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JleB laBugosu4 IlycThlJIbHUKOB
YPOBHHI HEPTUH KBAHTOBOM MEPUOUIECKO CUCTeMBI M KBAaHTOBBII Xao0c

OObsicHsieTcsd TOHATHE YPOBHEH dHEprunM KBAHTOBON CUCTEMBbI, 3aBUCSIIICH
OT BpeMEHU IIePUOJMYECKN U MMEIOIIei JIMCKPETHLIN WJIN HEIPEpPbIBHLIN CIEK-
TPhI. BBoaUTCS ecTecTBEHHBIM 00pa30M MOHATHE CMEXKHBIX 1 9(DPEKTUBHBIX YPOB-
Hell SHePTUH, a TaKyKe TOHATHE PACCTOTHUI MeK Ty ypoBHAME. lIpencraBiennbie
Pe3YJILTATBI UCIOJIL3YIOTCA JIId 00bICHEHUA THIOTE3bl KBAHTOBOI'O Xaoca, JJIsd
HEKOTOPOTO KJIacca CUCTEM, BKJIIOUAIOMINX B BUJIE YaCTHOTO CJIydas MOJETb «BHO-
PUPYIOIIEro BOJIIKAY.

KirroueBbie cjIoBa: KBaHTOBBII Xa0C, MOJIE/Ib «BUOPUPYIOIIEIO BOJTIKA>

L. D. Pustyl’nikov
Energy Levels of Quantum Periodic Systems and Quantum Chaos

The concept of energy levels of quantum systems periodically depending
on time and having a discrete or a continuous spectrum is justified. A natural
concept of adjacent and effective energy levels as well as distances between
the levels are introduced. The results of the theory presented are applied to
justification of the quantum chaos conjecture for a class of systems including,
as a special case, the “kicked rotator” model.
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1. The concepts of energy levels of quantum systems
and distances between them

We consider a quantum system given by Hamiltonian operator H=H (1)
that depends periodically on time ¢, i.e., H(t) = H(t + T), where T' > 0 is the
operator’s period. The Schrodinger equation for this operator is given by
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where W = U(q,t) is the wave function, that is a function of ¢ for fixed ¢ that
belongs to Hilbert space L2 Let ¥(q,t) be the solution of equation (1) for ¢ > ¢,
satisfying the initial condition 1 (q) = ¥(q,ty) € L?. We define the (Floquet)
monodromy operator U = Uy, : W(q,ty) — VY(q,to+ T). It is well-known that U
is a unitary operator and for distinct values of ¢y the corresponding operators Uy,
are unitarily equivalent to each other [1]. Hence, its spectrum is a set of complex
numbers with their absolute value 1. First, we assume that the spectrum of
the operator U is discrete and is represented by the sequence of eigenvalues
A\, such that )\, = €® where n € Z is an integer and o, is a real number.
Let 1), (q) be the eigenfunction corresponding to the eigenvalue ), such that
Uy, (@) = Ay, (q). Then solution W, (g,n) of equation (1) with the initial
condition W, (q,ty) = 1, (q) satisfies

U, (¢, to+T) = e_m”\lfan(q, to) -

Such a solution ¥, (q,t) is called quasistationary, and the corresponding
value E,, = hgi" introduced in paper [13] is called quasienergy. In this article we
call the value «, the energy level.

We assume now that the spectrum of operator U is continuous (i.e., there
are no eigenvalues) and operator U has the following structure: Hilbert space

L? has a basis ¥,(q)(n € Z) satisfying, for each n € Z,

an(Q) = eiwn(Q)wn(Q) .

In (2) pn(q) is a real function such that for any pair (n’,n") of integers ,

the function A, (q) dof tn (q) — pnr(q) takes only finitely or countably many

different values. Functions A, ,»(q) play role of distances between the energy
levels p,(q) which exhibited in quantum mechanics over passing from one energy
level to another. Thus, despite the fact that the set of the energy levels u,(q)
is not discrete, the set of all possible values of the distances between them is
discrete; this set treats the physical meaning of 1, (q).

We consider a special important case for which operator U = U, - U; is
the composition of two unitary operators U; and U, such that operator U is




represented by an infinite diagonal matrix with the diagonal entries \,, = e =",
and U, is the operator of multiplication by the function A(¢) = e % i.e., for

any n € Z the following equalities hold:
Utbn(q) = X)W, (q) , AP (q) = e7iHOFan)

In that latter case, the functions pu,(q) = u(q) + a, are the energy levels, and
the distances A,y ,,»(q) do not depend on the basis 1,(¢). By (3), this statement

is equivalent to the statement that the spectrum of operator U, = ﬁ(q)U is
A (q)

discrete and is invariant. Consequently, the eigenvalue 00 of operator U, and

! o)
the distances A, ,(q) =i <log /E\((T)((qq)) — log /\,\(T(g)> do not depend on the basis
Un(q)-

2. Adjacent, effective, and noneffective energy levels
of quantum systems

Let n" and n” be two distinct integers. The energy levels p,(q) and g, (q)
are called adjacent if for all ¢ does not exist on integer n, n # n’,n”, such that
n(q) belongs to the closed interval with the ends p,/(q) and g, (q):

min (¢ (q), i (q)) < pinlq) < max(pw(q), pnr(q)) -

We set the Hilbert space L? to be the space of 2r-periodic functions and assume
that the energy levels are defined with respect to its orthogonal basis v,(q) =
e(n € Z). We represent the energy level u,(q) as follows:

pn(q) = 2mm,(q) + 27B8u(q)

where m,,(q) is an integer and function f,(q) satisfies 0 < 3,(¢q) < 1. It follows
fin ()

from (5) that m,(q) = [7} is the integer part of the number ”g—;q) and
Bulq) = {“g—f? =& ’215:1) — [“ g;q)} is its fractional part. From equalities (2) and

(5) it follows that the first term 27m,(q) in (5) does not affect to the wave
functions v, (q). Therefore, we call function 27m,(q) the noneffective energy
level. On the contrast, we call the second term, 27(,(q), the effective energy
level. For two energy levels, u,/(q) and p,(q) with pu,(q) < pn(q), we define
the distance p(p,(q), n(q)) between them by

P (@), (@) = Bur(q) — Bur(q) -



3. Justification of quantum chaos conjecture for some

class of quantum systems

Quantum chaos theory studies the distribution of the distances between
the adjacent energy levels of a quantum system. Ther are two main conjectures
based on numerical simulations concenring distribution laws of these distances
(12,[6],[7],[9]). The first conjecture concerns quantum systems that are quantum
analogues of classical integrable systems. The conjecture states that the distribu-
tion law of distances for such a system is close to the Poisson distribution with
the density exp(—o) and coincides with it asymptotically as ¢ — 0. The second
conjecture states that for quantum analogue of a classical strong nonintegrable
system, the distribution law of distances is close to the distribution with the
density const o as ¢ — 0. In the present article, the quantum chaos conjecture
is justified for a special class of quantum system. This class includes, as a special
case, a “kicked rotator” model ([1], [3], [4], [5], [8], [9])-

To describe the quantum model, first we introduce the classical model of
the system in question. We consider a one-dimensional nonlinear oscillator given
by Hamiltonian function H = H(q, I,t) = Hy(I) + Hi(q,t), where I,q are the
"action-angle’ variables, ¢ is an independent variable, and function Hi(q,t) has
period 27 in ¢, period T" > 0 in ¢, and is represented in the form

Hy(q.t)=F(q) Y _ 6(t—kT) .

k=—o0

Here F(q) is a smooth 27-periodic function, § = 6(¢) is the Dirac delta-function,
and the summation is taken over all integers k. The first rigorous results on
behavior of the system’s solutions with the Hamiltonian function H = Hy([) +
Hi(q,t), where function Hy(I) is that of a general form, have been established in
8]. We assume here that Hy(I) = ZEOO bsI® is an entire function (in particular,
a polynomial) with coefficients by = %, s = 0,1, ..., where R is Planck’s constant
and as are real numbers. In a special case, when a; = 0 for s # 2, F'(q) = ccosq,
c is a constant, this system is “kicked rotator”.

Getting onto the quantum model, we introduce the Hilbert space L? of
complex 2m-periodic in ¢ functions as the space of states of the quantum system
and also introduce impulse operator I= . The wave function ¥ = ¥(q,t) €

L? is satisfied the Schrodinger equation (1 ), Where H=H(t)= Hy+H(t), Hy=
S22, bsI® and operator H,(t ) 1s the limit, as € — 0 (e > 0), of the operators of

multiplication by function H obtained from function H; in (7) in which the
delta-function is replaced by a smooth function d, concentrated on the interval
[0, €] with the integral equals 1.

Let W, (q,nT) denote the solution of equation (1) immediately after the



instant ¢t = nT (n € Z). We define the monodromy operator U : ¥ (q,nT) —
U, (¢q,(n + 1)T) to be the limit as ¢ — 0, of the monodromy operators U()
corresponding to equaiton (1) with operator H(t) on the right hand side replaced
by operator Hy+H 1(6), where H 1(6) is the operator of multiplication by the function

H'. Tt is proven in [1], [5] and [12] that this limit exists and has the following

form: U—exp( Ig)exp( Tg°>

Moreover, if 1(q) = exp(ing), then U, (q) = A\,(q)¥n, where

An(q) = exp(—ipn(q)), pn(q) = ( +Tzas )

Equalities (8) show that the functions u,(q) are the energy levels in the
sense of the definition given in Section 1. In particular, if F'(q) = const, then
the spectrum of U is discrete, ¥, (q) are its eigenfunctions, and the \,(q)’s are
its corresponding eigenvalues.

Assume that the real function G(z) = 5 > asz® of the real variable
satisfies the following condition:

(i) all zeros of G(z) (if they exist) lie in a bounded region of the real line;

(ii) limy e |[G(n 4+ 1) — G(n)| = 00

(iii) for any real numbers o1 and o9 satisfying 0 < 0, < 1, v = 1,2, the number
Dy (o1, 09) of two-dimensional vectors &, = ({G(n)}{G(n + 1)}) in the
sequence Ky, ..., Ky that belong to rectangle IT = {y = (y1,y2) : 0 < 1y <

) i D
01,0 < yp < 09} satiesfies limy w = 0,09.

Condition (iii) means that the joint distribution of two adjacent fractional
parts of function G(x) is uniform. All the three conditions hold for polynomials
G(z) = Zi:o asx® of degree ¢ > 2, for which at least one of the coefficients
as,as,...,ap is an irrational number ([10]). By (8), if the conditions (i) and
(ii) hold, then there is a number ny > 0 for which the energy levels u,(q) and
tni1(q) are adjacent whenever n > ny. The adjacent energy levels correspond to
the adjacent quantum states ,(q) and ,,1(q) with the adjacent frequences 7~

2m
and 2. Tt follows from (iii) that for 0 < o < 1 and for the number D} (o, q) of

values n, n € {1,..., N}, for which 0 < {“”*—717()} {“”( )} < o, the following

2
holds:

e D* 9 *
P*(o )d—f]\lflﬁoow:flrea(ﬂ):a—%.

Here, IT* stands for the set

I ={y=Ww,1): 0< 1 <1L,0<yp <1,0<yp —y <o}



and Area(II*) stands for the area of IT*. In view of (6) and (9), the distribution
function P*(o) of the distances between the adjacent energy levels differs from
the Poisson’s law distribution function 1 — exp(—o) with density exp(—o) by
terms of the third order of smallness in o, as ¢ — 0. Thus, the quantum chaos
conjectures holds for the class of quantum systems in question. In the special
case, when Hy(7) is a polynomial of a general form, this result has been obtained
in [11] and [12] from pure mathematical point of view.
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