ xa, +(0, +€,@ )xb, +(®, +e@ +e,p,)xb, +

+( 0, +e,@ +e,0, +ep, ) xa,,

Fo, =Fo + @, xa, + @, x(0, xa, )+
+ (0, + e, + 0, xe ) xb, +(o, +ep ) x| (o, +e@ )xb, |+
+[ci)1 +ed + 0, xe P +e,0, + (o, +e1gbl)xeng2]xb2 +
+( @, +ep +e,0, )X [((ol +e,p +e,0, )X bz] +
+ |:C01 +ep +m xeQ +e,p, + (0)1 + el(pl) Xe,P, +e30; +
+ (co1 +e,; +e,p, ) X e3(p3] xa, +

+ ((01 tep te,p,+ e3¢’3) X [((’)1 teP e, +ep, ) X az] ,

(2.4)

where o, :61 is absolute angular velocity of the first body (the bus).

It is more convenient to use the radius-vector of the system center of mass r,
instead of the radius-vector of the bus center of mass r,,. To do this use evident
relation
(mo1 + moz)ro =Myl + Myl -

Then

r,=r, —ﬁ(a1 +b, +b, +a,),
1 2

Iy, :ro+ﬁ(a1 +b, +b, +a,).

The first equation of (2.3) takes the form of

(2.5)
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(mm +m02)ro_F1_F2 =0,

where

_fMZ(I)m fo +(u rO) —

F=>9F,=-fM> “m, —gz 5
r, ‘r +(r,—ro)
1 [P
oo T f r
_ iy fo o
—_fMFZ m, - me"ir_%'
O r0+rlu_ro o
rO rO

Here as usually we take advantage of the fact that characteristic linear

dimension of the system is much smaller than the distance between the system mass

center and Earth center, that is ‘r,,, —ro‘ < I,. Consequently, forces K and F, can be

substituted by usual equations for gravitational forces attracting particle masses,

I:i :_/quoi%’ (26)

(0]

U;=fM is the Earth gravitational parameter, f is the universal gravitational

constant, M is the Earth mass. The first equation of (2.3) takes the final form
F, + 2 =0. 2.7)
rO

It results from this that the system center of mass moves in Keplerian orbit.
If different perturbing factors such as non-spherical Earth gravitational field,
the atmosphere resistance, Sun and Moon influence and solar radiation pressure are

taken into account, equation (2.7) takes the form

r
r‘O + IUG r_% = Fpert’ (28)
o

where F . is disturbing acceleration. The orbit of the system center of mass will not

pert
be Keplerian one.

For the satellite body angular momentum write
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K, =lo,

therefore,

K, = Lo +o xLo,

where |, is the bus tensor of inertia. Similarly, for the second body of the system
(SA) we get

K, = L&, +®, xLo,,

where

W, =0, +e¢@ +e,(, +eP;

Is second body angular velocity, |, is the array inertia tensor.

Equations (2.3) are given in a vector-matrix form. So, all the vectors there
must be given in the same reference frame. However, it is not always convenient in
practice. Further the following reference frames will be used:

—  CXYZ, Earth-centered inertial frame;

—  Oxyz, orbital frame with origin in the system center of mass;

- OxV,z, satellite-fixed reference frame (its axes are directed along the
central principal axes of inertia of the bus);

O,x,Y,Z,, array-fixed reference frame (its axes are directed along the
central principal axes of inertia of SA);

- PR&ng (i=123), the i™ connecting link fixed reference frame (in this
context consider the second body as the third connecting link).

Matrix of rotation from inertial frame CXYZ to orbital frame Oxyz denotes
by C; matrix of rotation from the orbital frame to frame QX Y,z denotes by A ;
matrix of rotation from the orbital frame to frame O,X,Y,z, denotes by A, ; matrix of
rotation from frame OxY,z, to frame P&ng denotes by B,; similarly B, n B,
denote matrixes of rotation form frame B&ng to the one B&n,¢, and from frame

Bé&n.6, to the one B&n.g,. Note that frame B&.g, is fixed in the second body
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(SA). However, it is convenient to introduce it separately from frame O,x,Y,z, where
the body inertia tensor has a diagonal form and frame BZ&.g, one of the axes of
which is directed along the hinge axis P,. Constant matrix of rotation from frame
Bé&mg,to frame O,X,Y,z, denotes by D. Obviously
A,=DB,B,BA,. (2.9)
Assume vectors I, Iy, I, F,F, are specified in frame CXYZ; vectors
o, M,,a,, e, are specified in frame Oxy,z,; vectors m,, M, are specified in frame
O,X,Y,Z,; vectors b,, e, are specified in frame B&ng,; vectors b,, e, are specified in
frame P,&,7,¢,; vector a, is specified in frame B,&,c,. Then equations (2.3) take the

form
Vo + 14 r—3 =0,
r-O
(1, +o, xLe, —M;)+B{B,BD' (Lo, + @, xL,m, -M, )+
+(a,+B]b, + B]Bjb, + B]B]Bla, ) x AC(my,Fy, —F,) =0,
| BIBIBID" (1,6, +®, xL,w, ~M,) +(B[b, + B[B]b, + B]B]Bla, ) x
><Aic(mozroz -k ):|el -M,, =0,

| BIBIBID" (1,6, +®, xL,w, ~M,)+(B[B]b, + BB} Bla, ) x

(2.10)

x AC(My,lo, —F, ):| Bje,~M,, =0,
| BIB;BID" (1,6, +®, x1,00, —M, ) + B/ B} Bla, x
x AC(My,lo, —F, ):| BBy, —M,;, =0.
Note that expression m,,l,, —F appearing in equations (2.10) can be

rewritten in the form

Moofo, —F Em)z(roz _ro)"'mozro -F. (2.11)
Taking into account (2.7) and (2.8) we get
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r
Mo,fo —F, :moz(ro"'ﬂer_gjzo-

(0]
Finally taking into account (2.5) in expression (2.11), the latter takes the form
MysTo, = F =My (Fo, =) :%CTAIT {c’o1 xa, +0,x(0 xa )+

+(c‘ol+el¢l+(o1xel(/')l)xbl+(ml+elgbl)x[(col+elgb1)xbl}+

+(0 + ey +e,p, + oy xeh +(0, +ef ) xep, )xb, + (2.12)
+(col+e1¢')1+e2gb2)><[(col+e1gbl+e2gb2)><b2]+

+ (6)1 e +8,0, T0,0, + 0, xep +(0, +ed ) xe,0, + (0, +ed +e,p )X e3¢3) xa, +

(o, +eq +e,p +e) x[((ol e +e,p, + e, )x az}}.

Present expressions for the resultant torques of the external forces affecting

the bus (M,) and SA (M,). Here disturbing torques are taken into account for both

bus and SA and a control torque acting on a satellite.

3. Adaptation of the motion equations to a particular satellite

configuration

In this chapter equations system (2.10) is adapted for the configuration of
satellite Formosat-7. So, one can specify vector parameters (the hinges sizes and their
position), some matrix constants depending on construction and even reduce the
equations system order. We also choose a method for determination of the bus, SA
and hinges attitude which seems to be the most evident, the one using plane angles
(however quaternion-based kinematics is used). Specify all the frames mentioned in
the previous chapter.

Inertial frame CXYZ has the origin in Earth center, its first axis is directed to
the vernal equinox point, the third one is directed along Earth spin axis, the second
supplements the frame to the right-hand one.

Orbital frame Oxyz has the origin in the system center of mass, its third axis

is directed along the normal to the orbit plane, the second one is directed along the

satellite radius-vector, the first one supplements the frame to the right-hand one.
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To define the matrix of transition between the inertial and orbital frames,

introduce intermediate frame CX,Y,Z,. Its origin is situated in the Earth center, the

first axis is directed to the orbit pericenter, the third one is directed along the normal
to the orbit plane, the second one supplements the frame to the right-hand one. The

matrix of transition from the auxiliary frame to the inertial one has the form

sinQcosw+cosQsinwcosi  —sinQsinw+ cosQCcoswcosi  —cosQsini

cosQcosw—SsIinQsinwcosi  —cosQsinw—sinQcoswcosi  sinQsini
Dl :
sinwsini coswsini cosi

where Q is the ascending node longitude, @ is the argument of pericenter, i is the
orbit inclination. Consider these parameters known from the satellite orbital motion
(the first equation (2.10)). The matrix of transition from the auxiliary frame to the
orbital one has the form

cosu sinu O
D,=|—sinu cosu O
0 0 1

where U is the argument of latitude. Then the matrix of transition from the inertial

frame to the orbital one has the form
C=D,D'.

Specify the matrix of transition from the inertial frame to the one QX V,z,
using plane angles «, £, 7 with rotations sequence 2-3-1,

CoSa Cos 3 sing —sinaCcos
A=| —cosasinfcosy +sinasiny  cosfcosy  sinasin fcosy +cosasiny |.(3.1)
cosasin gsiny +sinacosy  —cosBsiny  —sinasin £sin y +cosa oS y

This choice of the transition matrix will be used later, so in these cases we
will write A(e, 3,7).

Tensor of inertia of the satellite bus, point of the hinge fastening and torques
applied to the satellite are specified in the frame QxY,z. The velocity is to be
determined, the torque is considered known, point of the hinge fastening is specified

by vector



15

a, =(0.0094,-0.4489,-0.1268) m, (3.2)

inertia tensor

3857 0 0
IL=| 0 2905 O kg-m?,
0 0 3396

Choose P& g, axes (Fig. 3.1) so that the spin axis will be P, as according

to (3.2) the hinge is positioned practically along the second axis. The matrix of

transition between frames QX V,z, and B&ng depends on the hinge position in the
satellite bus and its rotation through angle ¢,. Assume that in initial position (¢, =0)

the orientation of the first hinge in the satellite bus is determined by plane angles

oy, [, 7, Which are known from the satellite design. Then the transition matrix is

determined by expression B, (c, +@,/3,7,) similarly to (3.1). It allows to write the

vector of axis of the first hinge rotation in the frame Oxxy,z,, e, =B; (0,1, O)T, vector

e, is constant in the frame O,z .

;1 TI1

Fig.3.1. Particular satellite configuration



16

vation drive module Solar array yoke

Rotation angle: ¢,

Azimuth drive module

- 2
3 N
2 /
/
ecraft
nting plane

Fig.3.2. Frames of the Bus and SA Fig.3.3. Frames of the SA and yoke

As the SA has two degrees of freedom, one of the hinges in model (2.10)
should be frozen. Let it be the second hinge and the frame P&n,g, fixed to it

coincides with B&n,6, the hinge rotation angle ¢,, its rotation velocity ¢,, applied
control torque M, are zero (Fig.3.2-3.3). Transition matrix B, is a unit one. The
matrix of transition from the frame P,&,7,¢, (and, therefore, from the frame B&n4)
to B& s, is determined by rotation about the third hinge axis. Assume that the first
hinge ensures rotation about the second axis and the third one ensures rotation about
the first axis. Then the transition matrix is determined by expression 53(0,0,(03). In
this case for the vector of the third hinge rotation direction we get
e,=B}(10,0)".

Transition matrix D between the frame linked with the third part of the
system and the one fixed to the SA is determined from the array design and hinges

and is a function of three constant angles. As it is more convenient to prescribe the

orientation of the hinge in the frame linked with SA and not vice versa,
D=D"(a,,f,.7,). Matrix A, is determined from relation (2.9). In frame O,X,Y,z,

the tensor of inertia of the array is specified
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5549 O 0
l,=| 0 1757 0 |kgm’
0 0 7.304

Vector of the point of the hinge fastening into the SA a, can be written in the
frame P&, as a, =(0,1.175,0) m. It prescribes the method of choice of the frame
R& a6, and the vector of fastening in the frame O,X,y,z, a, =Da,.

The connecting links are short so that b, =b, =0.

Thereby, all the constant vectors appearing in (2.10), (2.12) are determined.

These are e,, a, and b, as well as the transition matrices expressed either by constant

angles, or by the motion parameters (the angles of the satellite orientation and the
hinges rotation, the orbit position in the inertial space). The satellite bus and array

masses entering into (2.12) equal to m,, =249 kg and m,,=17.52 kg respectively.
Angular velocity of the array rotation velocity is determined by expression

0, =0, +e@ +em,. (3.3)

Its derivative

@, =0, +e,( +e + o, xed +(0, +ed ) xed,. (3.4)
Introduce variables y; as the hinges rotation velocities ¢ and write (3.3) and

(3.4) in the frame O,X,Y,Z,,

®, =DB,B, ((01 +ey, +B] e3w3) (3.5)

®, =DB,B, (&, +ey; +Bey, + o, xey; + (o +ey; ) xBley, ). (3.6)
Introduce denotations

W, =W, (¥1,15, @) =0, +ey; +B] (@ )es, (3.7)

W, =, +ey, + Bleys, + o, xey, +(o, +ey, ) xBley;. (3.8)

Taking into account the recorded vectors, transition matrix and expressions
for the second body angular velocity (3.5) and its derivative (3.6) rewrite motion

equations (2.10),
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r
I’O+,uGr—(§=O,
(@]

(1,6, + 0, x Loy, =M, ) + (I, W, +w, xJ,w, - B]BD'M, ) +

+(a, +B]B}Da, )x ACc=0,
(3.9)
[ (9w, +w, xJ,w, - B]BID"M, ) + B]B] Da, x ACcle, — M, =0,

[ (3w, +w, xJ,w, - B]BID'M, ) + B]B] Daj, xA,Cc|B]e, — M, =0,
where

c :—mr:og_mﬁ'; C'A] {i, xa, + o, x(@, xa,)+W, xBB;Daj, +w, ><|:W2 xBIBgDa'z]} ,
1 2

J,=B!B.D'I,DB,B,.
The second body angular velocity is specified by expression (3.7), its
derivative is determined by (3.8). Equations (3.9) are supplemented by kinematic

relations for the satellite (1.1) and for the hinges having the form of
@ =Y. (3.10)
Equations (3.9), (3.10) and any kinematic relations for the satellite are the full
set of equations for determination of the satellite orientation angles through necessary
parameters, its velocities @,,@,,@,, the hinges rotation angles ¢,¢, and their
rotation velocities y,y;.
To integrate numerically we need to solve equation (3.9) for higher order
derivatives (@, y,, ;). Introduce notations
f,=0,xLo, M,
f,=w, xJ,w, —B/BD'M, + J.f,
fy =, xey, +(o, +ey, ) xBley,,
f, =f,xa, + o, x(0, xa,)+w, x(W, xa,),

o MoMy,
My, + Mo,
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Here f, f,, f,, f, are functions not containing higher order derivatives,

a, =B/ B]Da) is vector a, written in the bus-fixed reference frame. Substituting the

introduces notations in equations (3.9), we get

(1,6, +f1)+(J2((b1 +ey +BIe31/73)+f2)+(a1 +a,)xA,Cc=0,

[(J2 ((b1 +ey, + BIesl/'/3) +f, ) +a,xA,Ccle,— M, =0, (3.11)
[(Jz (Col +ey, + BIe3l,/'/3) +f, ) +a,xA,Cc|Ble;— M, =0,

where

c=mC'A] {c‘ol xa, + 0, x (@, xa,)+ W, xa, + W, X[ W, xaz]} : (3.12)

and expression (3.8) takes the form
W, =@, +eys, + Bl eyr, +1,.
Then (3.12) subject to notation f, is written in the form
c=mC'A] ((5)1 x(a, +u2)+(e11/'/1 +BIe3l/'/3)><a2 +f4). (3.13)
Write (3.11) subject to (3.13)
(1,0, +f1)+(J2((5)1 +ey, +BIe3z/'/3)+f2)+
+m(a, +0L2)><((5)1 x(a, +G2)+<ell/'/l +BIe31//3)><a2 +f4) =0,

[(‘]2 (d)l ey, + BIe3l/73) + fz)

+Mma, x ((3)1 ><(al +(lz)+(ell/71 +BIe3z/'/3)><a2 +1, )Je1 -M,, =0,

[(‘]2 ((’bl +ey, +BIe3l/73) +f2)
+ma, X ((bl x(a +a2)+(elt/‘/1 +BIe3W3)>< 0, +f4)JBIe3 ~M,;=0.

Introduce the triple vector product matrix as follows:
ax(yxb)=K(a,b)y

where
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ab,+ab,  -ah  -ab
K@b)=| -ab  ab+ab,  -ab
-ap, —ah,  ab+ab,

In this case equations (3.11) will be rewritten in the form
(1,+3,+mK(a, +a,,a, +a,))d, +(J, +mK(a, +a,,0,) ey, +
+(J, +mK(a, +a,,a,))Bl ey, =—f, —f, —m(a, + a, ) x{,,

((.J2 + MK (a,,a, +a,)) el,ci)l) + ((el,Jzel) +mle, xaz\z)l/'/l
+((el,JZBIe3)+ m(e,,Ble;)a; - m(elvaz)(BIe3’a2>)W3 =M, — (£, +ma, xf,,e,),
((J2 +mK(a,,, +0,))" BIe3,d)1) + ((Jzel,BIe3) + m(el,BIes)af - m(el,az)(BIeS,uz))wl

+((BIe3,JZBIe3)+m‘BIe3xaz‘z)%=Mu3—(f2+ma2xf4,BIe3),
where (a,b)=ab +a,b, +aj, denotes scalar product of two vectors. Take into

account that the hinges are mutually orthogonal
(I,+J,+mK(a, +a,,a, +a,) o, +(J, +mK(a, +a,,a,) ey, +
+(J, +mK(a, +a,,a,)) Bl ey, =—f, —f, —m(a, +a, ) x{,,
((J2 +mK(a,,, +0,))' el,(bl)+((el,J2el) +mle, xaz\z)l/'/l 1)
3.14

+((e1,JZBIe3)— m(el,(lz)(BIeg,(lz))l/'/3 =M, —(f, + ma, xf,¢,),

((J2 +mK(a,,,a, +0z2))T BIeS,(bl) +((J2e1,BIe3)— m(el,u2)<BIe3,a2))l/'/l
+((BIe3,JZBIe3)+ m[BJe, xazf)% =M,; —(f, + ma, xf,,Be; ).

Solving equations (3.14) for higher order derivatives, obtain

o, —f,—f,—m(a, +0,)xT,
v, =S My —(f,+ma,xf,.e) | (3.15)
Vs My —(F, + My, xf,,Be; )

Here matrix S has the form
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I, +J,+mK(a, +a,,a +a,) (J,+mK(a, +a,,a,))e, (J,+mK(a, +a,,0,))Ble,
S=| e (J,+mK(a,,a,+a,)) (e, 3,e,)+mle, xa, | (el,JzBIes)—m(el,az)(BIes,az)
e;B,(J, +mK(a,,a, +a,)) (Jzel,BIes)—m(el,az)(BIe3,u2) (BIe3,J2BIe3)+m‘BIe3xu2

Equations (3.15) supplemented by kinematic relations form a closed set of the

‘2

equations of motion about the center of mass.
Right terms (3.15) depend on the system parameters, the satellite orientation,

its angular velocity ,, angles and angular velocity in the hinges (¢, @, v, ;).
total torque of the external forces affecting the satellite and array M, and M,, as
well as torques in the hinges axes M, and M,.

These equations, however, may be slightly simplified.

4. Equations adaptation for numerical methods

It can be seen from equations (3.15) that numerical procedure demands
inverse of 5x5 matrix. This section considers simplification of the equations (3.15).
Introduce notations
J=1,+J,+mK(a, +a,,a +a,) (4.1)
c,=—f, —f,—m(a, +a,)xf,, (4.2)
c, =M, —(f, + ma, xf, e,),
¢; =My, —(f, +ma, xf,,Ble;),
N=J,+mK(, +a,,a,). (4.3)
Note that
(3, +mK(a,,a, +(12))T =J] +mK' (0,2, +a,) =J, + mMK(a, +a,,a,) =N.
In this case equations (3.15) take a form
Jo), +Ley, + LBl ey, =c¢,,
(Nel,c'ol)+((e1,J2e1)+ mle, xuz\z)wl +

(4.4)
+(<61,JZBIes) - m(el,az)(BIe3,u2))y'/3 =c,,
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(NBJes, ;) +((9,€,,Ble, ) ~m(e, @, )(Bleg, 0 )y +
+((BIe3,JZBIe3)+ m[Ble, xaz‘z)% =c,.

From the first equation of (4.4)
@, =J7(c, —~ Ney, —NBJeyy, ).
Substitute it to the second and third equations of (4.4)
((e2(32 = N"IN)e,)+ me, xazf)wl n

+((e1,(J2 - NTJlN)BIeS)— m(el,ozz)(BIeg,mz))l/'/3 =c, —(Le, d ),
((el,(J2 ~N"J7N)BJe, ) - m(el,az)(BIe3,a2)2)l/'/l +

+((|3}e3,(J2 ~N'JN)Ble, )+ m[Ble, xazf)% =c,~(LBJe, J ¢,
Denote

(el,(\]2 - NTJ‘lN)el)+ me, x| (el,(J2 —NTJ‘lN)BIeg)— m(el,az)(BIeS,az)
(6(3,-N'I"N)Ble,|-mle,a,)(Ble, ;)  (Ble(J,-N'T*N)Ble, |+ mBle xa,| )

In this case

(le _g1t € _(el’ NTJ_lCl)
=S (4.6)
Vs ¢, —(Ble;, NI,

and

@, =J" [cl ~(Ne, NBIe3)Sf[ (eI )B (4.7)

¢, —(Ble,, NI,
where (Ne1 NBIe3) is 3x2 matrix.

So (4.6) and (4.7) is the solution of (4.4). It is the same as (3.15). However, in
this case we should find the inverse of the 3x3 matrix and 2x2 instead of inversing
the 5x5 matrix in the (3.15). This is considered as a huge benefit in terms of

computational complexity.
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The equations (4.6) and (4.7) are complemented by the kinematic equations

O =y,
@, =Y,, (4.8)

1
Seal'y)
Clzq

-0, 0 o o

Q= :
w, -0 0 o
o —w, —a; 0]
The set of (4.6)-(4.8) is the full set of equations that describes the behavior of
the system.

Conclusion

Variables describing the satellite with a rigid solar array are chosen. The
reference frames are introduced and the mathematical model for the satellite with
2DOF solar panel is developed. Equations are resolved with respect to the higher-

order derivatives. The equation adaptation for numerical methods is performed.
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