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M.IO. OBuunnukoB, /I.C. Poagyrun, C.C. TkaueB
HccnenoBanre TOUHOCTH ajirOpUTMa aKTUBHOTO MarHUTHOTO IeMII()UPOBAHUS

PaccmarpuBaeTcst CyTHHK, OCHAIICHHBI MAarHUTHOM CHCTEMOW OpHEHTAIlUH,
peau3yoIei alropuT™ JeMI(pUpPOBaHUs YII0Boi ckopoctu «-Bdoty. Uccnenyercs
NOBEJICHUE CIyTHHKA B KOHIE MEpPEeXOAHBIX MpoueccoB. [lokazaHo, YTO CIyTHUK
MEIIJICHHO BpallaeTCs BOKPYT OCH MaKCHUMaJIbHOTO MOMEHTA WHEPIIMH, HailjeHa
BEJIMUYMHA CKOPOCTH BpaimieHus. Mcciemyercs TOYHOCTh OPUEHTAllUM CIYyTHUKA B
JUTIOIBHON MOJIEJIM T€OMarHuTHOTO 1oJisi. [[poBoauTCS YMCIEHHOE MOJIETUPOBAaHUE.

Knrwuesvie cnosa: marauTHasi cucteMa opueHTaum, nemmduposanue, Bdot

Mikhail Ovchinnikov, Dmitry Roldugin, Stepan Tkachev
Study of the accuracy of active magnetic damping algorithm

Attitude motion of a satellite equipped with an active magnetic attitude control
system is considered. Control system implements «-Bdot» damping algorithm.
Satellite behavior is analyzed in a steady-state motion. Slow spinning around the
principal axis of maximum inertia is proven, angular velocity is found. Attitude
accuracy in dipole geomagnetic field model is studied. Numerical analysis is carried
out.
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Introduction

Magnetic attitude control system is implemented on almost every modern small
satellite. Even big and complex spacecraft utilize this system quite frequently.
Magnetic control system has two main tasks: angular velocity damping and reaction
wheel angular momentum unload. This work is devoted to the first problem. Attitude
acquisition phase was considered by authors in [1,2] under fast rotating satellite
assumption. In this paper satellite angular velocity is comparable with the orbital one.
This attitude mode is relevant due to the most used magnetic damping algorithm
«-Bdot» [3,4]. Its name implies that the control dipole moment is opposite to the
geomagnetic induction vector change. Satellite acquires approximate rotation
information with respect to geomagnetic field. Control system should spin satellite in
the opposite direction effectively cancelling the rotation. However geomagnetic
induction vector motion with respect to the satellite is due to its vector rotation in
inertial space also. So the satellite should end up spinning with approximately double
orbital angular velocity. Here this rotation is proven to be about the principal axis of
the maximum moment of inertia. Spinning velocity value is refined, satellite attitude
IS assessed.

1. Equations of motion and geomagnetic field models

The satellite is considered to be a rigid body. Attitude is maintained using three
orthogonal magnetorquers. Actual attitude is available without any error. Four
reference frames are used:

Inertial reference frame O,Y1Y,Ys, O, is Earth’s center, O,Y3 is directed along
Earth’s spin axis, O,Y1 lies in the equatorial plane and is directed to the ascending
node, O,Y> is directed so the system to be a right handed.

Inertial reference frame 0,Z1Z,Z3 is got from frame O,Y1Y,Y3 turning by angle
® about O,Y;. This angle is a function of orbit inclination. It is defined with
averaged geomagnetic field model.

Inertial reference frame O,S:S,S; is tied to satellite’s orbit. O,S3 is normal to the
orbital plane, O,S; is directed to the ascending node, O,S; is directed so the system to
be a right handed. Frame O,S;5,S; attitude with respect to O,Y1Y,Y3 is defined with
rotation by angle i (inclination) about O,Y;, rotation from 0,S:S,S; to 0,217,735 is
defined with angle ® —i about O,S;. Inertial reference frames are depicted in fig. 1.



4

AYJ (Earth’s axis)

(orbital normal)

\ 4
&

O(l

(Earth’s center)

Y,Z,S

(ascending node)

Fig. 1. Inertial reference frames

Ox1X2x3 is bound reference with axes directed along the principal axes of inertia.
Satellite attitude with respect to any inertial frame is defined using angles
a, B,y (rotation sequence 3-1-2) and absolute angular velocity components is bound

reference frame (w,@,,®,). Quaternions are used for numerical simulation.
Direction cosines matrix is
cosa Cosy —sinasin Asiny  sinaCosy +cosasin fsiny —cos fsiny
A= —sinacos cosa Ccos ff sing | (1.1)
cosasiny +sinasin fcosy sinasiny —cosasin fcosy  COS COSy
Dynamical equations of the satellite motion e with inertia tensor
J=diag(A B,C) are

J?j—(;)+co><Jco:M (1.2)

where M is control magnetic torque.
These equations are complemented with kinematics

da _ (-, siny +w;cosy)

dt cosp: ket s

%—f=w1005y+wssiny, (1.3)
dy

gl +19 (e, siny —w,cosy).
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Geomagnetic field is represented [5] with right dipole model and the averaged
model (simplified dipole model). Right dipole implies Earth’s field to be of the dipole
k=(0,0,-1) in OaY1Y2Ysframe. Induction vector in frame 0aS:S:Ss is

—3/2sin2usini
B, :% —3sinusini+sini (1.4)
COSi

where u is argument of latitude; s, =z, /47, p, is Earth’s dipole strength
(currently g, =7.7245-10° T-km®), 1, =47 -107" kg-m-A2s2 is magnetic constant.
Simplified dipole model provides the most compact field representation in

inertial space. Induction vector has constant length and uniformly moves on the
circular cone. Induction vector in frame 0,212,753 is

—sin®sin 2u

B, =B,| sin®cos2u (1.5)
cos®
where B, = (1+ V1+3sin? i),ue/Zr3 , cone half-opening angle is
1O = 3sin 2i |
2(1—3sin2 i+ 1+ 3sin’ i)
Satellite is subjected to «-Bdot» control. Dipole moment of magnetorquers is

given by
m=-k dB, :

dt

2. Satellite rotation stability

Here simplified dipole model is used. Satellite motion is considered in 0,217,735
frame. Control dipole moment of magnetorquers is
m=m1+m2:km><ABZ—kAd§’tZ. (2.1)

Satellite angular velocity is always considered fast when «-Bdot» algorithm is

studied, @ > ,. In this case second term in (2.1) may be omitted. If only first part in

(2.1) is implemented satellite angular velocity is asymptotically damped to zero. If
second term is preserved angular velocity is damped approximately to double orbital
velocity. In the end of damping process second term becomes of the same order as
the first and cannot be omitted.
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Suppose the satellite is spun about its third axis and find conditions providing
the existence and stability of the motion f=»=0, o =, =0. Control dipole

moment is this case is
—,CoS (& —2u) + 2w, cos(a — 2u)
m=ksin®| «;sin(a—2u)—2w,sin(a—2u)
0
This implies @, =2@, and o =2u+¢,. The satellite and geomagnetic induction
vector rotation rates are exactly the same. Suppose o, =0 and obtain linearized
equations in the vicinity of motion a=2u, f=y=0, @ =wv,=0, @, =20,.
Direction cosines matrix is
cos2u—asin2u  sin2u+acos2u  —y
A=| -sin2u—acos2u cos2u—asin2u p
yCO0S2u+ fsin2u  ysin2u—fgcos2u 1
geomagnetic induction vector in bound frame
asSin®—y cos®
B, =B, sin®+£cos® |,

—[sin® + cos®
control dipole moments components are
@, C0SO — @, SINO — 2@, SINO — 2w, COSOL 1
m, =kB, 20,SINOa — 2w, C0SOy — @, COSO , M, =2w,kB,sin®| —« |.

@, SINO 14
Dimensionless linearized equations of motion are
@, = 2,0, — 0, (w0, +27),
0, = 2450 + O£ (~,C05* O+ @, SINOCOs O + 2¢05° O,
(2.2)

i, = £(,c0s Osin @ — w,sin* @ - 2sinOcosO),
& = w,, B=0w+2y, 7 =w,—2p.

Here argument of latitude is used instead of time, angular velocity is referred to
the orbital one, &=kB:/Cw,, 6,=C/A, 6,=C/B, 1,=(B-C)/A,
A5 =(C—A)/B. Equation for « is decomposed. It is omitted in ongoing analysis.
Characteristic polynomial for (2.2) is

P(@):icjzi -0, (2.3)



coefficients are

C =1,

C,=0,£c08° O +¢sin*O+0,¢,

C, =0,0,£°cos’ ®+0,&°sin* @— 44,4, +4,

C, =40,&1, — 42, A,e5IN° O +4gsin’ © —41,0,£¢05° ©,
C,=40,A,£°si® @164, 1,

C,=-164,,¢£sin’ ©.

Necessary stability conditions are C; >0. This is obviously true for C, and C;.
C,>0 if 2,4,<0, so C is either maximum or minimum moment of inertia.
Remaining C; are also positive in this case. Further investigation of polynomial (2.3)
is complicated by overburdened coefficients C,. Note that equations (2.2) have the

form
X=AX+ecAX
where x=(,®,,@;,B,7). Parameter & may be considered small since magnetic

control system frequently employs weak magnetorquers. Write characteristic
exponents in the same form, A, = 4, +&n;. Zero approximation (& =0) exponents are

easily found,

My, =2\, A1,
H; =0,

My s = 210,

Here i is imaginary unit. Here necessary stability condition 1,4, <0 was used.
Characteristic polynomial coefficients are C; = A, +¢B;,

A =1, B; =0,

A, =0, B, =8, cos’®@+sin*@+46,,

A =-42,2, +4, B, =0,

A, =0, B, =460,4, — 44,4, sin* ® +4sin* ® — 44,6, cos’ O,
A =-164,4s, B, =0,

A =0. B, = 16,4, sin’ ©.

Terms of the order of O(az) are omitted. Characteristic polynomial is

P(Iu+877):io(Aj +gBj)(,u+e77)j =0.
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Taking into account that ; satisfy (2.3) first order approximation becomes
5
Zﬂ? B,
n=-— k=0

Z(k+1)/’:'('6\«+1

k=0
Taking into account coefficients and zero order approximation this yields

0,45 (14 4,) + 0, c0s* O4, (g —1)

Thy = 2(Apg +1) ’
17, =—sin’ @,
. _ 0,(1-%)+6, cosz®(/1A+1).

. 2(Ap 25 +1)

Due to inertia properties |1,|<1 and hence 7, <0. However 7,, <0 if and only
if 4;>0,4,<0. So only rotation around the maximum axis of inertia is
asymptotically stable.

3. Stabilization accuracy

Simplified dipole model provides general qualitative result — stable rotation with
double angular velocity. Direct dipole model is more accurate and has one important
peculiarity. Geomagnetic induction vector rotation is non-uniform. We use this
property to refine both direction of spinning satellite axis in inertial space and this
rotation rate. Poincare method for periodical solutions of differential equation is used
for this purpose [6].

3.1. Satellite on near equatorial orbit

Satellite motion is represented with respect to O,S;S,S; frame. Small parameter
is orbit inclination 1. Geomagnetic induction vector is decomposed retaining the
second order of small parameter

0 —3/2sin2u 0
Bs=% 0 +% 1-3sin’u i+% 0 |ix
1 0 -1/2
Equation of motion have the form
x =f(x)+ig, (x)+i’g, () (3.1)

where X =(a,, @,, @, &, B, y). Periodical solution of (3.1) is also of the form

X =X, +iX, +i°X,. (3.2)
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Note that x, is (3.1) solution for i =0 (generating periodical solution). Asymptotical
stability of solution x,=(Qu, 0,0, 0,0, Q) may be proven just like in previous

section, so this is the only periodical solution. Angular velocity Q is arbitrary.
Substituting (3.2) into (3.1) we obtain for different orders of magnitude of i

i X, =F(X,),

it )'(1:ﬂ X1+91(Xo)’
OX |y,
C1of 1 . 0% &g
i2 XZ:E&XOX2+§XI_6XZXOX1+_8><1XOX1+92(XO)'

First order approximation equations are decomposed into two systems
6,] 3/2(Q—2)sin(Q—2)u-1/2sinQu |
2 —Fz, 4 6, [ 3/2(Q2—2)cos(Q—-2)u—1/2cosQu | | (3.3)
0
0

A =0, a" = "
where z, = (a;l(l), A, Y, y(l)), e=k(u/ r3)2 /CcoO is a new parameter.
50, Q1, 0 -0,
Qi -¢6, €6, O
1 0 0 Q
0 1 -Q 0

First order does not allow the exact value Q to be determined. Second order
approximation equations are used,
z,=Fz,+G(u)z,

i) =35(Q-1)cos2u—5Q+9, ¢ = &?

where G(u) is periodical matrix. Equation for a)§2> provides condition of periodical

solution existence Q2 =1.8. Satellite spins a little slower than in the simplified dipole
magnetic field.

Equilibria perturbation is characterized by equations (3.3). Unperturbed system
equilibrium position is asymptotically stable. General solution of (3.3) asymptotically
tends to zero. Partial solution has governs system behavior. It may be written as
z, =a,c0sQu+b,sinQu+a, ,cos(Q—-2)u+b, ,sin(Q-2)u. (3.4)
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Constant vectors a and b are obtained by substituting (3.4) into (3.3),

aQ]:[QE4><4 —-F Jl(qgj
bQ —F _QE4X4 Pq ’

aﬂzj _[(Q_Z)E4x4 —F }1 KQsz
bQ—Z —F - (Q - 2) E4><4 Pao-s
where

9o =(0, -126,6, 0, 0), po=(-126,¢, 0, 0, 0),

Uoo :_3(9_ Z)QQ’ Pa-2 :_S(Q_ z)pQ'

Calculations lead to

a,=(0, 0, 0, -1/2),b,=(0, 0, /2, 0).

d,, and p,_, calculation involves block matrix inverse

-1

(KE4X4 -F ]1_ %(E4x4_<E4x4+K2F_2)_1) _(E4><4+K2F_2) F (3.5)
-F  -xE,, B =) 22\t a1 2c2\ L1 .
FHE+xF?) —kF P +xF?) F
Since kx=Q—2<«1 (3.5) becomes
kE,., -F B K’F?  —F*
( F —KEMJ z( _F —K‘sz.
Therefore
0
z, = 0 -3(x°F g, —xF 'pg, )cosxu+3(xF g, + x°F ?p,, )sinku.
1/2sinQu
—1/2cosQu

Since x is small solutions ,B(l) and 7(1) are mainly governed by a, and b,,,
BY =1/2sinQu, Y ~-1/2cosQu.

Rotation axis deviates by the angle Ay, from the orbit normal,
Ay, =acos| cos(1/2isin1.8u)cos(—1/2icos1.8u) |=

—asin \/1— cos(1/2isin 9/5u;cos(—]/2 icos9/5u)

~ (3.6)

~2asinl/4i ~1/2i.
Therefore angle between the maximum moment of inertia axis and normal to the
orbit is approximately equal to the half of the inclination.
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3.2.  Near polar satellite

Near polar orbits are of more interest for magnetically actuated satellites.
Consider this case and new small parameter & =7/2—i. Geomagnetic induction

vector is decomposed as

—3/2sin2u 0 —3/2sin2u
B, =£&| 1-3sin?u [+£¢| 0|5 +25| 1-3sin’u |52
r r
0 1 0

Generating solution equations are divided into two systems. Out of plane motion
allows trivial solution f=y=0, o =, =0 again. Rotation around maximum

moment of inertia persist. Rotation rate becomes varying. This rate is governed by the
equation
a,+ T, (u)a, =, (u) (3.7)
where
f,(u)=&(1+3sin’u),
f,(u)=3¢(L+sin’u).

Solution of (3.7) is (assume u(0)=0),

, =eF<“>[w3(o)+j fz(x)eF(X)dxj (3.8)
where

I 5 3.
F(u)zjfl(x)dx:g(au—zsmmj. (3.9)

0
Integral in (3.8) poses a problem. Rewrite it as
u F u g(§x—§sin2x] u . g(§x7§sin2x)
g(u)=[f,(x)e"Max=¢f2e'? " Jdx+e[(1+3sin’ x)e \?
0 0

0

dx =

g@u—%sinZu] Y g§x —gﬁsinZX
0
Hence

r €§X —sgi 2X
a)3:eF(“)[a)3(0)+eF(“)+2£ e2g 4 dX}.

0
Note that —1<sin2x <1. Angular velocity is bounded by following relations

fa[EujsinZuJ _§g §gsin2u —g(—u——sinZuj 4 §g §gsin2u
e 2 ¢ co3(0)+1+ge4e4 <wy<e *° w3(0)+l+ge4 et . (3.10)
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Influence of the second term in (3.9) vanishes as argument of latitude rises. This
term may be omitted given appropriate time interval and

g(u)= T f,(x)e"Mdx ~ 35]1 (1+sin® x)e¥**dx =
0

0

5/2eU @i
=b6e ezﬂ(&ssinu—4cosu)+1(++1j(95/2su_1) _
25¢° +16 e\125¢°+80 5

Substituting into (3.9) and (3.8) brings angular velocity of rotation around the
maximum moment of inertia

—g(EujsinZuj e u 1 8 1
w~e 2 a)3(0)+68[ (553inu—4cosu)+—(—+—j(e5/25“—1)] (3.11)

5/2&U o;

25¢% +16 e\125¢°+80 5
Angle « in generating solution is found integrating (3.11).

First order equations are
X, =F(u)x,+g(u)
where F,=F, (w3,¢7(2u—a),go(4u—2a),¢)(2u—2a),g0(2a),g0(2u)), @ are
trigonometric functions (sine and cosine). They appear in relations for F components
linearly (exact expression of F can be found in appendix). These equations cannot be
solved. Approximate solution of the first order equations is found using Poincare

method again. Small parameter is ¢ (control torque value). Solution of the equations
of motion is represented as

X=X, +0% =X +5(Y, +£Y,),
X, =(0,0,; (u),a(u),0,0), matrix F is F(u)=F,+&F,(u). Generating solution y,
and first order approximation y, are found from equations

z,=Fz,, (3.12)
2,=FRz,+F(u)z,+9,(u) (3.13)
and

a')éo) =0, d(o) — éo)’

@ =(3/2cos2u—5/2) 0", ¢V =0
where zlz(a)l(l), o, pY, 7(1)).

Independent equations yield &” =0, &, &'”, o are constant.
Expressions in (3.12)-(3.13) contain @,(u). We use (3.11) to find its

approximate value. This expression is decomposed assuming small parameter ¢ and
sufficient time interval,
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@, =9/5+3/5¢&sin2u. (3.14)
This leads to
0 954, 0 0 0, (3/10sin0.2u - 9/10sin1.8u)
9/54, O 0 0 05 (—3/10c0s0.2u —9/10cos1.8u)
F, = , 0, (u)= :
1 0 0 9/5 0
0 1 -9/5 0 0

Matrix F, (u) is written as F, (u)=G, (u)+G, (u),

—§9A—10Acos3.6u 1HAs,in3.6u —gb’Asin3.6u —geA—geAcos&Gu
4" 8 8 40 4" 40

1 . 5 1 . 9 9 9 .
Gl(U)= 5083|n3.6u —ZHB+§GBsm3.6u 208—4—008c053.6u 4—0055|n3.6u

0 0 0 0
0 0 0 0

components  G,; =G,; (¢(0.2u),¢(0.4u),p(1.6u),p(2u)) (exact expression for

F.(u) can be found in appendix).
Generating solution for (3.12) is
Acos Au+ Bsin Au
—Ausin Au+Bucos Au
Dcosl.8u+Esinl.8u+ By, cosAu+ Ay,sin Au
—Dsinl1.8u + E cos1.8u+ Ay, cos Au + By, sin Au

where A=1.8,/-A A, t=\- /A0, 2 = 7 (1, 1£), A B, D, E are constant. They
are found from the existence conditions of periodical solution of equations (3.13).
This implies that heterogeneous part F, (u)z, +g, (u) does not contain frequencies 1

Yo=

and 1.8 (Eigen frequency of F,). F,(u) and g, (u) contain only rational numbers so
A=B=0. Constants D, E are found from absence of frequency 1.8 in
G, (u)z,+9,(u) (matrix G, (u) may be omitted) so E =0, D =4/9.

Approximate solution of equations of motions is
w, =w,=0,
B=4/9(x/2—1)cosl.8u, y =—4/9(x/2—i)sin1.8u,
o, is governed by one of the expressions (3.10), (3.11), (3.14), « can be found
integrating w,. Axis of the maximum moment of inertia deviates from the orbit
normal by the angle
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Ay, = acos[cos(4/9(7z/2 —i)cos1.8u)cos(—4/9(7z/2 - i)sin1.8u)] .
Decomposing this analogous to (3.6) provides Ay,, ~4/9(7z/2~1i). Deviation is
slightly less for near-polar orbits.

4. Numerical simulation
Numerical simulation was carried out with following parameters:

3 Inertia tensor J =(1.4,1.6,2.0) kg-m?

) Orbit inclination 75°, altitude 750 km

o Initial conditions: attitude angles 50°, angular velocity components 1.1,
o Control gain 5-10° N-m-s/T?kg-m (approximately & ~0.11)

Fourth order Runge-Kutta with constant time step 1 s was used. Fig. 2 brings
simulation results for the right dipole model. Fig. 3 presents analogous result for
inclined dipole model.

0 : : - B 01
o

oost! i

o,
005

oosp A\ W

Angular velocity °/s
angular velocity pis
[=3

01k

T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60
time, hours time, hours

20

20 T

third direction cosine

i 1 i i i i i i i i i
0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60
time, hours time, hours

Fig. 2. Near polar orbit, right dipole Fig. 3. Near polar orbit, inclined dipole
model model

Fig. 2 verifies analytical results. Axis of maximum moment of inertia is
stabilized with 5.5-7° accuracy while analytical expression provides 6.5°. Inclined
dipole model observes almost three times worse accuracy. Horizontal line on figures
corresponds to angular velocity 1.8,. Near equatorial orbit yields same resultsio

Figures 4 and 5 provide results for orbit inclination 60°. Right dipole model is used in
both cases. Gravitational torque is taken into account for Fig. 5.
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angular velocity ofs

L L 1 L | L L 1 L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
time, hours ftime, hours

third direction cosine
3

i i i i
0 5 10 15 20 25 30
time, hours time, hours

Fig. 4. Inclination 60°, Fig. 5. Inclination 60°, gravitational
right dipole model torque

Arbitrary orbits that far from near polar or near equatorial yield spinning axis
pointing accuracy of about 10-12°. Gravitational torque acts as a restoring one.
Moreover its magnitude is almost comparable with the control magnetic torque. As a
result stabilization accuracy is better.

Conclusion

Magnetically actuated satellite with «-Bdot» damping algorithm is considered.
Slow motion of the satellite is studied. Rotation around the maximum moment of
inertia is proved to be asymptotically stable in simplified dipole geomagnetic field.
Rotation velocity is found in right dipole field. Maximum moment of inertia axis
attitude in inertial space is found.
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Appendix. Some relations

—&0, (§+ flj Ao, + 0,1, 0 0 —&b,m,f,
5
A, + 0, f, -0, (Z - flJ 0 0 &b;f1,
Fu=l 0 g(§0032u—§j 0 0
2 2
0 1 0 0
0 0 0 0
0 -,
f, =gCOSZ(a—2u)+100820{—§C052(a—u)—§C052u,
8 8 4 4

f, :—§sin2(a—u)+gsin2(a—2u)+lsin 2a,
4 8 8
f,= 3a)3c052u—§c052u—§a)3—%a)3c032(a—u)+

T4

+9w3 cosZ(a—Zu)+la)3c032a+g.
8 8 2

5 3 . 9
-0, (24_ 91) g}LASII’I 2u+6,9, —geAgz —0,9;
3 . 5 9
gﬂ,B sin2u + 6,0, —0, (Z—glj 0:9; gé’sgz
F (U) =

0 0 0 §sin 2U
5

0 0 —§sin 2U 0
5

g,= gcosO.4u +10033.6u —Ecosl.6u - §COS 2u,
8 8 4 4

g, = —%sin1.6u —gsin 0.4u+ %sin 3.6u,

g; = 2 —icos 2U —gcosl.Bu + ﬂ% cos0.4u + gcosB.6u.
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