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À.Â. Çàêèðîâ, Â.Ä. Ëåâ÷åíêî, À.Þ. Ïåðåï¼ëêèíà, ß. Çåìïî

Âûñîêîïðîèçâîäèòåëüíàÿ ðåàëèçàöèÿ êîíå÷íî-ðàçíîñòíîãî ìåòîäà FDTD
äëÿ ñóïåðêîìïüþòåðîâ ñ ãðàôè÷åñêèìè ïðîöåññîðàìè

Àííîòàöèÿ. Îïèñàíà ðåàëèçàöèÿ êîíå÷íî-ðàçíîñòíîãî ìåòîäà íà ñäâèíó-
òûõ ñåòêàõ (FDTD) äëÿ ðåøåíèÿ çàäà÷ ýëåêòðîäèíàìèêè, â òîì ÷èñëå íà-
íîîïòèêè, òðåáóþùèõ áîëüøèõ âû÷èñëèòåëüíûõ ðåñóðñîâ. Ðåàëèçàöèÿ îñ-
íîâàíà íà ëîêàëüíî-ðåêóðñèâíîì íåëîêàëüíî-àñèíõðîííîì (LRnLA) àëãî-
ðèòìå DiamondTorre, ýôôåêòèâíîì ïðè ðàñ÷åòàõ íà ãðàôè÷åñêèõ ïðîöåñ-
ñîðàõ îáùåãî íàçíà÷åíèÿ (GPGPU). Îáñóæäàþòñÿ îñîáåííîñòè àëãîðèòìà
DiamondTorre äëÿ çàäà÷ íà ñäâèíóòûõ ñåòêàõ (íà îñíîâå ÿ÷åéêè Éè) ïðè
ðåàëèçàöèè íà ìíîãîïðîöåññîðíîì êëàñòåðå ñ ãèáðèäíîé àðõèòåêòóðîé. Àë-
ãîðèòìû ðåàëèçîâàíû ñ èñïîëüçîâàíèåì òåõíîëîãèé CUDA, OpenMP è MPI
â ïðîãðàììíîì êîìïëåêñå, ïðåäíàçíà÷åííîì äëÿ ðåøåíèÿ ðåàëüíûõ ôèçè÷å-
ñêèõ çàäà÷. Ïðåäåëû ïðîèçâîäèòåëüíîñòè îöåíåíû èç ïàðàìåòðîâ àëãîðèòìà
è ìîäåëè roo�ine ñóïåðêîìïüþòåðà TSUBAME 2.5. Ïîëó÷åííûå îöåíêè ñðàâ-
íèâàþòñÿ ñ ðåàëüíîé ïðîèçâîäèòåëüíîñòüþ ïðîãðàììíîãî êîìïëåêñà êàê íà
îäíîì âû÷èñëèòåëüíîì óñòðîéñòâå, òàê è ïðè ïàðàëëåëüíîì ìàñøòàáèðîâà-
íèè â ñëàáîé è ñèëüíîé ìåòðèêàõ. Ïðè ýòîì äîñòèãíóòà ïðîèçâîäèòåëüíîñòü
äî 0.65 · 1012 îáíîâëåíèé ÿ÷ååê â ñåêóíäó äëÿ òð¼õìåðíîé îáëàñòè ñ êîëè÷å-
ñòâîì ÿ÷ååê 0.3 · 1012.

Andrey Zakirov, Vadim Levchenko,

Anastasia Perepelkina, Yasunari Zempo

High performance FDTD code implementation for GPGPU supercomputers

Abstract. An implementation of FDTD (Finite Di�erence Time Domain)
method for solution of optical and other electrodynamic problems of high com-
putational cost is described. The implementation is based on LRnLA (Locally
Recursive non-Locally Asynchronous) algorithm DiamondTorre, which is devel-
oped speci�cally for GPGPU (General Purpose Graphical Processing Unit) hard-
ware. The speci�cs of the DiamondTorre algorithms for staggered grid (Yee cell)
and many-GPU devices are shown. The algorithm is implemented in software
for real physics calculation with the use of CUDA, OpenMP, MPI technologies.
The software performance limits are estimated through algorithms parameters
and computer model of TSUBAME2.5. The real performance is tested on one
GPU device, as well as on many-GPU cluster with strong and weak scaling tests.
The performance of up to 0.65 · 1012 cell updates per second for 3D domain with
0.3 · 1012 Yee cells total is achieved.
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1 Introduction

Finite Di�erence Time Domain (FDTD) method [1] is implemented in numer-
ous codes for simulation of electrodynamics. Among other possible applications,
it is used for design of optical devices, complex coatings, nanoantennas. The
method is easily extended for simulation of other wave processes, such as acous-
tics and elasticity waves [2].
As it comprises the base of many contemporary calculations, the qualitative

acceleration of the code performance would aid many aspects of supercomputer
research. This paper deals with one way of rethinking the traditional approach to
numerical solution of evolutionary Cauchy problem, the Locally Recursive non-
Locally Asynchronous (LRnLA) algorithms [3]. Based on this approach, we have
developed software for simulation of real optics on General Purpose Graphical
Processing Unit (GPGPU) and measured its e�ciency on one device, and on a
multi-GPU supercomputer.

1.1 Background

Traditional FDTD implementations are based on algorithms which correspond
to von-Neumann model of computations with parallel generalizations by Amdahl
(for OpenMP implementation) and Hoare (for MPI implementation). Among
the recent parallel models CUDA (OpenCL) should be noted, since these have
adequate support of vector level parallelism.
The ideal paradigm of CPU RAM as a main storage of processed data leads

to the fact that the majority of numerical scheme implementations use the com-
putational region traversal rules that are layerwise, and linear multidimensional
arrays for data structures.
Layerwise synchronization is the most obvious approach: after all �eld data in

the region is updated by one time step, the calculation for next time step begins.
The immediate consequence is a an essential limitation of the maximum lo-

cality of processed data. Since the memory subsystem is hierarchical, when the
computation region is upscaled, this leads to performance degradation at times
when the data size exceeds cache size.
For parallel implementation the layerwise approach requires layerwise syn-

chronization of parallel processors. This leads to the limitation of upscaling set
by communication environment latency, and imbalance of computation nodes'
loads.
These problems result in extremely low e�ciency of applications that use

these methods. For example, among FDTD software, Meep [4], Lumerical, have
e�ciency that is lower than 1%. Other implementations of FDTD on GPGPU is
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limited by GPU device memory [5].

1.2 Other space-time approaches

The di�erence between LRnLA method and the conventional methods is that
the optimization of computations deals not only with layerwise computation,
but traces data dependencies in 4D time (iteration) and space domain [6�8] (see
detailed in later sections).
Although this approach is not wide spread, the basics may be traced in works

by other authors. Developed since early 1980s, the so-called loop tiling and loop
skewing methods result in similar algorithms for simple domain geometry [9�12].
The research on loop blocking led to creation of cache-aware and cache-oblivious
algorithms [13], which were used later for stencil computations of partial deriva-
tive equations [14�16]. In 1D simulation these techniques lead to trapezoidal and
diamond blocking of space, with generalizations to 2D and 3D.
Among these approaches LRnLA has the following advantages:

• The approach takes account for the complexity of modern computers. The
space-time optimization account for all parallel levels, all levels of memory
subsystem.

• The theory is built on the model of the computer and allows a priori quan-
titative estimates of the performance of method implementation.

• The theory applies to any physics simulation with local dependencies, any
amount of dimensions.

The main di�erence lies in the approach of building the algorithms. In LRnLA
method, the best algorithm is chosen based on the analysis of both the computer
system (by creating a model of memory subsystem and parallel levels) and nu-
merical scheme properties (by constructing a dependency graph and tracing the
dependencies). It should be noted that some cache-oblivious algorithms coincide
with the algorithms of LRnLA family for lower dimensions.

2 Numerical method

FDTD (Finite Di�erence Time Domain) [1] numerical method is one of most
popular for simulation of wave phenomena, as it is accurate and robust. In the
problems of optics and other electrodynamic processes FDTD is used for numer-
ical solution of Maxwell equation in time-space domain:

∂ ~D

∂t
= ∇× ~H;

∂ ~B

∂t
= −∇× ~E, (1)
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Fig. 1: Yee cell. Apart from one basic cell
all �elds that in�uence the electric �elds in
it are shown (for 4th order scheme).

where ~E and ~D signify electric �eld,
~H and ~B signify magnetic �eld. ~E

and ~D, as well as ~H and ~B are
bounded by material equations. In
the most simple case, ~D = ~E, ~B = ~H.
Speed of light is considered equal to
1 in the chosen dimensionless units.
The simulation domain is subdi-

vided with Yee Grid. Electric and
magnetic �eld components are de-
�ned in di�erent positions inside the
unit cell (�g. 1), and shifted by half-
step in time
We use the scheme with 4th order

of approximation. Compared to the
2nd order scheme its stencil is wider
and for coarser meshes it is substan-
tially more accurate [17]. Scheme
stencil is cross-shaped.

3 Algorithm description

We use roo�ine [18] model to estimate the e�ciency of the algorithms. Al-
though other models exist [19], roo�ine model is the most convenient for the
current study. It shows only one level of memory subsystem hierarchy. In GPG-
PU the memory subsystem hierarchy is developed less compared to CPU-type
processors, so the roo�ine model appears to be the most suitable for GPGPU.
In it, the peak achievable performance is shown against the operational intensity
parameter. Operational intensity is calculated as the ratio of performable opera-
tions for the given amount of data to the size of this data. It is an attribute of the
algorithm in use. Depending on this parameter, the roo�ine model subdivides
algorithms into two groups: memory bound and compute bound. Naive FDTD
method implementation with layerwise synchronization has low operational in-
tensity, and is memory bound.
To increase performance it is necessary to increase operational intensity. It is

possible by avoiding stepwise synchronization. This is the main idea of the al-
ternative algorithms for stencil computations (trapezoids, time-slicing and time-
skewing [15,16,19�23])
LRnLA method suggests tracing the dependencies of the numerical method to

�nd the optimal computation order. The optimization is based on the hardware
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model. In this work, the construction of the algorithms and advantages of this
method is described on the example of DiamondTorre algorithm.

3.1 DiamondTorre algorithm and its CUDA

implementation

We describe an algorithm as computation order that follows from the sub-
division of 4D X-Y -Z-t computational region. Each mesh point in this space
has dependencies on some amount of points on the previous layer. By subdi-
viding the domain we �nd that some points are enclosed in a polytopes, the
points of which have dependencies on the data from adjacent polytopes. Each
polytope corresponds to a procedure of performing computations for all points
within it in some arbitrary order. By tracing the dependencies, we �nd that some
shapes have dependencies (direct or indirect), and some are asynchronous. The
dependent shapes are to be processed subsequently, asynchronous ones may be
processed in parallel. A set of such shapes constitutes the description of the al-
gorithm. By generalization, one shape also comprises an algorithm. Inside some
shape in 4D space we can estimate the operational intensity as amount of points
in it (proportional to the amount of necessary operations) divided by the amount
of separate spatial grid points in it (projection of the shape to 3D spatial grid,
proportional to the amount of data necessary for operations).

y
x

t
x

Fig. 2: The intersection of domain of in�u-
ence and domain of dependency of two 2D
diamond-shaped bases in 3D time-space

In 4D time-space the area of in-
�uence (and dependence) of some
point is presented by a light cone.
For FDTD numerical method, in the
discrete 4D space of �spatial grid-
time iteration� the areas of in�uence
and dependence are presented by 4D
pyramids with a 3D diamond shape
in their base. The Diamond shape
in the base of in�uence and depen-
dency domains suggests that domain
subdivision into the diamond-based
shapes (DiamondTile) leads to the
highest operational intensity. Dia-
mondTiles are merged into �towers�
(DiamondTorre, �g. 2). This decom-
position is 3D in X-Y -t domain with
2D diamonds in the base. This way
the whole 4D X-Y -Z-t computation-
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Fig. 3: Field components in one DiamondTile. Two options. (left) Dependencies
of one DiamondTile (Type II). Suppose that one type II DiamondTile is loaded
into GPU register. To calculate H-�eld diamond in it three E-�eld diamonds
need to be loaded. To calculate E-�eld diamond in it three H-�eld diamonds (to
the right, top, and bottom of it) need to be loaded (right).

al region can be tiled with one shape (except for boundaries). The pictured 3D
shape spans in two spatial coordinates (X and Y) and one time axis. In CUDA
implementation, one DiamondTorre is processed by CUDA-block. Grid points
along the remaining coordinate axis (Z) are updated using vector parallelism of
CUDA-threads in one block. DiamondTorre size is de�ned by two parameters:
the size of the base DTS, and its height TH.
More detailed explanation of algorithm, its parameters and implementation

for wave equation on 1 GPU can be found in [6]. Here the speci�cs of its imple-
mentation for FDTD method and many-GPU systems are described.
The correspondence of DiamondTile to components of staggered gird is illus-

trated on �g. 3. This is de�ned as the basic element for DiamondTile algorithms
for FDTD scheme for Maxwell equations with 4th order of approximation and its
size is DTS=1 by de�nition. It consists of two (E-�eld and H-�eld) diamonds that
are shifted along time axis (by half time step), as well as along one coordinate
axis (by 1.5 spatial step - half width of the chosen scheme stencil). DiamondTorre
consists of TH DiamondTile pairs, shifted in a similar manner against each other.
We refer to the algorithm DiamondTorre as a process of making calculations for
all points in the described 4D shape. In GPGPU implementation, DiamondTorre
is a CUDA kernel. DiamondTorre's with the same Y-axis position are processed
asynchronously by CUDA-blocks.
DiamondTorre base size DTS=1 is optimal in this case. Though higher DTS

leads to higher operational intensity, with DTS=2 or more the main limiting
factors are the size of register �le and instruction cache. Signi�cant performance
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Fig. 4: One element of data structure (left). Each element consists of 4 diamonds
(right)

drops are con�rmed if the data on one DiamondTile exceeds GPU register �le
size, or if instruction count in one DiamondTorre kernel exceeds instruction cache
size.
The register size is taken as 256 KB. If we choose the number of grid points

along Z axis as Nz = 384 (double precision) or Nz = 768 (single precision), the limit
of registers per CUDA-thread is estimated as 256K/(768 · 4) = 85. This roughly
corresponds to the amount of data for DTS=1. Also, in this case, one CUDA
kernel corresponding to DiamondTorre algorithm contains ∼ 1500 instructions.
One instruction takes ∼ 8 byte, which brings us very close to the instruction
cache limit (estimated as 16 Kb).
If we assume that one DiamondTile is loaded into GPU register (�g. 3), to

calculate one H-�eld diamond three E-�eld diamonds need to be loaded. The
resulting H-�elds need to be saved. It concludes one half of cell updates in Di-
amond, for the other half three H-�eld diamonds are loaded and one H-�eld
diamond is calculated and saved. According to this an estimate of data through-
put can be made. With TH → ∞, on average, 3 Yee cell data are to be loaded,
and 1 Yee cell data should be saved per one Yee cell update. This amounts
to 4× 6(�eld in a Yee cell)× 8(byte per �eld value, double precision) = 192 bytes.
Operation count for one cell update is about 110 Flop. Operational intensity is
obtained as their ratio, 0.57 Flop/Byte.
For any contemporary GPU this problem is memory-bound. The theoreti-

cal performance is estimated as P/192 Yee cell updates per second, where P is
GDDR5 memory bandwidth, 192 is the necessary data throughput, estimated
earlier. For example, with NVidia Tesla K20 (P = 224 · 109 bytes per second) this
amounts to 1.167 · 109 Yee cell updates per second (Ys).
Data is stored in linear 2D array, where each element is a set of vectors with

length Nz (the amount of points along z-axis). One element is shown on �g. 4.
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Such data structure is chosen to provide coalesced data access for the chosen com-
putation algorithms, and to minimize the amount of elements in data load/store
operations.

3.2 Calculation window

The important advantage of DiamondTorre algorithm is high performance for
large simulation domains, including those, where �eld data do not �t in device
memory. It is easily achieved by updating data in a �calculation window�, which
moves from right to left (according to the �gures above). Data load and save
to/from global RAM are performed asynchronously with computations. Only
the data for one following group of asynchronous DiamondTorres are loaded.
Data of DiamondTorres which are no longer necessary for the current TH update
are saved and deleted from device memory.
Performance does not decline in case the computation time of DiamondTorre

is longer than the time, necessary for memory copy to/from device. Since compu-
tation time increases linearly with TH, and the copy time is constant, with high
enough TH host-device transfers are completely concealed. If we do not account
for the boundary e�ects, operational intensity increases linearly with TH.

3.3 Small scale performance tests

The described algorithms are implemented in code, which features not only
the basic FDTD stencil computations, but also all the required methods for real
physics computations.

• FDTD simulation in 3D spatial domain with 4th order accurate scheme in
space;

• Perfectly Matched Layer absorbing boundary conditions;

• Total Field/Scattered Field wave source;

• Complex materials according to Drude, Drude-Lorenz model.

Small scale performance tests were conducted to �nd optimal algorithm pa-
rameters. We measure performance in Yee cell updates per second (Ys). This
number is usually of 109 order, so the main unit is GYs.
Fig. 5 shows the performance results for a problem size (600 × (3 × blocks) ×

384), with varied �blocks� parameter. For DiamondTorres lined up along Y axis,
one CUDA-block performs computation for one DiamondTorre. The tests were
conducted on Tesla K20x. It has 14 streaming multiprocessors (SMs). If the
number of involved SMs per device is less than 14, the performance is limited
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Peak performance

Fig. 5: Performance results for di�erent values of blocks

by GDDR5 access latency. The latency is about 500 clock cycles (about 500 ns).
From the Little's law [24], to cover this latency, at least 104 transactions are
necessary.
Maximum vector size (Nz, also equal to the amount of involved CUDA-

threads), for which the register �le of Kepler architecture is enough to keep
the data of all necessary diamonds, is equal to 384 for double precision. This is
why the data throughput is not utilized completely when all 14 SMs are involved
(∼ 14 ·384 ≈ 6000 transactions). It is the main reason why the performance is only
90% from peak one. It becomes more than 109 GYs for su�ciently large TH.

TH is inevitably smaller near region boundaries, so the performance for real
problems is slightly lower (few percent).
Performance results for di�erent values of TH parameter are shown on �g. 6.

Since TH parameter is proportional to the algorithm locality, and the vertical
axis is performance (normalized by the maximum achieved with the current
parameter set), we may plot the roo�ine model on the same graph to visually
comprehend the limitations. For low TH performance is limited by PCI-express
bandwidth. With the increase of TH the shift to limitation of GDDR5 bandwidth
is con�rmed. Its smoothness is explained by the cut-o� of DiamondTorres at the
edges of the domain.
The optimal su�cient TH is 100, as can be seen on the graph. This value is used

in subsequent tests, if not stated otherwise. Similar behaviour of the dependency
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Fig. 6: Performance results for di�erent values of TH

of performance rate on TH is observed in case the data is stored on disk (SSD in
this case). The optimal TH becomes signi�cantly larger (more than 500).

3.4 Concurrency on Y axis

Since all DiamondTorre's standing side-by-side along Y axis are asynchronous,
they may be processed by di�erent devices inside one node, as well as by dif-
ferent nodes. (�g. 7) Exactly 2 DiamondTorre's that belong to di�erent devices
overlap. The common DiamondTorre is processed by one device in a separate
CUDA stream. After this the data are copied to the adjacent device in the
same stream. Generally, data are sent through PCI-a and RAM (if Nvidia Peer-
to-Peer Memory Access or GPUDirect RDMA technologies are not support-
ed). In this case the data is written to bu�er in one continuous block, which
will be unpacked on the other device in a similar way. This operation takes
just as long as one DiamondTorre processing, plus data transfer time. In this
case it is easy to estimate the number of asynchronous DiamondTorre (NA)
on one device so that the transfer between devices will be completely covered:
NA > 2 · Nsm + Tsend/Tcalc. Here Nsm is the amount of Streaming Multipro-
cessors (SM), Tsend is the time for one DiamondTorre's data transfer between
devices, Tcalc is the time of calculating Nsm asynchronous DiamondTorre's.
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Fig. 7: Asynchronous
DiamondTorres. Di�erent
colors correspond to
di�erent CUDA kernels,
which are possibly executed
on di�erent devices

It may be deduced from previous tests (�g. 5)
that data transfers between 3 devices on one
node may be concealed completely if the amount
of involved CUDA-blocks is more than 42 on
each device. For devices installed on di�erent
nodes the duration of data transfer Tsend is
approximately 2 times bigger. In this case da-
ta transfers may be concealed completely if the
amount of involved CUDA-blocks is more than
70 on each device.

3.5 Concurrency on X axis

Additionally, concurrency on X axis is possi-
ble. In this case the data are subdivided in blocks
in X axis. Data on adjacent nodes overlap by the
calculation window size: NW points of X axis
(�g. 8). On i-th device data are updated from
(n + i · TH)-th step to (n + i · TH+TH)-th step,
where n is an integer number � the time step on
which the data of the leftmost node exists on.

Fig. 8: Concurrency on X axis

Here is a more detailed explanation of the computation and data transfer algo-
rithm. Each node, which has data that does not include the boundary, processes
the following operations sequentially (�g. 9, 10):

• Wait to receive overlapping data on the right side from the node on the right
(waitR);

• Computing cell updates for the received overlapping data (calcR);

• Non-blocking data transfer to the node on the right (sendR);
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MPI_Wait(RecvP)
MPI_Wait(SendP)

MPI_Isend(SendP,step+1)
MPI_Irecv(RecvP,step+1)

MPI_Isend(SendM,step  )
MPI_Irecv(RecvM,step+1)

MPI_Wait(RecvM)
MPI_Wait(SendM)

Fig. 9: Key stages of parallel decomposition in x-t domain

• Computing cell updates for data, which does not depend on the overlapping
regions (calcM);

• Wait to receive overlapping data on the left side from the node on the left
(waitL); these are sent by sendR step of the node to the left;

• Computing cell updates for the overlapping data to the left (calcL);

• Non-blocking data transfer to the node on the left (sendL); these are received
during the waitR step of the node to the left.

The dependencies between (i− 1)-th, i-th and (i+ 1)-th nodes of the described
stages are depicted on �g. 10.
In case the execution of calcM takes more time than data transfer time

(sendR+sendL), data transfer between nodes will be completely hidden by com-
putations.

4 Parallel scaling results on TSUBAME2.5

The parallel performance of the code has been tested on TSUBAME2.5 su-
percomputer. Its speci�cations, that are important for this study, are as follows
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Fig. 10: Time sequence of parallel execution on nodes i− 1, i, i+ 1

• The amount of available node per one run is up to 300 according to the
usage conditions (1403 in total).

• Each node has 3 NVIDIA Tesla K20x GPGPUs installed. Their total GDDR5
memory is 3× 5.625 = 16.875 GB, with 208 GB data throughput each.

• Each node has at least 54 GB, up to 96 GB on several ones. Only a little
above 40 GB from it is available for the computation.

• Devices are connected with PCI-e 2.0 with 4 GB/sec throughput in each
direction.

• Each node has 120 GB SSD memory.

• Nodes are connected by In�niband QDR interconnect with up to 4GB/sec
throughput.
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Fig. 11: Roo�ine graph for TSUBAME2.5

5 Roo�ine estimation

We plot the roo�ine graph for the system in use (�g. 11). The memory subsys-
tem is hierarchical, and LRnLA algorithms are constructed with this hierarchy
in mind. This is why we plot roo�ines for several main memory levels. We also
need to account for the size of the level, so the graph is expanded by adding
the circles. The size of the circle shows the data size of the memory level. It is
positioned on the corner of the corresponding roo�ine.
Red lines show the roo�ine for one GPGPU device. Both device memory and

node memory may be used, so they both are shown on the roo�ine. One node
(green lines) has 3 devices, so its peak performance is shown to be 3 times higher.
Up to 256 nodes were used in the performance tests, and the whole cluster

contains 1403 nodes (blue lines).
The operational intensity of algorithm described in section 3.1 is estimated as

0.57 (red arrow on �g. 11). For this algorithm we take account only of the inner
memory of the GPU device. This simple estimate is made by taking Nt → ∞.
The di�erence from the precise number is marginal.
For comparison the operational intensity of the stepwise naive algorithm (no

data reuse) is estimated to be 0.23 (black arrow).
When node memory is used the performance is bound by the host-device

memory bandwidth (lower red roo�ine). When the calculation window is used
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Fig. 12: Weak scaling

the operational intensity rises with TH parameter (purple horizontal arrow). The
arrow stops at the host-device roo�ine, since the further shift to the right is
not necessary, as the limit of the intra-device algorithm performace can not
be overcome. With the use of many nodes, the theoretical performance scales
linearly (light blue arrow). The only limiting factor is inter-node communication
bandwidth.

5.1 Weak scaling

For weak scaling the domain is scaled proportionally to the amount of nodes
used. Both X and Y axis parallelism were tested. Three series were performed:

1. Scaling in Y axis. Data transfers may be concealed completely (112 CUDA-
blocks on each device).

2. Scaling in Y axis. Data transfers limit the performance (42 CUDA-blocks on
each device, see �g. 5).

3. Scaling in X axis. Each device contains 1890 Yee cells. All 3 devices are
involved on each node, performing parallel computation in Y direction.

The results are presented on �g. 12.
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Fig. 13: Strong scaling series

In the �rst case, parallel e�ciency is above 99% as expected. The maximum
achieved performance is 0.65 ·1012 Ys for one computation on domain with 300 ·109

grid points (10 TB data, 256 nodes).
In the second case the e�ciency becomes lower when the number of nodes rises

from 1 to 2. It is caused by the fact that In�niband data throughput is lower
than data throughput between devices on one node. The following increase in
the number of nodes does not lower the e�ciency.
In the third case parallel scaling is close to ideal, but is still less than the one

for the �rst series. The main decrease occurs between 1 and 2 nodes. It is caused
by a slight imbalance in node utilization.

5.2 Strong scaling

For strong scaling we chose a �xed size domain, and by increasing the amount
of nodes, the domain is subdivided to more and more parts, that are to be
processed concurrently. Three series were performed (�g. 13):

1. 720× 3312× 384 size domain is scaled on 1�32 nodes;

2. 4 times bigger domain (720× 13248× 384) is scaled on 4�64 nodes;

3. 16 times bigger domain (720× 52992× 384) is scaled on 16�256 nodes;
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Fig. 14: Strong scaling on Y axis with variable TH

With the increase in amount of parallel nodes the performance decreases since
the amount of CUDA-blocks per device becomes lower (see �g 5). At the same
time there is a limit on maximum Ny size per device, determined by device
memory. It actually may be increased, but the Nx size should be decreased at
the same time, as well as DiamondTorre height TH with it. This would lower the
general performance. By utilizing more nodes to include bigger domain TH may
be increased again and performance rises.
This dependency on TH is shown on �g. 14. Problem size is 450×62208×128 grid

cells. For one node computation TH is equal to 15, and increases up to 150 for
8 nodes and higher. For low amount of nodes the speedup is better than linear.
It is caused by optimization of TH which is only possible when enough data is
processed on each node.
The �nal result is a strong scaling series on a problem with 38400 × 363 × 128

grid points (�g. 15). One node the performance is about 30% from the peak
performance, since the size along z axis is not optimal. It is not big enough to
conceal GDDR5 access latency, since the amount of simultaneous transactions is
too low. But the acceleration is up to 40 times. Only with 128 nodes and above
data transfers are taking more time than computation, which leads to decrease
in computation rate.
It should be noted that one node has little memory size (only about 3 times

more than total device memory), and this becomes the reason for acceleration
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Fig. 15: Strong scaling on X axis

limit. The increase in available memory size should increase acceleration ability
for scaling in X axis proportionally.

6 Conclusion

The work can be summarized as follows. The FDTD code has been developed,
that allows simulation of real optical phenomena. The distinguishing feature of
the code is the use of DiamondTorre LRnLA algorithm, which maximizes the
performance on one device, and parallel e�ciency for multi-GPU architectures.
The software was tested on TSUBAME2.5 supercomputer. High computation
rate is achieved (more than 1 billion Yee cell updates per second on one device).
The problem size is not limited by device memory. The scaling for ∼ 1000 devices
is linear for weak scaling, and saturates at ∼ 100 for strong scaling.
Algorithm parameters (such as TH and problem size) allow not only qualitative,

but also quantitative estimates of the performance and parallel scaling. Maximal
achieved performance is 0.65·1012 Yee Cells per second for 3D domain with 0.3·1012

Yee cells total. For example, such size for wave optics problems corresponds to 1
cubic millimeter domain. This allows a signi�cant breakthrough in computational
nanooptics, by allowing the simulation in domains that were previously too big
even for supercomputers. It may be used for simulation of complex optical devices
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and substrates.
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