

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 53 за 2015 г.</u>

Мануйлов К. К.

Исследование теплофизических и механических характеристик композитных материалов экранно-вакуумной теплоизоляции

Рекомендуемая форма библиографической ссылки: Мануйлов К. К. Исследование теплофизических и механических характеристик композитных материалов экранно-вакуумной теплоизоляции // Препринты ИПМ им. М.В.Келдыша. 2015. № 53. 16 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=2015-53</u>

Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В.Келдыша Российской академии наук

К.К. Мануйлов

Исследование теплофизических и механических характеристик композитных материалов экранно-вакуумной теплоизоляции

УДК:536.21: 536.48

Мануйлов К.К.

Исследование теплофизических и механических характеристик композитных материалов экранно-вакуумной теплоизоляции

В процессе подготовки эксперимента "Термофоб" проекта ФОБОС-ГРУНТ проведено исследование теплофизических и механических характеристик ряда композитных теплоизоляционных материалов. Анализ данных проводится на основе теории лучистого теплопереноса и представлений о механизме вакуумного контактного теплообмена.

Ключевые слова: ЭВТИ, композитные материалы, криогенная техника, космическое приборостроение, калориметрия, ИПМ им. М.В.Келдыша

Konstantin Konstantinovich Manuilov

Thermal characteristics investigation of multilayer insulation domestic materials

Investigation of heat insulation composites thermal and mechanical properties was performed during the preparation of "Themofob" experiment (Phobos-Grunt project). The obtained data analysis is implies the radiation theory as well as vacuum contact heat transfer modern concept.

Key words: MLI, composite materials, cryogenic technique, space technique, calorimetry, Keldysh Institute

Оглавление

1. Предмет исследования	3
2. Компоненты и образцы ЭВТИ	4
3. Калориметрические исследования	5
4. Исследования упругих свойств ЭВТИ	7
5. Анализ данных	9
6. Обоснование регрессионных гипотез	10
7. Результаты	11
Литература	16

1. Предмет исследования

Экранно-вакуумная теплоизоляция (ЭВТИ), западный термин MLI (от multilayer thermal insulation) используется в криогенной и высокотемпературной вакуумной технике, космическом приборостроении. Принцип действия ЭВТИ основан на уменьшении поперечного теплообмена в многослойных анизотропных средах с чередующимися отражающими и теплоизоляционными слоями.

Под теплопроводностью ЭВТИ обычно понимается нормальная к поверхности раздела компонента тензорного соотношения Фурье.

Контактная теплопроводность λ_c разделительных прокладок нелинейно растёт с увеличением плотности укладки (универсальной температурной зависимости контактной теплопроводности λ_c в литературе не отмечено (Каганер, 1966)).

Лучистая теплопроводность λ_r уменьшается с увеличением количества экранов на единицу длины (плотности укладки). Температурная зависимость лучистой теплопроводности при малых перепадах температуры ΔT описывается соотношением $\lambda_r \sim T^3 \Delta T$.

Таким образом, зависимость поперечной теплопроводности $\lambda = \lambda_r + \lambda_c$ от плотности укладки ЭВТИ имеет характерный минимум. Его определение и является основной задачей оптимизации теплоизоляции.

Соотношение вклада механизмов контактного и лучистого теплопереноса изменяется на порядок уже в диапазоне температур -196 ... 150 ^оС. По этой причине расчет характеристик составной многокомпонентной теплоизоляции

Рис. 1. Примеры составной многокомпонентной теплоизоляции

(рис. 1) приблизителен и зачастую расходится с экспериментом. На практике в связи со сложностью построения модели теплопереноса в композитных средах зачастую используется экспериментальный метод подбора теплозащиты.

В данной работе предпринята попытка раздельного определения вклада описанных каналов теплопереноса. Особенностью авторского подхода является использование сжимающего стопу давления вместо употребительного параметра плотности укладки. Это позволило сравнить данные, относящиеся к разным наборам ЭВТИ.

2. Компоненты и образцы ЭВТИ

Отечественная промышленность выпускает широкий ассортимент материалов ЭВТИ для использования в диапазоне рабочих температур от 4 до 1000 0 К. Для умеренных температур (до 150 – 300 0 С) обычно применяются пленочные экраны из полиэтилентерефталатной (ПЭТФ) или полиимидной (ПМ) подложки с односторонним (ОА) или двусторонним (ДА) алюминиевым напылением. При повышенных температурах используются экраны из алюминиевой (А) или никелевой (Н) фольги. Экраны, как правило, разделяются теплоизолирующими прокладками из стекловуали или кварцевого холста. В ряде случаев экраны подвергаются рифлению для уменьшения плотности укладки. Технические характеристики некоторых компонентов отечественных типов ЭВТИ приводятся в табл. 1.

Экраны	Толщина <i>Н</i> , мкм	Плотность D , г/м ²	$T_{\rm max}$, ⁰ C	
ПЭТФ-ОА	5	7,65	150	
ПЭТФ-ДА	5	7,79	150	
ПМ-1Э-ОА	12 20	16 25	300	
ПМ-1Э-ДА	12 20	16 25	300	
A5M	10 20	27 54	500	
HB3B	5-8	70	1000	
Прокладки Толщина Н, мкм		Плотность <i>D</i> , г/м ²	$T_{\rm max}$, ⁰ C	
ЭВТИ-7	50	7	300	
ХКВ-0,04	50	12	1000	
XKB-0,1	100	24	1000	

Характеристики компонентов ЭВТИ

Таблица 1

Для исследования теплоизолирующих характеристик мы отобрали двенадцать образцов с различным сочетанием компонентов ЭВТИ (табл. 2).

Образец	Экран	Рифление	Прокладка	
1	ПЭТФ-ОА	нет	ЭВТИ-7	
2	ПЭТФ-ДА	нет	ЭВТИ-7	
3	ΠЭΤΦ-ΟΑ	да	нет	
4	ПЭТФ-ДА	да	нет	
5	ΠЭΤΦ-ΟΑ	да	ЭВТИ-7	
6	ПЭТФ-ДА	да	ЭВТИ-7	
7	A5M	нет	ЭВТИ-7	
8	A5M	нет	ЭВТИ-7	
9	A5M	нет	ЭВТИ-7	
10	A5M	нет	ЭВТИ-7	
11	HB3B	нет	ХКВ-0,04	
12	HB3B	нет	ХКВ-0,1	

Состав калориметрических образцов ЭВТИ Таблица 2

3. Калориметрические исследования

Исследования образцов ЭВТИ проводились в ИПМ РАН на плоском калориметре. Достаточно сложная конструкция установки (рис. 2) рассчитана на измерение весьма малых тепловых потоков в условиях вакуума. С этой целью калориметр помещался в вакуумную камеру. Диффузионным насосом воздух откачивался до давления менее 10⁻⁵ мм рт. ст. В этих условиях влиянием молекулярного теплопереноса можно пренебречь. Процесс дегазации и десорбции воды с поверхности ЭВТИ контролировался по долговременной кинетике установления показаний калориметра.

Рис. 2. Принципиальная схема калориметра для определения теплопроводности плоских образцов ЭВТИ: 1 – образец ЭВТИ; 2 – холодная стенка (T_1); 3 – теплая стенка (T_2); 4 – контрольный нагреватель; 5 – компенсирующий нагреватель; 6 – охранная система.

Тепловой поток *P* определялся в стационарном режиме по мощности, подводимой к контрольному нагревателю площадью *S*_{*r*}, а теплопроводность λ образца толщиной *h* = 1 см рассчитывалась по формуле $\lambda = P/hS_r(T_2-T_1)$.

В табл. З приведены данные измерений коэффициента теплопроводности образцов ЭВТИ при свободной укладке в зависимости от температуры. В табл. 4 приводятся значения теплопроводности образцов ЭВТИ в зависимости от плотности укладки слоев n. Оценка относительной погрешности измерений λ составляет 10%.

№ образца	п, 1/см	$T_{1}, {}^{0}\mathrm{C}$	$T_2, {}^0C$			λ·10 ⁵ , к	кал/(м·ча	ас∙град)
1	30	20	50	100	150	25	32	39
2	30	20	50	100	150	19	25	30
3	14	20	50	100	150	28	35	42
4	14	20	50	100	150	18	23	28
5	13	20	50	100	150	22	30	35
6	13	20	50	100	150	12	15	21
7	30	150	200	300	_	22	29	_
8	30	150	400	500	_	37	48	_
9, 10	18	150	300	400	500	55	70	95
11	11	500	800	900	1000	1110	1350	1780
12	11	500	600	700	800	630	820	1100

Теплопроводность ЭВТИ при свободной укладке Таблица 3

Теплопроводность уплотненной ЭВТИ Таблица 4

λ·10⁵, ккал/(м·час·град) № $T_1, {}^{0}C$ $T_2, {}^{0}C$ при плотности укладки n, 1/см образца _ _ _ _ -196 18,5 4,5 3,5 4,5 7,8 5,5 9,10 -196 11, 12

4. Исследования упругих свойств ЭВТИ

При построении модели теплопереноса, согласующейся с результатами калориметрических измерений, необходимо учесть то, что в выбранных образцах ЭВТИ использован ограниченный набор материалов экранов и прокладок. Поэтому сопоставление результатов измерений для различных образцов является важным источником дополнительной информации. Естественный подход здесь связан с переходом от плотности укладки *n* к сжимающему давлению *p*.

Результаты измерения плотности укладки образцов ЭВТИ в зависимости от давления приведены в табл. 5.

	Сжимающая нагрузка <i>p</i> , кгс/см ²										
<u>№</u> 05разна	0	0,01	0,02	0,03	0,05	0,1	0,3	0,5	1		
ооразца		Плотность укладки <i>n</i> , 1/см									
1, 2	20	110	125	140	155	180	190	240	280		
3, 4	12	115	140	145	195	315	450	455	500		
5,6	8	75	85	100	115	155	195	240	250		
7, 8	30	90	95	105	125	135	155	170	200		
9, 10	6	40	45	60	65	80	100	125	170		
11	8	30	40	45	50	55	70	—	—		
12	12	35	53	65	73	85	113	120	_		

Упругие свойства ЭВТИ

Таблица 5

В случае свободной укладки (при отсутствии сжимающей нагрузки) давление в стопе не равно нулю, а обусловлено весом вышерасположенной части стопы. Локальное давление, а с ним и местное значение теплопроводности зависит от положения экрана. Безразмерный параметр модели $\gamma = 0,5$ соответствует положению уровня, на котором связываются средние значения теплопроводности и давления.

На рис. 3. приведены экспериментальные данные и результаты аппроксимации зависимостей n(p) для образцов ЭВТИ в диапазоне давлений $P = 10^{-6} - 10^{-1}$ атм. Для аппроксимации мы использовали степенную зависимость (1), предложенную в работе (Каганер, 1966).

$$n(p) = n_0 \left(\frac{p}{p_0}\right)^{\beta}, \qquad n_0 = n(p_0).$$
 (1)

В табл. 6. приводятся значения показателя β зависимости (1). Плотность укладки n_0 соответствует реперному давлению $p_0 = 10^{-3}$ атм. Значения β для

Рис. 3. Зависимость плотности укладки слоёв ЭВТИ от давления. Номера образцов указаны в легенде на поле графика.

различных образцов находятся в диапазоне $\beta = 0, 2 - 0, 3$, хорошо согласуясь со значением $\beta = 0, 2 - 0, 25$ (Каганер, 1966).

	·· I ····· I ·	·· · ·			
Образец	<i>n</i> ₀	β	Образец	<i>n</i> ₀	β
1	59,1	0,25	7	54,8	0,20
2	59,1	0,25	8	51,3	0,22
3	58,2	0,29	9	21,4	0,28
4	58,1	0,29	10	20,0	0,30
5	36,6	0,29	11	24,7	0,25
6	36,6	0,29	12	18,2	0,25

Параметры аппроксимации зависимости *n*(*p*) Таблица 6

5. Анализ данных

Пусть мы имеем выборку из *n* точек $\{X_k, Y_k\}$ (k = 1, ..., n), заданных с погрешностью $\Delta Y_k \neq 0$, отличающейся от точки к точке. Регрессией называется аппроксимация данных Y_k суперпозицией $y(X_k) = a_1 F_1(X_k) + a_2 F_2(X_k)$ гипотез $F_1(X_k)$ и $F_2(X_k)$. Задача сводится к определению коэффициентов a_1 и a_2 из условия минимизации функционала невязки

$$\sum_{k=1}^{n} \frac{(y(X_k) - Y_k)^2}{\Delta Y_k^2} = \min(a_1, a_2).$$
(2)

Дифференцирование (2) по коэффициентам a_1 и a_2 приводит к системе уравнений (3) с решением (4)

$$\frac{d}{da_{l}} \left(\sum_{k=1}^{n} \frac{(y(X_{k}) - Y_{k})^{2}}{\Delta Y_{k}^{2}} \right) = 0, \qquad \frac{d}{da_{2}} \left(\sum_{k=1}^{n} \frac{(y(X_{k}) - Y_{k})^{2}}{\Delta Y_{k}^{2}} \right) = 0.$$
(3)

$$a_1 = \frac{\overline{F_2 Y} \cdot \overline{F_1 F_2} - \overline{F_1 Y} \cdot \overline{F_2 F_2}}{\overline{F_1 F_2} \cdot \overline{F_1 F_2} - \overline{F_1 F_1} \cdot \overline{F_2 F_2}}, \qquad a_2 = \frac{\overline{F_1 Y} \cdot \overline{F_1 F_2} - \overline{F_2 Y} \cdot \overline{F_1 F_1}}{\overline{F_1 F_2} \cdot \overline{F_1 F_2} - \overline{F_1 F_1} \cdot \overline{F_2 F_2}}.$$
(4)

Здесь

$$\overline{F_1Y} = \sum_{k=1}^n \frac{F_1(X_k)Y_k}{\Delta Y_k^2}, \qquad \overline{F_2Y} = \sum_{k=1}^n \frac{F_2(X_k)Y_k}{\Delta Y_k^2},$$

$$\overline{F_1F_1} = \sum_{k=1}^n \frac{F_1(X_k)F_1(x_k)}{\Delta Y_k^2}, \quad \overline{F_1F_2} = \sum_{k=1}^n \frac{F_1(X_k)F_2(X_k)}{\Delta Y_k^2}, \quad \overline{F_2F_2} = \sum_{k=1}^n \frac{F_2(X_k)F_2(X_k)}{\Delta Y_k^2},$$

Оценка погрешности определения весовых коэффициентов a_1 и a_2 :

$$\Delta a_{1} = \frac{\sqrt{\overline{F_{2}}^{2} \Delta Y^{2}} \cdot (\overline{F_{1}}\overline{F_{2}})^{2} - \overline{F_{1}}^{2} \Delta Y^{2}} \cdot (\overline{F_{2}}\overline{F_{2}})^{2}}{\left|\overline{F_{1}}\overline{F_{2}} \cdot \overline{F_{1}}\overline{F_{2}} - \overline{F_{1}}\overline{F_{1}} \cdot \overline{F_{2}}\overline{F_{2}}\right|},$$

$$\Delta a_{2} = \frac{\sqrt{\overline{F_{1}}^{2} \Delta Y^{2}} \cdot (\overline{F_{1}}\overline{F_{2}})^{2} - \overline{F_{2}}^{2} \Delta Y^{2}} \cdot (\overline{F_{1}}\overline{F_{1}})^{2}}{\left|\overline{F_{1}}\overline{F_{2}} \cdot \overline{F_{1}}\overline{F_{2}} - \overline{F_{1}}\overline{F_{1}} \cdot \overline{F_{2}}\overline{F_{2}}\right|},$$
(5)

где

$$\overline{F_1^2 \Delta Y^2} = \sum_{k=1}^n F_1(X_k) F_1(X_k), \qquad \overline{F_2^2 \Delta Y^2} = \sum_{k=1}^n F_2(X_k) F_2(X_k).$$

Puc. 4

Лучистый теплообмен. Рассмотрим баланс потоков энергии на границе серого тела (рис. 4). Тепловой поток Q_{abs} , поглощенный поверхностью тела с коэффициентом поглощения ε (рис. 4), возвращается в систему в виде теплового излучения Q_{rad} и через границу переносится поток $Q = Q_{rad} - Q_{abs} = Q_{out} - Q_{in}$ в сторону внешней нормали \bar{n} . Возвратный лучистый поток Q_{out} равен

$$Q_{out} = Q + Q_{in} = Q + \frac{1}{\epsilon}Q_{abs} = Q + \frac{1}{\epsilon}(Q_{rad} - Q) = \left(1 - \frac{1}{\epsilon}\right)Q + \frac{1}{\epsilon}Q_{rad}$$

Для системы из двух протяженных параллельных поверхностей 1 и 2 с площадью $S_1 = S_2 = S$ лучистый теплообмен задается условиями

$$Q_{out}^{(1)} = \left(1 - \frac{1}{\varepsilon_1}\right)Q + \sigma S T_1^4 = Q_{in}^{(2)},$$
$$Q_{out}^{(2)} = \left(\frac{1}{\varepsilon_2} - 1\right)Q + \sigma S T_2^4 = Q_{in}^{(1)}.$$

Здесь $\sigma = 5.67 \cdot 10^{-12}$ Втсм⁻²К⁻⁴ – постоянная Стефана-Больцмана. Поскольку поток от поверхности 1 к 2 равен $Q = Q_{out}^{(1)} - Q_{in}^{(1)} = Q_{in}^{(2)} - Q_{out}^{(2)}$, имеем

$$Q = \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2 - \varepsilon_1 \varepsilon_2} \sigma S(T_1^4 - T_2^4)$$
(6)

Формулу (6) можно получить, рассматривая лучистый перенос как совокупность стохастических процессов рождения и поглощения квантов излучения на границах тел 1 и 2 с вероятностями ε_1 и ε_2 . Произведение $P = \varepsilon_1 \varepsilon_2$ является вероятностью переноса тепла. Величина $R = 1 - (1 - \varepsilon_1)(1 - \varepsilon_2) = \varepsilon_1 + \varepsilon_2 - \varepsilon_1 \varepsilon_2$ определяет вероятность гибели кванта при отражении. Из определения условной вероятности отношение P/R является вероятностью переноса тепла от тела 1 к телу 2 с учетом отражений.

Таким образом, гипотеза для зависимости лучистой теплопроводности λ_r от плотности укладки *n* при *n*>>1 имеет вид

$$\lambda_r(T_A, T_B, n) = \frac{\varepsilon \sigma}{n(2-\varepsilon)} (T_A^2 + T_B^2) (T_A + T_B) = \frac{F(T)}{n}.$$
(7)

Контактный теплообмен. Для зависимости контактной теплопроводности λ_c от плотности укладки была предложена зависимость (Каганер, 1966), аналогичная (1)

$$\lambda_c(p) = \lambda_c(p_0) \left(\frac{p}{p_0}\right)^{\delta},\tag{8}$$

С учетом (1) получаем явную зависимость λ_c от плотности укладки

$$\lambda_c(n) = \lambda_c(n_0) \left(\frac{n}{n_0}\right)^{\delta - \beta},\tag{9}$$

Целью работы являлась проверка самосогласованности гипотезы (9). Это означает, что для некоторого значения параметра δ можно ожидать совмещения зависимостей $\lambda_c(p)$ и $\lambda_c(n)$, полученных для разных образцов с одним материалом разделительных прокладок.

7. Результаты

Исследование проводилось на 12 образцах пленочных и фольговых ЭВТИ. В результате анализа исходных данных, представленных в табл. 5, для каждого варианта теплоизоляции получены соотношения эффективности лучистого и контактного механизмов теплопроводности и их изменение в зависимости от плотности укладки и температуры (рис. 5).

Рис. 5. Зависимость полной теплопроводности λ (•••) и её радиационной λ_r (•••) и контактной λ_c (•••) составляющих от плотности укладки слоёв ЭВТИ. Номера рисунков соответствуют номерам образцов.

12

Рис. 6. Зависимость контактной теплопроводности образцов ЭВТИ от давления. Номера образцов указаны в легенде на поле графика.

Контактная теплопроводность. Сводный график зависимости контактной теплопроводности λ_c от сжимающего давления для образцов ЭВТИ различных типов представлен на рис. 6. Вид графиков иллюстрирует обоснованность гипотезы (9), давая близкое для всех материалов значение параметра $\delta \approx 0,4-0,6$.

Неожиданным результатом оказалось то, что зависимости $\lambda_c(P)$ для ЭВТИ с разделителем из стекловуали и кварцевого холста оказались близкими.

Образцы без теплоизоляционной прокладки (N_23 и N_24) характеризуются на порядок большей контактной теплопроводностью, что вполне понятно. Тем не менее, и в этом случае параметр δ близок к значению 0,5.

Рис. 7. Температурная зависимость коэффициентов черноты пленочных (а) и фольговых (б) ЭВТИ. Номера образцов указаны в легенде на поле графика.

Лучистая теплопроводность. Для определения коэффициента черноты отражающих экранов использовалась следующая методика.

Температура первого экрана полагается равной T_1 . Температура T_i *i*-го экрана i=2, ..., n определяется рекуррентным путем при помощи соотношения баланса потоков лучистого и контактного переноса

$$\sigma \frac{\varepsilon}{2-\varepsilon} (T_i^4 - T_{i-1}^4) + \lambda_c \frac{T_i - T_{i-1}}{\Delta x} = \lambda \frac{T_2 - T_1}{1 \text{ cm}}, \qquad \Delta x = 1/n$$
(10)

Коэффициент черноты $\varepsilon = \varepsilon_1 = \varepsilon_2$ определяется из соответствия температур $T_{n+1} = T_2$ при заданном заранее коэффициенте контактной теплопроводности λ_c

Для расчетов использовались данные табл. 2 и 3, соответствующие свободной укладке. Результаты расчетов на рис. 7 представлены графиками зависимости коэффициента черноты от средней яркостной температуры экранов $T_{cp} = \sqrt[4]{(T_A^4 + T_B^4)/2}$.

Коэффициент черноты пленочных экранов оказался необычно большим. Только для образца №6 он приближается к значению 0,05 – 0,07, характерному для полированного алюминия в области длин волн 10 – 50 мкм.

Исследование выявило достоверное различие до 50% в коэффициенте черноты ЭВТИ с односторонним (образцы №1, 3, 5) и двухсторонним (№2, 4, 6) покрытием. Оба отмеченных эффекта, скорее всего, свидетельствуют о недостаточной толщине слоя алюминиевого напыления.

Температурная зависимость коэффициента черноты образцов №11 и 12 хорошо согласуется с известной зависимостью є от длины волны для никеля. * * *

Проведено исследование теплофизических и механических свойств целого ряда модельных образцов экранно-вакуумной теплоизоляции. Регрессионный анализ разнородных экспериментальных данных позволил получить новые сведения о характере механизмов радиационного и контактного теплообмена в ЭВТИ.

Работа проведена в соответствии с планом научной работы отдела. Результаты исследования использованы при проектировании прибора Термофоб по проекту ФОБОС-ГРУНТ. С аналогичными задачами связана постановка теплофизических экспериментов по программам ЛУНА-ГЛОБ и ЛУНА-РЕСУРС (2017-2018 гг.)

Литература

1. Жунь Г.Г., Гетманец В.Ф. Новые подходы к описанию процессов вакуумирования и газоотделения. Вопросы атомной науки и техники, 2002. №1. Серия: Вакуум, чистые материалы, сверхпроводники (12), с. 67-71.

2. Каганер М.Г. Тепловая изоляция в технике низких температур. М.: Машиностроение, 1966. 275 с.

3. Матвеев А.Н. Электричество и магнетизм. (Первое изд. М.: Высшая школа, 1983. 463 с.)

4. Маров М.Я., Колесниченко А.В., Мануйлов К.К., Осипов В.П. Эксперимент Термофоб: прямые исследования теплофизических свойств грунта Фобоса. Астрономический вестник, 2010, т. 44, № 5, с. 1–9.

5. Мануйлов К.К. Активное тепловое зондирование грунта малых небесных тел. Метод, аппаратура, испытания // Препринты ИПМ им. М.В.Келдыша, 2011, № 74. 19 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=2011-74</u>