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М.Ю. Овчинников, Д.С. Ролдугин, С.С. Ткачев 

Исследование точности алгоритма активного магнитного демпфирования 

Рассматривается спутник, оснащенный магнитной системой ориентации, 

реализующей алгоритм демпфирования угловой скорости «-Bdot». Исследуется 

поведение спутника в конце переходных процессов. Показано, что спутник 

медленно вращается вокруг оси максимального момента инерции, найдена 

величина скорости вращения. Исследуется точность ориентации спутника в 

дипольной модели геомагнитного поля. Проводится численное моделирование. 

Ключевые слова: магнитная система ориентации, демпфирование, Bdot 

 

Mikhail Ovchinnikov, Dmitry Roldugin, Stepan Tkachev 

Study of the accuracy of active magnetic damping algorithm 

Attitude motion of a satellite equipped with an active magnetic attitude control 

system is considered. Control system implements «-Bdot» damping algorithm. 

Satellite behavior is analyzed in a steady-state motion. Slow spinning around the 

principal axis of maximum inertia is proven, angular velocity is found. Attitude 

accuracy in dipole geomagnetic field model is studied. Numerical analysis is carried 

out. 

Key words: magnetic attitude control system, damping, Bdot 
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Introduction 

Magnetic attitude control system is implemented on almost every modern small 

satellite. Even big and complex spacecraft utilize this system quite frequently. 

Magnetic control system has two main tasks: angular velocity damping and reaction 

wheel angular momentum unload. This work is devoted to the first problem. Attitude 

acquisition phase was considered by authors in [1,2] under fast rotating satellite 

assumption. In this paper satellite angular velocity is comparable with the orbital one. 

This attitude mode is relevant due to the most used magnetic damping algorithm  

«-Bdot» [3,4]. Its name implies that the control dipole moment is opposite to the 

geomagnetic induction vector change. Satellite acquires approximate rotation 

information with respect to geomagnetic field. Control system should spin satellite in 

the opposite direction effectively cancelling the rotation. However geomagnetic 

induction vector motion with respect to the satellite is due to its vector rotation in 

inertial space also. So the satellite should end up spinning with approximately double 

orbital angular velocity. Here this rotation is proven to be about the principal axis of 

the maximum moment of inertia. Spinning velocity value is refined, satellite attitude 

is assessed. 

1. Equations of motion and geomagnetic field models 

The satellite is considered to be a rigid body. Attitude is maintained using three 

orthogonal magnetorquers. Actual attitude is available without any error. Four 

reference frames are used: 

Inertial reference frame OaY1Y2Y3, Оa is Earth’s center, OaY3 is directed along 

Earth’s spin axis, OaY1 lies in the equatorial plane and is directed to the ascending 

node, OaY2 is directed so the system to be a right handed. 

Inertial reference frame OaZ1Z2Z3 is got from frame OaY1Y2Y3 turning by angle 

  about OaY1. This angle is a function of orbit inclination. It is defined with 

averaged geomagnetic field model. 

Inertial reference frame OaS1S2S3 is tied to satellite’s orbit. OaS3 is normal to the 

orbital plane, OaS1 is directed to the ascending node, OaS2 is directed so the system to 

be a right handed. Frame OaS1S2S3 attitude with respect to OaY1Y2Y3 is defined with 

rotation by angle i  (inclination) about OaY1, rotation from OaS1S2S3 to OaZ1Z2Z3 is 

defined with angle i   about OaS1. Inertial reference frames are depicted in fig. 1. 
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Fig. 1. Inertial reference frames 

 

Ox1x2x3 is bound reference with axes directed along the principal axes of inertia. 

Satellite attitude with respect to any inertial frame is defined using angles 

, ,    (rotation sequence 3-1-2) and absolute angular velocity components is bound 

reference frame  1 2 3, ,   . Quaternions are used for numerical simulation. 

Direction cosines matrix is 

cos cos sin sin sin sin cos cos sin sin cos sin

sin cos cos cos sin

cos sin sin sin cos sin sin cos sin cos cos cos

           

    

           

   
 

 
 
   

A .  (1.1) 

Dynamical equations of the satellite motion e with inertia tensor 

( , , )diag A B CJ  are 

d

dt
  

ω
J ω Jω M           (1.2) 

where M  is control magnetic torque.  

These equations are complemented with kinematics 

 

 

1 3

1 3

2 1 3

1
sin cos ,

cos

cos sin ,

tg sin cos .

d

dt

d

dt

d

dt


   




   


     

  

 

  

        (1.3) 
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Geomagnetic field is represented [5] with right dipole model and the averaged 

model (simplified dipole model). Right dipole implies Earth’s field to be of the dipole 

 0,0, 1 k  in OaY1Y2Y3 frame. Induction vector in frame OaS1S2S3 is 

2

3

3 2sin2 sin

3sin sin sin

cos

e
S

u i

u i i
r

i


 

 
  

 
 
 

B         (1.4) 

where u is argument of latitude; 0 4e m    , m  is Earth’s dipole strength 

(currently e 7.7245∙106 T∙km3), 
7

0 4 10     kg∙m∙А-2∙s-2 is magnetic constant. 

Simplified dipole model provides the most compact field representation in 

inertial space. Induction vector has constant length and uniformly moves on the 

circular cone. Induction vector in frame OaZ1Z2Z3 is  

0

sin sin2

sin cos2

cos

Z

u

B u

  
 

 
 
  

B          (1.5) 

where  2 3

0 1 1 3sin 2eB i r   , cone half-opening angle is 

 2 2

3sin2
tg .

2 1 3sin 1 3sin

i

i i


  
 

Satellite is subjected to «-Bdot» control. Dipole moment of magnetorquers is 

given by 

xd
k

dt
 

B
m . 

2. Satellite rotation stability 

Here simplified dipole model is used. Satellite motion is considered in OaZ1Z2Z3 

frame. Control dipole moment of magnetorquers is 

1 2
Z

Z

d
k k

dt
    

B
m m m ω AB A .       (2.1) 

Satellite angular velocity is always considered fast when «-Bdot» algorithm is 

studied, 0ω ω . In this case second term in (2.1) may be omitted. If only first part in 

(2.1) is implemented satellite angular velocity is asymptotically damped to zero. If 

second term is preserved angular velocity is damped approximately to double orbital 

velocity. In the end of damping process second term becomes of the same order as 

the first and cannot be omitted. 



6 

 

Suppose the satellite is spun about its third axis and find conditions providing 

the existence and stability of the motion 0   , 1 2 0   . Control dipole 

moment is this case is 

   

   
3 0

3 0

cos 2 2 cos 2

sin sin 2 2 sin 2

0

u u

k u u

   

   

    
 

     
 
 

m . 

This implies 3 02   and 02u   . The satellite and geomagnetic induction 

vector rotation rates are exactly the same. Suppose 0 0   and obtain linearized 

equations in the vicinity of motion 2u  , 0   , 1 2 0   , 3 02  . 

Direction cosines matrix is 

cos2 sin2 sin2 cos2

sin2 cos2 cos2 sin2

cos2 sin2 sin2 cos2 1

u u u u

u u u u

u u u u

  

  

   

   
 

   
 
   

A , 

geomagnetic induction vector in bound frame 

0

sin cos

sin cos

sin cos

x B

 





  
 

  
 
    

B , 

control dipole moments components are 

2 3 0 0

1 0 0 0 1 2 0 0

1

cos sin 2 sin 2 cos 1

2 sin 2 cos cos , 2 sin .

sin

kB kB

    

      

 

      
   

        
   
      

m m   

Dimensionless linearized equations of motion are 

 

 

 

1 2 1

2 2

2 1 2 3

2

3 2 3

3 1 2

2 2 ,

2 cos sin cos 2cos ,

cos sin sin 2sin cos ,

, 2 , 2 .

A A

B B

      

       

    

       

  

      

     

    

    (2.2) 

Here argument of latitude is used instead of time, angular velocity is referred to 

the orbital one, 2

0 0kB C  , A C A  , B C B  ,  A B C A   , 

 B C A B   . Equation for   is decomposed. It is omitted in ongoing analysis. 

Characteristic polynomial for (2.2) is 

 
5

0

0j

j

j

P C 


  ,         (2.3) 
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coefficients are 

5

2 2

4

2 2 2 2

3

2 2 2

2

2 2

1

2

0

1,

cos sin ,

cos sin 4 4,

4 4 sin 4 sin 4 cos ,

4 sin 16 ,

16 sin .

B A

A B A A B

A B A B A B

A B A B

A B

C

C

C

C

C

C

    

      

        

    

  



  

   

    

 

  

  

Necessary stability conditions are 0jC  . This is obviously true for 4C  and 5C . 

0 0C   if 0A B   , so C  is either maximum or minimum moment of inertia. 

Remaining jC  are also positive in this case. Further investigation of polynomial (2.3) 

is complicated by overburdened coefficients jC . Note that equations (2.2) have the 

form 

0 1 x A x A x  

where  1 2 3, , , ,    x . Parameter   may be considered small since magnetic 

control system frequently employs weak magnetorquers. Write characteristic 

exponents in the same form, j j j    . Zero approximation ( 0  ) exponents are 

easily found, 

1,2

3

4,5

2 ,

0,

2 .

A B i

i

  





  



 

  

Here i  is imaginary unit. Here necessary stability condition 0A B    was used. 

Characteristic polynomial coefficients are j j jC A B  , 

5

4

3

2

1

0

1,

0,

4 4,

0,

16 ,

0.

A B

A B

A

A

A

A

A

A

 

 





  



 



  

5

2 2

4

3

2 2 2

2

1

2

0

0,

cos sin ,

0,

4 4 sin 4sin 4 cos ,

0,

16 sin .

B A

A B A B A B

A B

B

B

B

B

B

B

 

     

 



  



    



  

  

Terms of the order of  2O   are omitted. Characteristic polynomial is 

    
5

0

0
j

j j

j

P A B    


     . 
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Taking into account that j  satisfy (2.3) first order approximation becomes 

 

5

0

4

1

0

1

k

j k

k
j

k

j k

k

B

k A













 






. 

Taking into account coefficients and zero order approximation this yields 

   

 

2

1,2

1 cos 1

2 1

A B A B A B

A B

     


 

   
 


, 

2

3 sin    , 

   

 

2

4,5

1 cos 1
.

2 1

A B B A

A B

   


 

   
 


  

Due to inertia properties 1A   and hence 4,5 0  . However 1,2 0   if and only 

if 0, 0B A   . So only rotation around the maximum axis of inertia is 

asymptotically stable. 

3. Stabilization accuracy 

Simplified dipole model provides general qualitative result – stable rotation with 

double angular velocity. Direct dipole model is more accurate and has one important 

peculiarity. Geomagnetic induction vector rotation is non-uniform. We use this 

property to refine both direction of spinning satellite axis in inertial space and this 

rotation rate. Poincare method for periodical solutions of differential equation is used 

for this purpose [6].  

3.1. Satellite on near equatorial orbit 

Satellite motion is represented with respect to OaS1S2S3 frame. Small parameter 

is orbit inclination i . Geomagnetic induction vector is decomposed retaining the 

second order of small parameter 

2 2

3 3 3

0 3 2sin2 0

0 1 3sin 0 .

1 0 1 2

e e e
S

u

u i i
r r r

  
     

     
   

     
          

B  

Equation of motion have the form 

     2

1 2i i  x f x g x g x         (3.1) 

where  1 2 3, , , , ,     x . Periodical solution of (3.1) is also of the form  

2

0 1 2.i i  x x x x           (3.2) 
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Note that 0x  is (3.1) solution for 0i   (generating periodical solution). Asymptotical 

stability of solution  0 , 0, 0, 0, 0,u  x  may be proven just like in previous 

section, so this is the only periodical solution. Angular velocity   is arbitrary. 

Substituting (3.2) into (3.1) we obtain for different orders of magnitude of i   

0i   0 0 ,x f x  

1i   
0

1 1 1 0 ,


 
 x

f
x x g x

x
 

2i   
0 00

2

1
2 2 1 1 1 2 02

1 1
.

2 2

T  
   

  x xx

f f g
x x x x x g x

x x x
 

First order approximation equations are decomposed into two systems 

   

   
1 1

3 2 2 sin 2 1 2sin

3 2 2 cos 2 1 2cos

0

0

A

B

u u

u u






       
 

        
 
 
 
 

z Fz ,    (3.3) 

     1 1 1

3 30,     

where 
        1 1 1 1

1 1 2, , ,   z ,  
2

3

0ek r C    is a new parameter. 

0

0

1 0 0

0 1 0

A A A

B B B

   

   

    
 
  

 
 
 

 

F .   

First order does not allow the exact value   to be determined. Second order 

approximation equations are used, 

 2 2 1u z Fz G z , 

       2 2 2

3 33 1 cos2 5 9,u         

where  uG  is periodical matrix. Equation for 
 2

3  provides condition of periodical 

solution existence 1.8 . Satellite spins a little slower than in the simplified dipole 

magnetic field. 

Equilibria perturbation is characterized by equations (3.3). Unperturbed system 

equilibrium position is asymptotically stable. General solution of (3.3) asymptotically 

tends to zero. Partial solution has governs system behavior. It may be written as 

   2 2cos sin cos 2 sin 2p u u u u          z a b a b .   (3.4) 
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Constant vectors a  and b  are obtained by substituting (3.4) into (3.3), 
1

4 4

4 4

,



  

  

      
     

      

a E F q

b F E p
 

 

 

1

4 42 2

4 42 2

2

2



 

 

     
     

      

E Fa q

F Eb p
 

where 

 0, 1 2 , 0, 0B   q ,  1 2 , 0, 0, 0B   p , 

 2 3 2   q q ,  2 3 2   p p . 

Calculations lead to 

 0, 0, 0, 1 2  a ,  0, 0, 1 2, 0 b . 

2q  and 2p  calculation involves block matrix inverse  

    

   

1 1
2 2 2 2 11

4 4 4 4 4 4
4 4

1 1
1 2 2 1 2 2 14 4

4 4 4 4

1
 




  

 
  

  


 
    

 

 
      

          
 

E E F E F FE F

F E
F E F F E F F

. (3.5) 

Since 2 1   (3.5) becomes 
1 2 2 1

4 4

1 2
4 4

 

 

  


 


   
   

      

E F F F

F E F F
. 

Therefore  

   3 2 1 1 2 2

1

0

0
3 cos 3 sin

1 2sin

1 2cos

u u
u

u

        

   

 
 
     
 
 
  

z F q F p F q F p . 

Since   is small solutions 
 1  and 

 1  are mainly governed by a  and b , 

 1
1 2sin u   , 

 1
1 2cos u    . 

Rotation axis deviates by the angle 33  from the orbit normal, 

   

   

33 acos cos 1 2 sin1.8 cos 1 2 cos1.8

1 cos 1 2 sin9 5 cos 1 2 cos9 5
2asin

2

2asin1 4 1 2 .

i u i u

i u i u

i i

     

 
 

 

  (3.6) 

Therefore angle between the maximum moment of inertia axis and normal to the 

orbit is approximately equal  to the half of the inclination. 
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3.2. Near polar satellite 

Near polar orbits are of more interest for magnetically actuated satellites. 

Consider this case and new small parameter 2 i   . Geomagnetic induction 

vector is decomposed as 

2 2 2

3 3 3

3 2sin2 0 3 2sin2

1 3sin 0 1 3sin .
2

0 1 0

e e e
S

u u

u u
r r r

  
 

      
     

    
     
     
     

B  

Generating solution equations are divided into two systems. Out of plane motion 

allows trivial solution 0   , 1 2 0    again. Rotation around maximum 

moment of inertia persist. Rotation rate becomes varying. This rate is governed by the 

equation 

   3 1 3 2f u f u            (3.7) 

where 

   

   

2

1

2

2

1 3sin ,

3 1 sin .

f u u

f u u





 

 
  

Solution of (3.7) is (assume  0 0u  ), 

       
3 3 2

0

0

u
F u F x

e f x e dx 
  

  
 

        (3.8) 

where 

   1

0

5 3
sin2

2 4

u

F u f x dx u u
 

   
 

 .      (3.9) 

Integral in (3.8) poses a problem. Rewrite it as 

       
5 3 5 3

sin2 sin2
22 4 2 4

2

0 0 0

5 3 5 3sin2 sin2
2 4 2 4

0

2 1 3sin

2 .

u u u
x x x x

F x

u
u u x x

g u f x e dx e dx x e dx

e e e dx

 

  

 



   
    

   

 
  

 

    

 

  



  

Hence 

     
5 3

sin2
2 4

3 3

0

0 2

u
x xF u F u

e e e e dx
 

  
  

   
 

 . 

Note that 1 sin2 1x   . Angular velocity is bounded by following relations 

   
5 3 5 33 3 3 3sin2 sin2sin2 sin2
2 4 2 44 4 4 4

3 3 3

4 4
0 1 0 1

5 5

u u u uu u

e e e e e e
    

  
   

      
         . (3.10) 
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Influence of the second term in (3.9) vanishes as argument of latitude rises. This 

term may be omitted given appropriate time interval and 

       

   

2 5 2

2

0 0

5 2
5 2

2 2

3 1 sin

sin 1 8 1
6 5 sin 4cos 1 .

25 16 125 80 5

u u
F x x

u
u

g u f x e dx x e dx

e u
u u e








 
  

   

  
      

   

 
  

Substituting into (3.9) and (3.8) brings angular velocity of rotation around the 

maximum moment of inertia 

     
5 3 5 2sin2

5 22 4

3 3 2 2

sin 1 8 1
0 6 5 sin 4cos 1

25 16 125 80 5

uu u
ue u

e u u e


   
  

 
  

 
   

        
    

.(3.11) 

Angle   in generating solution is found integrating (3.11).  

First order equations are 

   1 1u u x F x g  

where           3, 2 , 4 2 , 2 2 , 2 , 2ij ijF F u u u u             ,   are 

trigonometric functions (sine and cosine). They appear in relations for F  components 

linearly (exact expression of F  can be found in appendix). These equations cannot be 

solved. Approximate solution of the first order equations is found using Poincare 

method again. Small parameter is   (control torque value). Solution of the equations 

of motion is represented as 

 0 1 0 0 1      x x x x y y , 

    0 30,0, , ,0,0u u x , matrix F  is    0 1u u F F F . Generating solution 0y  

and first order approximation 1y  are found from equations 

0 0 0 ,z F z             (3.12) 

   1 0 1 1 0 1u u  z F z F z g          (3.13) 

and 
     0 0 0

3 30,    , 

       1 0 1

3 33 2cos2 5 2 , 0u      

where 
        1 1 1 1

1 1 2, , ,   z . 

Independent equations yield 
 0

3 0  , 
     1 0 1

3 , ,    are constant. 

Expressions in (3.12)-(3.13) contain  3 u . We use (3.11) to find its 

approximate value. This expression is decomposed assuming small parameter   and 

sufficient time interval, 
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3 9 5 3 5 sin2u   .         (3.14) 

This leads to 

0

0 9 5 0 0

9 5 0 0 0

1 0 0 9 5

0 1 9 5 0

A

B





 
 
 
 
 

 

F ,  

 

 
1

3 10sin0.2 9 10sin1.8

3 10cos0.2 9 10cos1.8

0

0

A

B

u u

u u
u





 
 

  
 
 
 

g . 

Matrix  1 uF  is written as      1 1 2u u u F G G , 

 1

5 1 1 9 9 9
cos3.6 sin3.6 sin3.6 cos3.6

4 8 8 40 4 40

1 5 1 9 9 9
sin3.6 sin3.6 cos3.6 sin3.6 ,

8 4 8 4 40 40

0 0 0 0

0 0 0 0

A A A A A A

B B B B B B

u u u u

u u u uu

     

     

 
     
 
   
 
 
 
 
 

G   

components         2 2 0.2 , 0.4 , 1.6 , 2ij ijG G u u u u     (exact expression for 

 1 uF  can be found in appendix). 

Generating solution for (3.12) is 

0

2 4

3 1

cos sin

sin cos

cos1.8 sin1.8 cos sin

sin1.8 cos1.8 cos sin

A u B u

A u B u

D u E u B u A u

D u E u A u B u

 

   

   

   

 
 

 
 
   
 
    

y  

where  1.8 , , ,A B B A i i              , , , ,A B D E  are constant. They 

are found from the existence conditions of periodical solution of equations (3.13). 

This implies that heterogeneous part    1 0 1u uF z g  does not contain frequencies   

and 1.8 (Eigen frequency of 0F ).  1 uF  and  1 ug  contain only rational numbers so 

0A B  . Constants ,D E  are found from absence of frequency 1.8 in 

   1 0 1u uG z g  (matrix  2 uG  may be omitted) so 0, 4 9E D  . 

Approximate solution of equations of motions is 

   
1 2 0,

4 9 2 cos1.8 , 4 9 2 sin1.8 ,i u i u

 

   

 

    
  

3  is governed by one of the expressions (3.10), (3.11), (3.14),   can be found 

integrating 3 . Axis of the maximum moment of inertia deviates from the orbit 

normal by the angle 
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     33 acos cos 4 9 2 cos1.8 cos 4 9 2 sin1.8i u i u         . 

Decomposing this analogous to (3.6) provides  33 4 9 2 i    . Deviation is 

slightly less for near-polar orbits. 

4. Numerical simulation 

Numerical simulation was carried out with following parameters: 

 Inertia tensor  1.4,1.6,2.0J  kg∙m2 

 Orbit inclination 75°, altitude 750 km 

 Initial conditions: attitude angles 50°, angular velocity components 01.1   

 Control gain 5∙ 510  N∙m∙s/Т2∙kg∙m (approximately 0.11  ) 

Fourth order Runge-Kutta with constant time step 1 s was used. Fig. 2 brings 

simulation results for the right dipole model. Fig. 3 presents analogous result for 

inclined dipole model.  

  
Fig. 2. Near polar orbit, right dipole 

model 

Fig. 3. Near polar orbit, inclined dipole 

model 

 

Fig. 2 verifies analytical results. Axis of maximum moment of inertia is 

stabilized with 5.5-7° accuracy while analytical expression provides 6.5°. Inclined 

dipole model observes almost three times worse accuracy. Horizontal line on figures 

corresponds to angular velocity 01.8 . Near equatorial orbit yields same resultsю 

Figures 4 and 5 provide results for orbit inclination 60°. Right dipole model is used in 

both cases. Gravitational torque is taken into account for Fig. 5. 



15 

 

  
Fig. 4. Inclination 60°,  

right dipole model 

Fig. 5. Inclination 60°, gravitational 

torque 

 

Arbitrary orbits that far from near polar or near equatorial yield spinning axis 

pointing accuracy of about 10-12°. Gravitational torque acts as a restoring one. 

Moreover its magnitude is almost comparable with the control magnetic torque. As a 

result stabilization accuracy is better. 

Conclusion 

Magnetically actuated satellite with «-Bdot» damping algorithm is considered. 

Slow motion of the satellite is studied. Rotation around the maximum moment of 

inertia is proved to be asymptotically stable in simplified dipole geomagnetic field. 

Rotation velocity is found in right dipole field. Maximum moment of inertia axis 

attitude in inertial space is found. 
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Appendix. Some relations 
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