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УДК 517.938

Лев Давидович Пустыльников
Уровни энергии квантовой периодической системы и квантовый хаос

Объясняется понятие уровней энергии квантовой системы, зависящей
от времени периодически и имеющей дискретный или непрерывный спек-
тры. Вводится естественным образом понятие смежных и эффективных уров-
ней энергии, а также понятие расстояний между уровнями. Представленные
результаты используются для объяснения гипотезы квантового хаоса для
некоторого класса систем, включающих в виде частного случая модель «виб-
рирующего волчка».
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Energy Levels of Quantum Periodic Systems and Quantum Chaos

The concept of energy levels of quantum systems periodically depending
on time and having a discrete or a continuous spectrum is justified. A natural
concept of adjacent and effective energy levels as well as distances between
the levels are introduced. The results of the theory presented are applied to
justification of the quantum chaos conjecture for a class of systems including,
as a special case, the “kicked rotator” model.
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1. The concepts of energy levels of quantum systems

and distances between them

We consider a quantum system given by Hamiltonian operator 𝐻̂ = 𝐻̂(𝑡)

that depends periodically on time 𝑡, i.e., 𝐻̂(𝑡) = 𝐻̂(𝑡+ 𝑇 ), where 𝑇 > 0 is the
operator’s period. The Schrödinger equation for this operator is given by

𝑖~
𝜕Ψ

𝜕𝑡
= 𝐻̂Ψ ,

where Ψ = Ψ(𝑞, 𝑡) is the wave function, that is a function of 𝑞 for fixed 𝑡 that
belongs to Hilbert space 𝐿2. Let Ψ(𝑞, 𝑡) be the solution of equation (1) for 𝑡 ≥ 𝑡0
satisfying the initial condition 𝜓(𝑞) = Ψ(𝑞, 𝑡0) ∈ 𝐿2. We define the (Floquet)
monodromy operator 𝑈 = 𝑈𝑡0 : Ψ(𝑞, 𝑡0) → Ψ(𝑞, 𝑡0 + 𝑇 ). It is well-known that 𝑈
is a unitary operator and for distinct values of 𝑡0 the corresponding operators 𝑈𝑡0

are unitarily equivalent to each other [1]. Hence, its spectrum is a set of complex
numbers with their absolute value 1. First, we assume that the spectrum of
the operator 𝑈 is discrete and is represented by the sequence of eigenvalues
𝜆𝑛 such that 𝜆𝑛 = 𝑒𝑖𝛼𝑛 where 𝑛 ∈ Z is an integer and 𝛼𝑛 is a real number.
Let 𝜓𝜆𝑛

(𝑞) be the eigenfunction corresponding to the eigenvalue 𝜆𝑛 such that
𝑈𝜓𝜆𝑛

(𝑞) = 𝜆𝑛𝜓𝜆𝑛
(𝑞). Then solution Ψ𝛼𝑛

(𝑞, 𝑛) of equation (1) with the initial
condition Ψ𝛼𝑛

(𝑞, 𝑡0) = 𝜓𝜆𝑛
(𝑞) satisfies

Ψ𝛼𝑛
(𝑞, 𝑡0 + 𝑇 ) = 𝑒−𝑖𝛼𝑛Ψ𝛼𝑛

(𝑞, 𝑡0) .

Such a solution Ψ𝛼𝑛
(𝑞, 𝑡) is called quasistationary, and the corresponding

value 𝐸𝑛 = ~𝛼𝑛

𝑇 introduced in paper [13] is called quasienergy. In this article we
call the value 𝛼𝑛 the energy level.

We assume now that the spectrum of operator 𝑈 is continuous (i.e., there
are no eigenvalues) and operator 𝑈 has the following structure: Hilbert space
𝐿2 has a basis 𝜓𝑛(𝑞)(𝑛 ∈ Z) satisfying, for each 𝑛 ∈ Z,

𝑈𝜓𝑛(𝑞) = 𝑒−𝑖𝜇𝑛(𝑞)𝜓𝑛(𝑞) .

In (2) 𝜇𝑛(𝑞) is a real function such that for any pair (𝑛′, 𝑛′′) of integers ,

the function ∆𝑛′,𝑛′′(𝑞)
def
= 𝜇𝑛′(𝑞) − 𝜇𝑛′′(𝑞) takes only finitely or countably many

different values. Functions ∆𝑛′,𝑛′′(𝑞) play role of distances between the energy
levels 𝜇𝑛(𝑞) which exhibited in quantum mechanics over passing from one energy
level to another. Thus, despite the fact that the set of the energy levels 𝜇𝑛(𝑞)
is not discrete, the set of all possible values of the distances between them is
discrete; this set treats the physical meaning of 𝜇𝑛(𝑞).

We consider a special important case for which operator 𝑈 = 𝑈2 · 𝑈1 is
the composition of two unitary operators 𝑈1 and 𝑈2 such that operator 𝑈1 is
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represented by an infinite diagonal matrix with the diagonal entries 𝜆𝑛 = 𝑒−𝑖𝛼𝑛,
and 𝑈2 is the operator of multiplication by the function 𝜆(𝑞) = 𝑒−𝜇(𝑞), i.e., for
any 𝑛 ∈ Z the following equalities hold:

𝑈𝜓𝑛(𝑞) = 𝜆(𝑛)(𝑞)Ψ𝑛(𝑞) , 𝜆(𝑛)(𝑞) = 𝑒−𝑖(𝜇(𝑞)+𝛼𝑛) .

In that latter case, the functions 𝜇𝑛(𝑞) = 𝜇(𝑞) + 𝛼𝑛 are the energy levels, and
the distances ∆𝑛′,𝑛′′(𝑞) do not depend on the basis 𝜓𝑛(𝑞). By (3), this statement
is equivalent to the statement that the spectrum of operator 𝑈* = 1

𝜆(0)(𝑞)
𝑈 is

discrete and is invariant. Consequently, the eigenvalue 𝜆(𝑛)(𝑞)
𝜆(0)(𝑞)

of operator 𝑈* and

the distances ∆𝑛′,𝑛′′(𝑞) = 𝑖

(︂
log 𝜆(𝑛′)(𝑞)

𝜆(0)(𝑞)
− log 𝜆(𝑛′′)(𝑞)

𝜆(0)(𝑞)

)︂
do not depend on the basis

𝜓𝑛(𝑞).

2. Adjacent, effective, and noneffective energy levels

of quantum systems
Let 𝑛′ and 𝑛′′ be two distinct integers. The energy levels 𝜇𝑛′(𝑞) and 𝜇𝑛′′(𝑞)

are called adjacent if for all 𝑞 does not exist on integer 𝑛, 𝑛 ̸= 𝑛′, 𝑛′′, such that
𝜇𝑛(𝑞) belongs to the closed interval with the ends 𝜇𝑛′(𝑞) and 𝜇𝑛′′(𝑞):

min(𝜇𝑛′(𝑞), 𝜇𝑛′′(𝑞)) ≤ 𝜇𝑛(𝑞) ≤ max(𝜇𝑛′(𝑞), 𝜇𝑛′′(𝑞)) .

We set the Hilbert space 𝐿2 to be the space of 2𝜋-periodic functions and assume
that the energy levels are defined with respect to its orthogonal basis 𝜓𝑛(𝑞) =
𝑒𝑖𝑛𝑞(𝑛 ∈ Z). We represent the energy level 𝜇𝑛(𝑞) as follows:

𝜇𝑛(𝑞) = 2𝜋𝑚𝑛(𝑞) + 2𝜋𝛽𝑛(𝑞) ,

where 𝑚𝑛(𝑞) is an integer and function 𝛽𝑛(𝑞) satisfies 0 ≤ 𝛽𝑛(𝑞) < 1. It follows

from (5) that 𝑚𝑛(𝑞) =
[︁
𝜇𝑛(𝑞)
2𝜋

]︁
is the integer part of the number 𝜇𝑛(𝑞)

2𝜋 and

𝛽𝑛(𝑞) =
{︁

𝜇𝑛(𝑞)
2𝜋

}︁
= 𝜇𝑛(𝑞)

2𝜋 −
[︁
𝜇𝑛(𝑞)
2𝜋

]︁
is its fractional part. From equalities (2) and

(5) it follows that the first term 2𝜋𝑚𝑛(𝑞) in (5) does not affect to the wave
functions 𝜓𝑛(𝑞). Therefore, we call function 2𝜋𝑚𝑛(𝑞) the noneffective energy
level. On the contrast, we call the second term, 2𝜋𝛽𝑛(𝑞), the effective energy
level. For two energy levels, 𝜇𝑛′(𝑞) and 𝜇𝑛′′(𝑞) with 𝜇𝑛′(𝑞) ≤ 𝜇𝑛′′(𝑞), we define
the distance 𝜌(𝜇𝑛′(𝑞), 𝜇𝑛′′(𝑞)) between them by

𝜌(𝜇𝑛′(𝑞), 𝜇𝑛′′(𝑞)) = 𝛽𝑛′′(𝑞) − 𝛽𝑛′(𝑞) .
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3. Justification of quantum chaos conjecture for some

class of quantum systems
Quantum chaos theory studies the distribution of the distances between

the adjacent energy levels of a quantum system. Ther are two main conjectures
based on numerical simulations concenring distribution laws of these distances
([2],[6],[7],[9]). The first conjecture concerns quantum systems that are quantum
analogues of classical integrable systems. The conjecture states that the distribu-
tion law of distances for such a system is close to the Poisson distribution with
the density exp(−𝜎) and coincides with it asymptotically as 𝜎 → 0. The second
conjecture states that for quantum analogue of a classical strong nonintegrable
system, the distribution law of distances is close to the distribution with the
density 𝑐𝑜𝑛𝑠𝑡 𝜎 as 𝜎 → 0. In the present article, the quantum chaos conjecture
is justified for a special class of quantum system. This class includes, as a special
case, a “kicked rotator” model ([1], [3], [4], [5], [8], [9]).

To describe the quantum model, first we introduce the classical model of
the system in question. We consider a one-dimensional nonlinear oscillator given
by Hamiltonian function 𝐻 = 𝐻(𝑞, 𝐼, 𝑡) = 𝐻0(𝐼) + 𝐻1(𝑞, 𝑡), where 𝐼,𝑞 are the
’action-angle’ variables, 𝑡 is an independent variable, and function 𝐻1(𝑞, 𝑡) has
period 2𝜋 in 𝑞, period 𝑇 > 0 in 𝑡, and is represented in the form

𝐻1(𝑞, 𝑡) = 𝐹 (𝑞)
∞∑︁

𝑘=−∞

𝛿(𝑡− 𝑘𝑇 ) .

Here 𝐹 (𝑞) is a smooth 2𝜋-periodic function, 𝛿 = 𝛿(𝑡) is the Dirac delta-function,
and the summation is taken over all integers 𝑘. The first rigorous results on
behavior of the system’s solutions with the Hamiltonian function 𝐻 = 𝐻0(𝐼) +
𝐻1(𝑞, 𝑡), where function 𝐻0(𝐼) is that of a general form, have been established in
[8]. We assume here that 𝐻0(𝐼) =

∑︀∞
𝑠=0 𝑏𝑠𝐼

𝑠 is an entire function (in particular,
a polynomial) with coefficients 𝑏𝑠 = 𝑎𝑠

~ , 𝑠 = 0,1, . . ., where ~ is Planck’s constant
and 𝑎𝑠 are real numbers. In a special case, when 𝑎𝑠 = 0 for 𝑠 ̸= 2, 𝐹 (𝑞) = 𝑐 cos 𝑞,
𝑐 is a constant, this system is “kicked rotator”.

Getting onto the quantum model, we introduce the Hilbert space 𝐿2 of
complex 2𝜋-periodic in 𝑞 functions as the space of states of the quantum system
and also introduce impulse operator 𝐼 = ~

𝑖
𝜕
𝜕𝑞 . The wave function Ψ = Ψ(𝑞, 𝑡) ∈

𝐿2 is satisfied the Schrödinger equation (1), where 𝐻̂ = 𝐻̂(𝑡) = 𝐻̂0+𝐻̂1(𝑡), 𝐻̂0 =∑︀∞
𝑠=0 𝑏𝑠𝐼

𝑠 and operator 𝐻̂1(𝑡) is the limit, as 𝜖→ 0 (𝜖 > 0), of the operators of

multiplication by function 𝐻
(𝜖)
1 obtained from function 𝐻1 in (7) in which the

𝑑𝑒𝑙𝑡𝑎-function is replaced by a smooth function 𝛿𝜖 concentrated on the interval
[0, 𝜖] with the integral equals 1.

Let Ψ+(𝑞, 𝑛𝑇 ) denote the solution of equation (1) immediately after the
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instant 𝑡 = 𝑛𝑇 (𝑛 ∈ Z). We define the monodromy operator 𝑈 : Ψ+(𝑞, 𝑛𝑇 ) →
Ψ+(𝑞, (𝑛 + 1)𝑇 ) to be the limit as 𝜖 → 0, of the monodromy operators 𝑈 (𝜖)

corresponding to equaiton (1) with operator 𝐻̂(𝑡) on the right hand side replaced

by operator 𝐻̂0+𝐻̂
(𝜖)
1 , where 𝐻̂

(𝜖)
1 is the operator of multiplication by the function

𝐻
(𝜖)
1 . It is proven in [1], [5] and [12] that this limit exists and has the following

form: 𝑈 = exp
(︀
−𝑖𝐹~

)︀
exp

(︁
−𝑖𝑇𝐻̂0

~

)︁
.

Moreover, if 𝜓(𝑞) = exp(𝑖𝑛𝑞), then 𝑈𝜓𝑛(𝑞) = 𝜆𝑛(𝑞)𝜓𝑛, where

𝜆𝑛(𝑞) = exp(−𝑖𝜇𝑛(𝑞)), 𝜇𝑛(𝑞) =

(︃
𝐹 (𝑞) + 𝑇

∞∑︁
𝑠=0

𝑎𝑠𝑛
𝑠

)︃
/~ .

Equalities (8) show that the functions 𝜇𝑛(𝑞) are the energy levels in the
sense of the definition given in Section 1. In particular, if 𝐹 (𝑞) = 𝑐𝑜𝑛𝑠𝑡, then
the spectrum of 𝑈 is discrete, 𝜓𝑛(𝑞) are its eigenfunctions, and the 𝜆𝑛(𝑞)’s are
its corresponding eigenvalues.

Assume that the real function 𝐺(𝑥) = 𝑇
2𝜋~
∑︀∞

𝑠=0 𝑎𝑠𝑥
𝑠 of the real variable 𝑥

satisfies the following condition:

(i) all zeros of 𝐺(𝑥) (if they exist) lie in a bounded region of the real line;
(ii) lim𝑛→∞ |𝐺(𝑛+ 1) −𝐺(𝑛)| = ∞;
(iii) for any real numbers 𝜎1 and 𝜎2 satisfying 0 < 𝜎𝜈 ≤ 1, 𝜈 = 1,2, the number

𝐷𝑁(𝜎1, 𝜎2) of two-dimensional vectors 𝜅⃗𝑛 = ({𝐺(𝑛)}{𝐺(𝑛 + 1)}) in the
sequence 𝜅⃗1, . . . , 𝜅⃗𝑁 that belong to rectangle Π = {𝑦 = (𝑦1, 𝑦2) : 0 ≤ 𝑦1 <

𝜎1, 0 ≤ 𝑦2 < 𝜎2} satiesfies lim𝑁→∞
𝐷𝑁 (𝜎1,𝜎2)

𝑁 = 𝜎1𝜎2.

Condition (iii) means that the joint distribution of two adjacent fractional
parts of function 𝐺(𝑥) is uniform. All the three conditions hold for polynomials

𝐺(𝑥) =
∑︀ℓ

𝑠=0 𝑎𝑠𝑥
𝑠 of degree ℓ ≥ 2, for which at least one of the coefficients

𝑎2, 𝑎3, . . . , 𝑎ℓ is an irrational number ([10]). By (8), if the conditions (i) and
(ii) hold, then there is a number 𝑛0 ≥ 0 for which the energy levels 𝜇𝑛(𝑞) and
𝜇𝑛+1(𝑞) are adjacent whenever 𝑛 > 𝑛0. The adjacent energy levels correspond to
the adjacent quantum states 𝜓𝑛(𝑞) and 𝜓𝑛+1(𝑞) with the adjacent frequences 𝑛

2𝜋

and 𝑛+1
2𝜋 . It follows from (iii) that for 0 < 𝜎 ≤ 1 and for the number 𝐷*

𝑁(𝜎, 𝑞) of

values 𝑛, 𝑛 ∈ {1, . . . , 𝑁}, for which 0 ≤
{︁

𝜇𝑛+1(𝑞)
2𝜋

}︁
−
{︁

𝜇𝑛(𝑞)
2𝜋

}︁
< 𝜎, the following

holds:

𝑃 *(𝜎)
def
= lim

𝑁→∞

𝐷*
𝑁(𝜎, 𝑞)

𝑁
= 𝐴𝑟𝑒𝑎(Π*) = 𝜎 − 𝜎2

2
.

Here, Π* stands for the set

Π* = {𝑦 = (𝑦1, 𝑦2) : 0 ≤ 𝑦1 < 1, 0 ≤ 𝑦2 < 1, 0 ≤ 𝑦2 − 𝑦1 < 𝜎}
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and 𝐴𝑟𝑒𝑎(Π*) stands for the area of Π*. In view of (6) and (9), the distribution
function 𝑃 *(𝜎) of the distances between the adjacent energy levels differs from
the Poisson’s law distribution function 1 − exp(−𝜎) with density exp(−𝜎) by
terms of the third order of smallness in 𝜎, as 𝜎 → 0. Thus, the quantum chaos
conjectures holds for the class of quantum systems in question. In the special
case, when 𝐻0(𝐼) is a polynomial of a general form, this result has been obtained
in [11] and [12] from pure mathematical point of view.
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