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Широбоков М.Г.
Методы проектирования и поддержания орбит вокруг точек

либрации

В работе дан предварительный обзор методов проектирования периодиче-
ских и квазипериодических орбит вокруг коллинеарных точек либрации, а так-
же связанных с ними инвариантных многообразий, в круговой ограниченной
задаче трех тел. Представлены также работы по поддержанию движения во-
круг точек либрации.
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The paper includes a literature review of the (quasi-)periodic orbits’ design
around collinear libration points, as well as associated invariant manifolds, in circular
restricted three-body problem. An overview of methods for station-keeping around
libration points is also presented.

Key words : libration point, periodic orbit, invariant manifold, station-keeping

This research was fully supported by the Russian Science Foundation grant
№14-11-00621.



3

1 Introduction

Libration point missions are of special interest today. The dynamics around these
equilibrium points provide families of periodic orbits which are convenient for placing
spacecraft and are useful for astrophysics missions, solar observation, communication
links, etc. There are a number of future-promising projects proposed by leading
space agencies; some of them are Deep Space Climate Observatory (NASA), LISA
Pathfinder (ESA/NASA), Spektr-RG (Roscosmos/ESA). The majority of them
exploit the L1/L2 libration points of the Sun-Earth system, though after the recent
success of the ARTEMIS missions, the collinear libration points of the Earth-Moon
system have received a growing interest.

Taking into account the importance of the libration points’ exploitation, very
much was done to the design of the associated periodic orbits and invariant manifolds.
In this work, an attempt was made to give a preliminary overview of methods
and techniques concerning designing of these objects. For this purpose we place
in Section 2 some information relating to collinear libration points and the phase
space around them. Then we turn to the problem of finding periodic orbits and
their invariant manifolds. Here, both pure numerical and semi-analytical results are
mentioned. Finally, analytical results concerning the elliptical restricted three-body
problem are mentioned. In the future, a comprehensive literature survey containing
the description, comparison, and discussion of the methods will be prepared.

Station-keeping techniques for collinear libration point orbits are considered
in Section 3. Indeed, as the collinear libration points and the associated (quasi-
)periodical orbits inherit the unstable character in the circular restricted three-body
problem, methods of the motion maintaining near the nominal orbits are required
to be developed. This becomes essential when disturbances from bodies that are not
included in the given system are taking into account (for example, solar radiation
pressure and the Sun’s gravity in the Earth-Moon system). In this review, single
spacecraft station-keeping methods are mainly considered, though some works on
formation flying are mentioned. Investigations relating to tethered systems’ keeping
as well as approaches utilizing solar sails are not considered.

2 Three-body dynamics: libration point orbits and manifolds

2.1 Introduction to the collinear libration points

The libration points are the equilibrium points of the circular restricted three-body
problem (CR3BP). Euler and Lagrange proved the existence of five equilibrium
points: three collinear points on the axis joining the center of the two primaries,
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generally noted L1, L2 and L3, and two equilateral points noted L4 and L5.
Libration points offer many good properties. Spacecraft in the vicinity of these

points is free of atmospheric drag, space debris, and atomic oxygen. In addition,
space transportation between these points and the Earth is very convenient, making
them ideal places to establish gateway stations for further deep-space exploration.
With the many future missions planned for regions around libration points, the need
for efficient approaches for trajectory design is apparent.

According to the CR3BP model, a spacecraft of negligible mass moves under
the gravitational influence of two masses m1 and m2, referred to as the primaries,
such that m1 and m2 move in circular orbits about their center of mass C. Here, the
spacecraft is not restricted to move in the orbital plane of the primaries. To avoid
ambiguity, let m1 be greater than m2. In particular, m1 can represent the Sun while
m2 can represent the Earth.

It is convenient to write the spacecraft equations of motion in the standard for
the CR3BP non-dimensional rotating (sometimes referred to as synodic) coordinate
frame, see Fig. 1. The masses m1 and m2 are normalized so that m1 = 1 − µ and
m2 = µ, where µ = m2/(m1 + m2) stands for the mass parameter of the system.
The origin of the frame is chosen at C. If we normalize to one the angular velocity
of the rotating frame and the distance between the primaries, the last would be at
fixed positions along the x-axis at points (−µ, 0, 0) and (1 − µ, 0, 0), respectively.
Note that the value of m2 for the Sun-Earth system often additionally includes the
mass of the Moon and therefore µ = 3.0393890 × 10−6. As for the Earth-Moon
system, µ = 1.2150668× 10−2. The spacecraft equations of motion can be expressed
as follows:

ẍ− 2ẏ = −Ux,

ÿ + 2ẋ = −Uy,

z̈ = −Uz,

where
U (x, y, z) = −1

2

(
x2 + y2

)
− 1− µ

r1
− µ

r2
− 1

2
µ (1− µ) ,

is the so called effective potential ; Ux, Uy and Uz are the partial derivatives of U
with respect to the position variables. The distances between the spacecraft and the
primaries are given by equalities

r21 = (x+ µ)2 + y2 + z2,

r22 = (x− 1 + µ)2 + y2 + z2.
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Fig. 1. Rotating frame of the circular restricted three-body problem

Fig. 2. Equilibrium points of the circular restricted three-body problem

The system has five relative equilibrium points, see Fig. 2; three of them lie
at the x-axis and are referred to as collinear libration points. Usually denoted by
L1, L2, and L3, these points are proved to be unstable. Their x-coordinates for the
Sun-Earth system are respectively equal to xL1 = 0.9899871, xL2 = 1.0100740,
and xL3 = −1.0000013, and for the Earth-Moon system they are xL1 = 0.8369147,
xL2 = 1.1556825, and xL3 = −1.0050627.

Recall that the collinear points are shown to be unstable in every system.
Moreover, due to Moser’s [102] generalization of a theorem of Lyapunov in the
vicinity of the libration points, solutions of the nonlinear system have the same
qualitative behavior as the solutions of the linearized system.
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2.2 Phase space around the collinear libration points

It is known that the collinear libration points are of center × center × saddle type.
Due to the center × center part, and according to Lyapunov’s center theorem [99],
each collinear libration point gives rise to two one-parameter families of periodic
orbits, known as the planar (see Fig. 3 and Fig. 4) and the vertical Lyapunov orbits,
see Fig. 5. Note that the planar orbits lie in the (x, y)-plane while vertical orbits
are tangent to the (z, ż)-direction when crossing the plane. Along the families of
Lyapunov periodic orbits, as the energy increases, the linear stability of the orbits
change, and there appear other families of periodic orbits. The family bifurcating
from the planar Lyapunov one corresponds to the three-dimensional periodic orbits
symmetric with respect to the (x, z)-plane, the so-called halo orbits [29]. At the
bifurcation, the two families of orbits are born, known as the northern and southern
halo families, see Fig. 5. Halo orbits around the L1 point of the Sun-Earth system
were used in the ISEE-3 and SOHO missions. For the computation of periodic orbits,
one can use differential correction techniques and continuation methods, see e.g. [86].
Analytical approximations are also exist, see e.g. [86, 46].

Note that besides Lyapunov and halo families there are other families of periodic
orbits in the CR3BP. For example, so called axial orbits are bifurcating from vertical
Lyapunov orbits and connect vertical and planar Lyapunov orbits, see Fig. 6. These
families are all well-documented in the literature, but their names are sometimes
different. For example, the Halo, Axial, and Vertical orbits are known as type “A”,
“B”, and “C”, respectively, in Goudas [51] and Hénon [61]. Farquhar [29] coined the
name “Halo” for that family. The term “Axial” comes from Doedel et al. [22], as these
orbits intersect x-axis at two points. Doedel et al. [21] used the term “Y” for “Yellow”.

See reference [22] for the detailed computational results for the families of the
periodic orbits that emanate from the five libration points in the CR3BP, as well as
for various secondary bifurcating families. This vast overview covers all values of the
mass-ratio parameter, and includes many known families that have been studied in
the past.

According to works [98, 85, 125], there also exit homoclinic and heteroclinic
connections between periodic orbits around libration points. The computation of
these trajectories is described in subsection 2.4.

In addition, the four-dimensional center manifold around collinear libration
points is occupied by quasi-periodic orbits of two different families: the Lissajous
family around the vertical Lyapunov orbits [48], and the quasi-halos around the
halo orbits [49].

There are also so called stable and unstable manifolds associated with periodic
orbits around libration points. For chaotic systems such stable and unstable
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Fig. 3. Family of Earth–Moon L1 planar Lyapunov orbits
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Fig. 4. Family of Earth–Moon L2 planar Lyapunov orbits
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manifolds organize the system’s motion. This is one reason invariant solutions are
of particular interest for the design of spacecraft trajectories. The libration points
and the periodic orbits about them can have favorable properties for meeting science
objectives and communication requirements. In addition, once a spacecraft is on a
periodic orbit’s stable manifold, it asymptotically approaches the orbit with no fuel
cost. Likewise, it can depart the periodic orbit along the unstable manifold for free.
This dynamical property is beneficial for the design of low-energy transfers.

To find the directions along the manifolds at some point of a periodic orbit
x(t) = (x, y, z, ẋ, ẏ, ż), a state transition matrix Φ(t) at point x(t) may be
considered. Note that the matrix function Φ(t) satisfies the equation

Φ̇(t) = D(x(t))Φ(t), Φ(0) = I6×6,

where I6×6 is the identity 6× 6 matrix and the Jacobian matrix D(x(t)) evaluated
at x(t) is

D(x(t)) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−Uxx −Uxy −Uxz 0 2 0
−Uxy −Uyy −Uyz −2 0 0
−Uxz −Uyz −Uzz 0 0 0


x(t)

Let T be a period of x(t), then Φ(T ) is called the monodromy matrix. For the
unstable orbits in the vicinity of the libration points this matrix has six eigenvalues

λ1 > 1, λ2 = λ−11 < 1, λ3 = λ4 = 1, λ5 = λ∗6, |λ5| = |λ6| = 1,

where λ5 and λ6 are complex conjugates. Stable (and unstable) eigenspaces, Es (Eu)
are spanned by the eigenvectors whose eigenvalues less than one (modulus greater
than one). Local stable and unstable manifolds are tangent to the eigenspaces at
the fixed point and of the same dimension. Thus, for a fixed point x0 = xt at the
periodic orbit, the one-dimensional stable (unstable) manifold is approximated by
the eigenvector us (uu) associated with the eigenvalue λ2 (λ1). It means that the
corresponding eigenvector serves as the local approximation to the (non-local) stable
or unstable manifold. Now consider the phase vectors

xs = x0 + εus,

xu = x0 + εuu,

where ε is small. Integrating both forward and backward in time from xs and xu

produces stable and unstable manifolds, each consisted of a single trajectory. In
practice, if us and uu are normalized (to one) vectors, the value of ε may be chosen
equal to 10−6 [43].
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2.3 Periodic and quasi-periodic orbits

The problem of finding periodic and quasi-periodic orbits in the CR3BP has been of
great interest since the nineteen century [19, 64]. Pioneering contributions to studying
periodic orbits are due to Moulton et al. [103], Stroemgren [123], Bray and Goudas
[9], and Broucke [13]. Halo, vertical and planar orbits were studied using various
methods by Farquhar [28, 31], Hénon [61, 62, 63], Breakwell [11], Howell [70] and
others. Farquhar and Kamel [31] used the method of Linstedt-Poincaré to generate
analytical solutions in the vicinity of the Earth-Moon L2 point, whereas Breakwell
and Brown [11] focused on determining three-dimensional halo orbits in the Earth-
Moon restricted three-body problem. During the same time period, Richardson and
Cary developed a third-order approximation of quasi-periodic motion near the Sun-
Earth L1 and L2 libration points via the method of multiple time scales [114]. Still
later, Richardson [112, 113] derived the third-order expansions of collinear libration
point halo orbits in the Sun-Earth system with application to the ISEE-3 mission.
Higher order formulas for periodic and quasi-periodic formulas can be found in
Gómez et al. [46, 44]. These analytical developments can be profitably employed
to find approximate periodic orbits.

Further relevant contributions to finding periodic orbits are related to the
researches of Howell and Pernicka who in the 1980s presented a numerical shooting
approach for correcting approximate quasi-periodic orbits, though lacking control
of orbit parameters [75]. Barden and Howell in [5, 7] applied multiple shooting
method to find quasi-halos in application for formation flying. Gómez et al. [49]
used Fourier analysis and presented two algorithms for the Lindstedt-Poincaré
procedure to construct quasi-halos. Guibout and Scheeres [53, 54, 55] applied the
generation functions to search of periodic orbits. Recently Archambeau et al. [3]
computed families of vertical Lyapunov orbits and investigated their specific stability
properties. Kolemen et al. [84] presented a novel fully-numerical and fast method for
finding quasi-periodic orbits around libration points. The orbit generation problem
can be reposed as an optimal control problem: Pontani and Conway [108] use the
particle swarm optimization technique for that purpose. Martin et al. [96] generates
periodic orbits solving the optimal problem with the method of direct collocation
with non-linear programming.

2.4 Manifolds and connecting orbits

Invariant manifold theory provides a powerful tool for understanding dynamical
behavior in the CR3BP and play important role in mission design [2]. The Genesis
spacecraft mission, designed to collect samples of solar wind and return them to the
Earth [92], is often considered as the first mission to use invariant manifolds for its
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planning, while other missions have used libration point techniques [23]. Having a
precise idea of the geometry of invariant manifolds and their connections is desirable
in the design of complex low-energy missions.

There is much literature on invariant manifolds and connecting orbits in the
CR3BP; see for example Gómez et al. [45] and Koon et al. [85, 86]. Calleja et al. [14]
demonstrate the effectiveness of boundary value formulations coupled to numerical
continuation for the computation of stable and unstable manifolds in CR3BP. This
reference serves also as a detailed overview of continuation techniques, as used to
compute periodic orbits, invariant manifolds, and connecting orbits.

The existence of connecting orbits in the planar problem has been proved
analytically in Llibre et al. [91], and by computer assisted methods in Wilczak
and Zgliczyński [125, 126]. Furthermore, these orbits have been extensively studied
numerically using initial-value techniques and semi-analytical tools; see Barrabés et
al. [8], Canalias and Masdemont [16] and references therein. In the case of initial-value
techniques the initial conditions are varied in order for an appropriately chosen end
point condition to be satisfied. This approach is commonly referred to as a “shooting
method” and, for a more stable version, “multiple shooting”.

Initial-value techniques can also be very effective in the computation of invariant
manifolds in the CR3BP. However, sensitive dependence on initial conditions may
leave parts of the manifolds unexplored, unless very high accuracy is used.

Jorba and Olmedo [78, 80] use a Fourier series to describe an invariant
curve representing the intersection of an invariant torus with a Poincaré section
in a perturbed CR3BP. Gómez and Mondelo [50] develop the Fourier expansion
associated with a curve lying on the surface of a two-dimensional torus in the CR3BP,
and use an invariance condition based on multiple shooting. Olikara and Howell [105]
provide the direct computation of two-dimensional invariant tori including a natural
parameterization and a continuation scheme. The development of a computational
scheme is based on a method developed by Schilder et al. [119]. Gómez and Mondelo
[50] developed a scheme for computing two-dimensional quasi-periodic tori by using
an invariant circle parameterized by Fourier coefficients of a stroboscopic map.
Kolemen et al. [84] use a similar approach except with multiple Poincaré maps and
directly parameterizing the invariant circle using states. Olikara and Scheeres [104]
used similar concepts to these methods but with a more general formulation. An
alternative approach presented by Schilder et al. computes a torus of a flow directly
[119]. The flow approach has been applied to the CR3BP [105]; however, this requires
dealing with a torus of dimension one larger than the torus of an associated map.
Mondelo et al. [101] present a methodology for the fast automatic generation of
quasi-periodic libration point trajectories. This is based on the computation of a
mesh of orbits and further interpolating strategies.
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For computing the Floquet stability of tori, Jorba introduces a numerical
approach based on the eigenvalues of a large, dense matrix [78]. Jorba and Olmedo
also have an efficient method that combines the torus and stability computations,
but it is specific to non-autonomous systems with known forcing frequencies [80].

2.5 Semi-analytical results

For Hamiltonian systems such as the CR3BP, semi-analytical methods are available
for computing (quasi-)periodic orbits and invariant manifolds. Two such methods are
the Lindstedt-Poincaré method and normal form scheme (center manifold reduction).

The Lindstedt-Poincaré method finds semi-analytical expressions for orbits
and manifolds in terms of suitable amplitudes and phases by series expansions
(see Masdemont [97]). This technique takes in consideration high order terms of
the equations of motion and produces a formal series expansion of the solution
of the equations of motion with high degree of accuracy. Gómez et al. [49]
used semi-analytical methods based on the Lindstedt-Poincaré procedure to find
the quasi-periodic orbits around libration points, though series expansions have
slow convergence. Then, Gómez and Mondelo [50, 100] designed a refined Fourier
analysis to find the full families, but this method is very slow and thus must be
implemented on a cluster of parallel computers. Although these expansions are
in general divergent, some practical domains of convergence can be computed.
These local methods offer a thorough view of the dynamics in the vicinity of the
libration points, but both are limited by their regions of convergence. Specialized
algebraic manipulators are often required as well, which can create difficulties in the
implementation. Another efficient method for computing invariant manifolds were
designed by Alessi et al. [1]. Methods [50, 1] are very precise in a neighborhood of
the center of expansion, and rely on other methods to extend the manifolds outside
these neighborhoods [44].

Jorba and Villanueva [81] used the normal form method to find the center
manifold around libration points. This process is based on expanding the initial
Hamiltonian around a given equilibrium point and performing a partial normal form
scheme, uncoupling (up to a high order) the hyperbolic directions from the elliptic
ones. While the Lindstedt-Poincaré method provides compact expressions written
in the initial coordinates for all trajectories, the reduction to the center manifold
provides an easy way of producing qualitative plots of the dynamics close to the
point.

In Jorba and Masdemont [79], the Lindstedt-Poincaré method as well as normal
form scheme are adopted to semi-analytically construct the high-order solutions
about the dynamics in the center manifolds of the collinear libration points in
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CR3BP. Considering the hyperbolic behaviors together with the center behaviors
around the collinear libration points in CR3BP, Masdemont [97] expanded the
invariant manifolds as power series of hyperbolic and center amplitudes. These series
expansions could explicitly describe the general dynamics around collinear libration
points of CR3BP. Taking into account the perturbation of the Solar gravity and
lunar eccentricity, Farquhar and Kamel [31] analytically developed the third order
solutions of quasi-periodic orbits around the collinear libration point L2 of Earth-
Moon system and discussed the relationship between the frequency and amplitude for
large halo orbits. In the real Earth-Moon system, defined by the JPL ephemeris, the
quasi-periodic motions around the collinear libration points are analytically studied
by Hou and Liu [67].

McGhee [98] provided analytical proofs of the existence of homoclinic orbits to
Lyapunov periodic orbits around the L1 and L2 points for some particularly shaped
homoclinic orbits.

Often finding semi-analytical solutions is followed by their refinement with
differential correction methods. In particular, the periodic orbits are refined by
shooting method [70], and the quasi-periodic orbits are refined by double-loop
shooting method [75] or Fourier series correction method, see Jorba [78], Kolemen
et al. [83, 84], Gómez and Mondelo [50]. Though recently Ren and Shan [110]
presented a numerical algorithm that can generate long-term libration points orbits
in the CR3BP and the full solar system model without using of semi-analytical
approximations as initial guesses.

2.6 Elliptical restricted three-body problem

Compared to CR3BP, the elliptical restricted three-body problem (ER3BP) could
approximate the Solar system better. Due to the existence of eccentricity of the
primaries, the equations of motion in ER3BP are non-autonomous. Fortunately, the
equations of motion of ER3BP in the pulsating synodic reference frame have the
same symmetries as the ones of CR3BP, meanwhile, the dynamical properties are
similar to those of CR3BP. For example, libration points and corresponding bounded
orbits (Lissajous and halo orbits) also exist, and are unstable in nature. However,
the investigation about the dynamics around the collinear libration points in ER3BP
is more complicated by analytical method. Hou and Liu [66] constructed the high-
order analytical solutions of the center manifolds, such as Lissajous and halo orbits
in ER3BP, by means of semi-analytical method, and discussed the applications in
the Earth-Moon and Sun-Earth system.

Early analytical expansions included the eccentricity of the primary bodies
[31, 114] and recently periodic orbits have been numerically investigated [15]. Unlike
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the CR3BP, these orbits are isolated since most periodic orbits that persist become
quasi-periodic orbits with the in influence of eccentricity. Considering the unstable
dynamics of the collinear libration points and associated center manifolds in ER3BP,
the general solutions of the equations of motion around the collinear libration
points in ER3BP consist of the hyperbolic component (saddle behavior) and center
component (center behavior). Lei et. al [89] expanded the solutions of invariant
manifolds associated with libration point orbits in ER3BP as formal series of the
orbital eccentricity and four amplitudes, thereinto, two amplitudes correspond to the
hyperbolic manifolds, and the remaining two amplitudes correspond to the center
manifolds. The series expansions constructed can describe the general dynamics
around the collinear libration points of ER3BP, and can be considered as an extension
of the ones discussed in Jorba and Masdemont [79], Masdemont [97], and Hou and
Liu [66].

3 Station-keeping techniques for libration point orbits

3.1 Introduction, Target Point and Floquet Mode approaches

The problem of station-keeping for libration point missions has received much
attention even before the first libration point mission of ISEE-3 in 1982. Some
preliminary investigation on the motion control near libration points was done
in 60’s – 70’s by Colombo [18], Farquhar [27, 29, 30], Euler [26] and Breakwell
[10, 12]. Trajectory control investigation for ISEE-3 mission was done by Erickson
and Farquhar [25, 33, 32] and also appeared in [46, 44].

Existing methods can be categorized by an approach to developing station-
keeping techniques. First, the Target Point Approach is to be noted. The method
computes correction maneuvers by minimizing a weighted cost function that is
defined in terms of delta-v as well as position and velocity deviations from a
nominal orbit at specified times called “target points”. The approach was firstly
presented by Howell and Pernicka [76] and Howell and Gordon [73]. The Floquet Mode
Approach incorporates invariant manifold theory and Floquet modes to compute
the maneuvers. Thus, the study of the station-keeping problem is conducted in
the dynamical systems theory point of view. Floquet modes associated with the
monodromy matrix are used to determine the unstable component corresponding
to the local error vector. The maneuver is then computed in such a way that the
dominant unstable component of the error is eradicated. The method was developed
by Simó et al. in [121, 122]. An overview and comparison of Target Point Approach
and Floquet Mode Approach was done by Keeter in [82].
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3.2 Linear Time-Invariant and Linear Time-Varying models

Alternative classification can be done based on the model used. Indeed, many of
the station-keeping control methods are designed based on Linear Time-Invariant
(LTI) model via local linearization at the libration points. Here, Breakwell et al.
[10, 12] were first to introduce classical optimal control strategies for Halo orbit
missions and Erickson and Glass [25] specially analyzed the ISEE-3 mission to make
this approach into implementation. Hoffman [65] applied the concept of disturbance
accommodation for Halo orbits control. Later, Cielaszyk and Wie [17] additionally
treated nonlinearities as the trajectory-dependent, persistent disturbance inputs to
apply similar approach. Di Giamberardino and Monaco [20] designed a nonlinear
controller based on LTI model to solve the problem of reaching and tracking a
prescribed quasi-Halo orbit about L2 in the Earth-Moon system. Under suitable
assumptions the control strategy achieves asymptotic tracking and asymptotic
disturbance compensation.

Noting that the LTI model includes only 1st, 2nd, or 3rd order term of
the gravitational force and effective only in the neighborhood of the libration
point, Linear Time-Varying (LTV) model were employed to improve the modeling
accuracy. Developed by Howell and Pernicka [76] the Target Point Approach and
the nonlinear techniques via Floquet Mode Approach developed by the Barcolona
Group [122, 46, 44] are based on LTV model. Gurfil and Kasdin [57], motivated
by the problem of station-keeping for spacecraft formations, derived a time-varying
continuous linear quadratic control law with linearized dynamics about an arbitrary
reference trajectory about L2 in the Sun-Earth system.

3.3 Other methods

Later, Kulkarni et al. [87, 88] extended the traditional H∞ framework to periodic
discrete LTV systems for stabilization of spacecraft flight in Halo orbits around L1

of the Sun-Earth system. The work points out that Target Point Approach methods
suffer from the disadvantage that the choice of the various parameters (the number
and spacing of future target times, the particular values for elements of the various
weighting matrices) can be determined only by trial and error, while for the H∞
method, the choice of the various matrices is guided by mission requirements and
can be chosen easily. Similar to the Target Point Approach, Floquet Mode Approach
suffer from the disadvantage that a search for an optimal controller, which minimizes
a linear combination of the cost and the deviation from the halo orbit, cannot
be conducted in a systematic fashion. Rahmani et al. [109] solved the problem
of Halo orbit control using the optimal control theory and the variation of the
extreme technique to solve the resulting two point boundary value problem. This
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method benefits from control of spacecraft exactly on the nominal halo orbit and
utilizes full nonlinear equations of motion and a numerical method to determine
the required control accelerations. As concerns some of the recent station-keeping
methods for single spacecraft, Bai and Junkins [4] proposed a modified Chebyshev-
Picard iteration method for station-keeping of L2 Halo orbits of the Earth-Moon
system. To meet the requirements of robustness and low computation burden, Zhu
et al. [132] applied a new nonlinear station-keeping control law based on active
disturbance rejection control method.

3.4 Formation-keeping

A variety of methods was developed specially for spacecraft formations near libration
points. An analysis of natural formation dynamics along the central manifold was
done by Howell and Marchand [74]. Earlier, Howell and Barden [6, 5, 72] investigated
formation flying in the perturbed Sun-Earth system. An investigation of natural and
non-natural formations was done also by Marchand in her thesis [93].

Scheeres and Vinh [118] present control law that achieves bounded motion
near the vicinity of a halo orbit, as determined in Hill’s model. Although the
latter approach is not suitable for precise formation-keeping, nor is it necessarily
the optimal way to achieve boundedness, it does satisfy other goals that may be
important for certain types of missions. In particular, the natural winding frequency
of the spacecraft around the reference halo orbit is significantly increased. This
is consistent with one of the stated requirements for the TPF mission, where the
formation is required to achieve a particular rotation rate that is not consistent with
the natural dynamics near this region of space.

Gurfil et al. [56] presented a novel nonlinear adaptive neural control
methodology for deep-space formation flying in the Sun-Earth system. Authors
note that future missions such as MAXIM Pathfinder raise stringent submillimeter
relative position control accuracy specifications that do not permit the utilization
of linearization techniques. Thus, the complete nonlinear models should be used,
so that no approximation is involved in the design procedure. In that purpose the
neural-network control methods is applied. In addition to controlling the formation
on complex trajectories, this algorithm effectively compensates for deep-space
disturbances such as solar radiation pressure (SRP) and fourth-body gravitation
and allows to keep submillimeter relative position accuracy. Xin et al. [131, 130]
used a suboptimal control technique (the θ – D technique) and applied it in [129]
to control each individual spacecraft so as to keep a constant relative distance from
the center of the virtual body followed a nominal orbit around the L2 libration
point in the Sun-Earth system. Wang et al. [124] presented a nonlinear controller
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based on polynomial eigenstructure assignment of Quasi-LTV model for the control
of Sun-Earth L2 point formation flying, though the system uncertainties were not
considered. Within the framework of the ephemeris model, Hamilton and Folta
[60, 34] consider linear optimal control for formation flight relative to Lissajous
trajectories, as determined in the ephemeris model. However, the evolution of the
controlled formation is approximated from a linear dynamic model relative to the
integrated reference orbit. The analysis within the context of both the circular
restricted three-body problem and the more complete ephemeris model was also done
by Marchand and Howell [95]. Here the LQR and feedback linearization approach
was employed for formation flight in the vicinity of libration points.

3.5 Station-keeping in the Earth-Moon system

Many investigations were applied to station-keeping in the Earth-Moon system. In
this case the station-keeping is rather challenging than in the Sun-Earth system
because of short time scales of divergence, effects of large orbital eccentricity of the
Moon, and perturbations of the Sun. Due to the flight of ARTEMIS, the first Earth-
Moon libration orbiter, several station-keeping strategies was recently investigated
by Folta et al. [38, 39, 40, 37, 35, 128], and more earlier works by Folta et al. [36, 34].
Classical works based on the Floquet Mode Approach are presented in papers by
Farquhar [30], Breakwell et al. [12], Simó et al. [122], Keeter [82], Gómez et al.
[42]. Janes and Beckman [77] designed a global search station-keeping approach
that maintains a spacecraft in orbit for the next 1-2 revolutions downstream. Gurfil
and Meltzer [58] utilized a finite-horizon LQR scheme to track reference trajectories
while rejecting persistent disturbances using the realistic ER3BP model. Grewbow
et al. [52] used maneuvers to target back to a rigid baseline solution, or, at least,
to target specific parameters downstream, but this general approach can result in
higher station-keeping costs and can create challenges when transitioning into the
next mission phase. Based on this work, Pavlak in his thesis [106] applied a control-
point station-keeping algorithm to a variety of orbits in the vicinity of the L2

libration point. Note that Floquet Mode Approach is useful to estimate the maneuver
directions only for short-term station-keeping. Pavlak and Howell [107] establish a
long-term station-keeping strategy based on multiple shooting method that does not
require close tracking of a baseline trajectory but still meets a specific set of end-of-
mission objectives, i.e., conditions at lunar arrival. Hou et al. [68] considered quasi-
Floquet approach to cancel the unstable component of the motions around dynamical
substitutes – quasi-periodic orbits caused by perturbations from the Moon’s orbit
eccentricity and the Sun. Ghorbani and Assadian [41] developed continuous and
impulsive control strategies taking account of the gravitational perturbation of the
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Sun and other planets and Moon’s eccentricity. A sliding mode control technique
was applied by Lian [90].

3.6 Stability discussions

As concerns discussions of stability and control for vehicles at both collinear and
triangular libration point locations, Hoffman [65] and Farquhar [30] both provide
analysis and discussion of stability and control in the Earth-Moon collinear L1

and L2 locations, respectively, within the context of classical control theory or
linear approximations; Scheeres et al. offer a statistical analysis approach and
investigated the generalized optimal placement of statistical control maneuvers
[117, 111]. Gustafson and Scheeres [59] studied the optimal timing to update control-
law with continuous control. Marchand and Howell [94] discuss stability including
the eigenstructures near the Sun-Earth locations.

3.7 Missions

At last we give here some references concerning the station-keeping design of some
successful and future missions around libration points: ISEE-3 [25, 33, 32, 46, 44],
SOHO [115], WIND [120], MAP [116], Genesis [71, 127], ARTEMIS [35, 38],
TPF [47], World Space Observatory/Ultraviolet [69]. Some information concerning
different methods for calculating libration-point orbit station-keeping maneuvers for
ISEE-3, SOHO and ACE missions can be found in [24].

Conclusion

In this overview, methods for designing the periodic orbits around collinear
libration points as well as associated invariant manifolds are considered. First,
basic information relating to collinear libration points and the phase space around
them was presented. Then the problem of finding (quasi-)periodic orbits and their
invariant manifolds is considered. Here both pure numerical and semi-analytical
results are mentioned. At last analytical results concerning elliptical restricted three-
body problem are mentioned. In the second part of the work, station-keeping methods
are given. Here a several classifications were made by an approach to developing
station-keeping techniques: Target Point and Floquet Mode approaches, Linear
Time-Invariant of Linear Time-Varying models to describe the dynamics around
libration points, formation-keeping and etc.
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