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Овчинников М.Ю., Ролдугин Д.С., Пеньков В.И. 

Периодические движения спутника с магнитным управлением и маховиком при 

повороте в плоскости орбиты 

Рассматривается спутник, оснащенный магнитной системой ориентации и 

тангажным маховиком. Исследуется алгоритм ориентации спутника в 

плоскости орбиты при движении вблизи требуемой ориентации. Найдены 

амплитуды плоских и пространственных периодических движений, 

показывающие точность ориентации. Проведено исследование устойчивости, 

численное моделирование. 

Ключевые слова: магнитная система ориентации, тангажный маховик, 

периодические решения 

 

Mikhail Ovchinnikov, Dmitry Roldugin, Vladimir Penkov 

Magnetically actuated dual-spin satellite periodical motion during the in-orbit attitude 

maneuvers 

Attitude motion of a satellite equipped with a single flywheel and an active 

magnetic attitude control system is considered. Control system ensures necessary 

attitude in orbital plane. Periodic solutions amplitudes are found for planar and spatial 

motion. Stability and numerical analysis is carried out. 

Key words: magnetic attitude control system, flywheel, dual spin, periodic 

motion 
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Introduction 

Dual-spin satellite with the active magnetic attitude control system is 

considered. Flywheel with large angular momentum ensures orbital attitude with the 

flywheel pointing along the normal to the orbit. The magnetic attitude control system 

provides asymptotical stability for this motion and rotation in the orbital plane. This 

paper follows [1,2] where transient motion was considered mainly. Attitude in the 

vicinity of necessary position was covered briefly. This paper enhances the suggested 

magnetic control law that ensures necessary rotation in the orbital plane. In-plane and 

spatial periodical motions are found. This provides necessary insight into the attitude 

accuracy. 

1. Problem statement 

The satellite is considered to be a rigid body. It moves along the circular orbit in 

the dipole geomagnetic field. The satellite is equipped with a flywheel (constant 

rotation wheel) and three mutually orthogonal magnetorquers. Current attitude is 

thought to be available. Two reference frames are used: 

- orbital frame OX1X2X3 has its center at the satellite’s center of mass О. OX3 

axis is directed along the radius vector, OX2 coincides with the orbital normal, OX1 is 

directed along the translational orbital velocity; 

- bound frame Ox1x2x3 has its axis directed along the principal axes of inertia of 

the satellite. 

Satellite attitude with respect to the orbital frame is given by angles , ,    

(rotation sequence 2-3-1) and angular velocity components. Quaternion is used 

instead of angles for numerical simulations. Transition matrix is  

cos cos sin sin cos

cos sin cos sin sin cos cos sin sin cos cos sin

sin cos cos sin sin cos sin sin sin sin cos cos

    

           

           

 
 

   
 
     

A . (1.1) 

Dynamical equations of the satellite with inertia tensor ( , , )diag A B CJ  are 

gr ctrl

d

dt
     

ω
J ω Jω ω h M M         (1.2) 

where  0, ,0hh  is the flywheel angular momentum, grM  and ctrlM  are the 

gravitational and control torques. Kinematics is described as  
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 

 

2 3

2 3

1 2 3

1
cos sin ,

cos

sin cos ,

tg cos sin .

d

dt

d

dt

d

dt


 




 


  

  

 

   

        (1.3) 

Absolute angular velocity ω  is tied with the relative one Ω  through the relation 

orb ω Ω Aω  

where  00, ,0orb ω  is the orbital reference frame angular velocity. The 

geomagnetic induction vector is modelled using the direct dipole [3]. The exact 

expression is 

   0 0 1 2 3cos sin , cos , 2sin sin , ,B u i i u i B B B B  B  

where i  is the orbit inclination, u  is the argument of latitude. 

Transient motion was considered in [1,2]. Motion in the vicinity of necessary 

attitude was briefly discussed. Gravitationally stable position and rotation in the 

orbital plane were covered. The latter was ensured with the control 

    2

3

0, sin , sin x
r r d r d

x

B
k k

B
     

 
    
 

M      (1.4) 

where rk  is a positive dimensionless constant, 2

0 0kB C  , ixB  stands for the i -th 

component of the geomagnetic induction vector in the bound frame. The attitude 

accuracy estimation and numerical simulation cases were provided. However control 

(1.4) suffers from singularity. This overburdens control scheme with auxiliary 

conditions in order to eliminate situations where 3xB  is close to zero. Consider 

similar control  

    2

3 2 30, sin , sinr r d x r d x xk B k B B        M .    (1.5) 

It is implemented with the first magnetorquer. Third magnetorquer provides control 

    2

1 2 1sin , sin ,0r r d x x r d xk B B k B        M  

that won’t be covered here. 

Control (1.5) influence is studied using the linearized equations of motion. 

Assume that after the transient motion , 0  , 0i . Linearized in the vicinity of 

this motion equations are 
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   

   

2

1

2

2

3

1 3 sin cos cos ,

3 sin cos ,

1 3 sin cos sin

A A A

B

C C C

C AM

C B M

M

           

    

           

      

 

      

   (1.6) 

where A

B C

A



 , B

C A

B



 , 

C

B A

C



 , 

0

A

h
h

A
 , 

0

C

h
h

C
 , ,A A Ah    

C C Ch   , iM  are the dimensionless torque components, derivatives are with 

respect to the argument of latitude. Control (1.5) is supplemented with the damping 

dipole moment  k m Ω B . The linearized damping control torque is 

 

 

 

2 2

1 3 2 3 1 2

2 2 2

0 0 1 2 1 3 2 3

2 2

2 3 2 1 1 3

x x x x x x

x x x x x x

x x x x x x

B B B B B B

k B B B B B B B

B B B B B B

  

   

  

   
 
    
 
   
 

M .     (1.7) 

Dimensional parameter k  governs overall magnetic control torque value. 

Dimensionless parameter rk  provides the positional part contribution. 

2. Planar motion on polar orbit 

Periodical planar motion 

Polar orbit allows separate equations for the planar in-plane motion (angle  ). 

Spatial out-of-plane motion allows the solution 0   . This is due to the relation 

(1.7) that provides 2 0xB  . In-plane motion equation is 

    
2 23 sin cos sin cos sin 2sin cos 1 3sin .B r dC B k u u u               

 
 (2.1) 

Gravitational torque shifts the equilibrium position towards 0   (we specify 

B C ). Periodical variations of the geomagnetic induction vector lead to periodical 

oscillations near this new equilibrium position. Let’s estimate the displacement of the 

equilibrium position in the orbital plane due to the gravitational torque. Assume both 

gravitational and control magnetic torques to be small ( 1B , 1 ). Small control 

torque is often ensured by the relatively weak magnetorquers installed on small 

satellites. Gravitational torque smallness may seem non-natural. However there is no 

sense in magnetic control if gravitation prevails over it. Clearly the following analysis 

makes sense only for the proper satellite arrangement: it should not be notably oblate 

or stretched. Taking into account discussed assumption equations (2.1) may be 

averaged over the argument of latitude, 

  2 2sin cos sin 1 2sin 2cos 5 2r dm k                 (2.2) 
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where 1C B   is a small parameter, parameter  3 1Bm O       

provides the relation between typical values of the gravitational and control magnetic 

torques. New variable d     is introduced. It describes the satellite deviation 

from the necessary attitude. Trigonometric functions in (2.2) are decomposed to the 

series up to the second order  of   (angle   is not small for large m ). New 

equilibrium position is governed by 
2

2 1 0 0c c c      

where 

 

   
2

2 2 2 2

1

0

sin cos 3 2 ,

cos sin 1 2sin 2cos ,

sin cos .

d d r

d d r d d

d d

c k m

c m k

c m

  

     

  

 

   



  

Specific satellite arrangement ( B C ) provides the equilibrium position 

 2

0 1 1 0 2 24 2c c c c c     .        (2.3) 

Note that 2 0c   for realistic satellite parameters. Consider the satellite with 

parameters 1.5A , 1.7B  , 1.3C   kg∙m2/s, 65 3 10k    N∙m∙s/T2, 3rk  , orbit 

altitude 1000 km. Typical control and gravitational torque values are 0.37   and 

3 0.35B    . If necessary attitude in orbital plane is d  40° then new 

equilibrium position becomes 0d     34.5°. Despite close values of control 

and gravitational torques equilibrium position deviation is small. Linearization of 

equation (2.1) near   (substitution x   ) yields 

      

   

22 2

2 2

cos 2 sin 2 cos 2 sin cos 2 sin

cos 2 sin 1 3sin

r r

r

x m b a dk a u b u ck a u b u b u a u x

mab ck a u b u u x



 

        
 

     
 

  

where sina  , cosb  , 0sinc  , 0cosd  . This equation has the form 

     0 1 2x f u f u x f u x      

where 

  cos2 sin2 ,i i i if u a b u c u     

     

   

 

2 2 2 2 2 2

1 0 2

2 2 2 2

1 0 2

2 2

1 0 2

2 1 2 3 , 2 1 2 , 5 2,

2 1 2 5 , 2 1 2 , 3 2,

2 2 , 2 , 0.

r r r

r r r

r r r

a m b a dk b a ck ab a mab ck b a a

b dk b a ck ab b ck b a b

c dk ab ck b a c abck c

         

     

    

  

Finally linearized equation may be written as 
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   u u y A y g           (2.4) 

where 

 , ,x xy   

 
   1 2

0 1
,u

f u f u 

 
  
 

A   

    00, 0u fg . 

The amplitudes of  -periodical solutions of (2.4) can be found numerically. 

Their dependence on the values of control and gravitational torques is of particular 

interest. 

  
Fig. 1. Minimum angle   Fig. 2. Maximum angle   

 

Fig. 1 and 2 provide the amplitude calculation results. These are minimum and 

maximum values of the angle 0 0d x     . Each pair ,   provides the 

equilibrium displacement 0  according to (2.3). This is followed by the periodical 

solution of equations (2.4). All satellite parameters are retained from the previous 

example. As the control torque value (parameter  ) increases the amplitude rises. 

The satellite is closer to the necessary attitude given by d  40°. As the gravitational 

torque (parameter  ) rises the amplitude falls. The satellite is closer to the 

gravitationally stable equilibrium position 0  . Specific example considered above 

provides approximate values for   in range 32.58°-38°. Numerical simulation (Fig. 

3) of equation (2.1) yields 32.6°-38°. 
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Fig. 3. Numerical simulation of planar motion 

 

Initial conditions of periodical solutions are found along with amplitudes. This 

information is not used in numerical simulation. Fig. 3 was obtained with initial 

conditions 0.1 for each variable. Given time the motion tends to the provided 

periodical solution for   and 0   . This hints at the asymptotical stability of the 

found periodical motion. 

Stability of the planar periodical motion 

Planar periodical solutions may be used [4] to construct spatial periodical 

motion on a circumpolar orbit. Planar periodical solution 0d x     , 0    

(and corresponding angular velocity rates 2 3 1, ,   ) may be used as a generating 

solution for equations (1.6) if it is asymptotically stable. In this case the planar 

motion found earlier becomes the only possible periodical solution on the polar orbit. 

Hence there exists only one spatial periodical solution on a circumpolar orbit for 

equations (1.6). It transforms into the planar one as inclination tends to 2 . 

Stability of the planar polar periodical solution is analyzed using the equations 

in variations. Let « » denote the variation of  1 2 3, , , , ,     x . Then the 

equations in variations for (1.6) that correspond to the planar solution are 

  ,u  x A x           (2.5) 

.damp pos kin grav gir   A A A A A  

Damping control part provides matrix 
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 

2 2

1 1 2 20 2 20 1 2

2

2 2

1 2 2 20 1 2 20 1

3x6

0 0

0 1 3sin 0 0 0 0
,

0 0

0

damp

C A f C A f f C A f C A f f

u

f f f f f f

     



   

    
 

  
  

  
 
 

A

1 0 0

2 0 0

2cos sin sin cos ,

2sin sin cos cos .

f u u

f u u

 

 

 

 
  

Positional control part yields  

3x3 1

2

2 1 2 2 1

3x3 3x3

0 0 0

0 0 0
,

0

0 0

pos r

g
k

g f f g f



 

 
 
 
  
 
 

A   

         

     

1 0 0 0 0 0

2

0 0 0

2 0 0

2sin 1 2cos 3 2cos 3 2sin 1 2sin

cos 3 2sin 1 2sin ,

cos sin cos sin .

d

d

d d

g u u u u

u u

g

     

   

   

               

      

 

  

Kinematics lead to 

3x3 3x3

3x3

0 0

0 1 0
.

0 0 1 0

1 0 0

kin

 
 
 
 
 
 

A   

Gravitational and gyroscopic torques correspond to the matrix 
2

0 0 0

0

2

0 0 0 0

3x6

0 0 1 0 3 sin cos 3 cos

0 0 0 cos2 0 0
.

1 0 0 3 cos2 3 sin 3 sin cos

0

A A A A

grav gir

C C C C C

      

 

        


    
 
 
     
 
 

A   

The monodromy matrix was found numerically for equations (2.5). Dynamical 

system parameters are inherited from Fig. 1 and 2 (including the search for 

parameters   and  ). Maximum characteristic multipliers of the monodromy matrix 

are depicted in Fig. 4.  
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Fig. 4. Planar periodical solutions 

stability 

Fig. 5. Oscillations amplitude growth 

 

Fig. 4 shows instability for small control torque (left part of the figure). Gravity 

introduces too large disturbance. Logically small gravitational torque (upper left 

corner) doesn’t prevent stability. Outright numerical simulation of equation (2.1) 

provides slightly more optimistic results. Periodical motion exists even in the 

unstable area (Fig. 4). However oscillations amplitude may become unacceptably 

large (up to 60 degrees). These oscillations cannot be covered with approximate 

equations (2.4) that were obtained assuming small amplitudes. Hence large amplitude 

in initial equations corresponds to the instability in approximate equations. It’s also 

important to note that motion remains planar even for the unstable exponents in fig. 4 

(equation (2.1) is valid for the polar orbit regardless of any parameters). So generally 

speaking only approximate equations (2.4) experience qualitative changes. Initial 

equations are prone to quantitative changes as system parameters vary. This broadens 

the area of utility for results provided in fig. 1 and 2. Numerical analysis shows that it 

may be used for characteristic exponents up to approximately 1.1 (Fig. 4). Fig. 5 

provides one example of numerical simulation with large oscillations amplitude (and 

characteristic exponent close to 1.1). This example utilizes parameters 0.22   and 

0.176    (the latter corresponds to A=1.4 kg∙m2).  

3. Spatial motion on a circumpolar orbit 

Consider the satellite moving on a circumpolar orbit. Solution of equations (1.6) 

is represented in the form  

0 1 x x x   
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where 2 i    is a small parameter, 0x  is a generating solution (planar polar 

motion is used). The first order equations for 1x  are 

   1 1 .u u x A x g   

Matrix A  is given in the previous section. Vector g  is 

20 2

20 1 2 1

0

r

C A f

f k g f

 

 

 
 


 
   

g . 

Equations that govern in-plane motion (variables 
(1) 2(1),  ) are separated and 

has zero solution. Planar motion doesn’t change in the first approximation. Out-of-

plane oscillations (variables (1) (1) 3(1) 1(1), , ,    ) are 2 -periodic due to the vector 

g . Fig. 6 and 7 describe these periodical oscillations. Fig. 6 presents the amplitudes 

of the flywheel axis deviation from the orbit normal (orbit inclination 80 degrees). 

Fig. 7 provides initial phase   of the angle   assuming that  (1) sinA u    . 

Note that always 2      and with good confidence 4   . Fig. 6 and 7 

are provided for the control torque typical values 0.2  . This corresponds to the 

stable area of generating solution according to Fig. 4 (apart from the small unstable 

area where planar generating solution is still good enough). 

  
Fig. 6. Amplitude of the flywheel axis 

deviation from the orbital normal  

Fig. 7. Initial phase of angle   

oscillations 

 

Increase in parameter   corresponds to the growth of the inertia moment A  (it 

changes in the range 1.41-1.58 kg∙m2, two remaining inertia moments are 

unchanged). This in turn leads to the increase in parameter C . As a result restoring 

gravitational torque out-of-plane influence is reduced. The flywheel axis deviation 
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from the orbit normal increases. As control torque raises this deviation reduces. One 

may assume this to be strange since the control torque disturbs out-of-plane attitude 

of the flywheel rotation axis. The observed effect is due to the damping control part 

acting together with the flywheel. The flywheel influence by far exceeds the 

disturbing out-of-plane influence of positional part of the control torque. Curiously 

this is not valid for large values of both control and gravitational torques. This is due 

to the lacking accuracy of generating planar periodical motion obtained in the 

previous section. Reverting to the specific example ( A=1.5 kg∙m2, orbit inclination 

80°), amplitudes of the attitude angles are 
(1) =1.51°, 

(1) =1.31°. This provides the 

deviation of the flywheel axis from the orbit normal up to 1.29°. Numerical 

simulation (Fig. 8) provides maximum deviation 1.26°. 

 
Fig. 8. Numerical simulation for circumpolar orbit 

 

Numerical simulation was carried out with initial conditions 0.1 for each 

variable. Simulation of equations (1.2)-(1.3) shows that the results depicted in Fig. 6 

are valid for almost every orbit excluding only the subequatorial ones. Fig. 6 

corresponds to the orbit inclination 80 degrees ( =10°). Orbit inclination 40° 

( =50°) leads to the amplitude of the flywheel axis deviation up to approximately 

7.5°. This is about 6 times greater than 80° orbit provides. Linear dependence of the 

flywheel axis deviation from the orbit inclination is observed. Only   is prone to 

change while 1x  provided above is almost unchanged.  

4. Planar motion on the orbit with inclination close to 45° 

The latter pattern is due to the influence of the flywheel and damping control 

part. It is valid only for the out-of-plane motion. In-plane motion ensured with the 

control (1.5) persists only for the highly inclined orbits (approximately up to 50°). 
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Consider the subequatorial orbit. Steady state motion with the flywheel axis being 

almost parallel to the orbit normal leads to small first and third components of the 

geomagnetic induction vector in the bound reference frame. As a result the control 

torque acting in-plane (the second component of the torque) is small and cannot 

prevail over the gravitational torque. One may assume that the accuracy of in-plane 

stabilization degrades uniformly as the inclination decreases. However this is not the 

case. Accuracy drastically falls for orbit inclinations in the range 45-50°. This 

preliminary numerical simulations result should be treated analytically in order to 

find the border inclination leading to the sharp increase of the oscillations amplitude. 

 Consider the satellite moving on the orbit with inclination close to 45°, 

4i    . Here   is treated as a small parameter. The geomagnetic induction 

vector becomes 

0 0

cos cos

2 1 2 1

2sin 2sin

u u

B B

u u



   
   

  
   
       

B . 

Positional control part is two times less than on the polar orbit in linear 

approximation. Damping control part changes significantly. The in-plane damping 

control acquires dependence on the out-of-plane motion. In-plane motion analysis 

becomes too complicated. In order to separate out-of-plane motion note that it is 

found to be the small amplitude oscillations. Assume that  

   sin 4 , sin 4Am u Am u       .      (4.1) 

Here some additional assumptions were made. First the amplitudes of oscillations for 

both angles are equal to Am . This amplitude may be estimated using the previous 

section results taking into account that the amplitude rises proportionally to the 

inclination rise. This provides amplitudes on the 45° orbit to be approximately 

A 6.8°, A 5.9°. Common amplitude Am  is derived as a mean value. The initial 

phases according to the previous section are     44°,   49°. However 

expressions (4.1) utilize values 45° for further analysis simplification. After all 

these assumptions in-plane motion is described with the equation 
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    

    

    

  

  

2

2

2

sin cos sin 1 2 cos sin 2sin cos

2 sin 4 2sin cos cos sin 1 3sin

2 1 3sin sin 4 2cos sin sin cos

sin 4 2sin sin cos cos

cos 4 2sin sin cos cos

r dm k u u

Am u u u u

Am u u u u

u u u

Am u u u

        

    

     

  

   

     


     

     


    

  

  cos 4 2cos sin sin cos .u u u  



  

  (4.2) 

The underlined part is analogous to (2.1). Ongoing analysis follows the scheme 

used in the section 2. Equations (4.2) are averaged assuming small control and 

gravitational torques. This provides the equilibrium position  . Coefficients ic  

found in the section 2 are slightly altered, 

    

    

  

2 2

1 1

0 0

1 4 cos 4 2sin 4 2 cos 4 1 2sin 4 ,

1 2 cos 4 2sin 4 2 cos 4 1 2sin 4 ,

1 2 cos 4 2sin 4 .

r

r

c c Am b a Am k a b

c c Am a b Am k b a

c c Am b a

     

     

  

       

       

    

  

Expressions for ic  obtained in the section 2 should also utilize  1 2r rk k     instead 

of rk . The linearized equations of motion are  

2 1 0 0,x x x                (4.3) 

2 2 2 1 1 1 0 0 0, , ,f f f f f f               

    

  

     

     

    

2

2

1

0

2 1 3sin 2 sin 4 cos 2 sin

2 sin 4 cos 2 sin ,

cos 4 cos 2 sin cos 4 cos 2 sin

2 sin 4 2 sin cos 2 sin cos ,

cos 4 cos 2 sin cos 4 cos

r

f u Am u a u b u

Am u b u a u

f Am u b u a u Am u a u b u

Amk u c a u b u d b u a u

f Am u a u b u Am u b u

 



 



 

        

  

      

       

         

   

2 sin

2 sin 4 2 sin cos .r

a u

Amk u c b u a u

 

  

  

Expressions for if  can be found in the section 2 (control gain is replaced with 

 1 2r rk k    ). The linearized equations lose the stability when the initial equations 

witness sharp amplitude increase. Fig. 9 provides the characteristic multipliers of 

equations (4.3) with respect to the orbit inclination and out-of-plane oscillations 

amplitude. The latter is governed mainly by the flywheel parameters that do not 

affect equations (4.3). 
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Fig. 9. Stability for orbit near i=45° 

 

Fig. 9 shows the loss of stability for orbit inclination near 50-52°. The out-of-

plane oscillations amplitude has negative effect on the stability. Fig. 10 and 11 

provide the numerical simulation results for equations (1.6) and orbit inclinations 50° 

and 40° respectively. 

  
Fig. 10. Numerical simulation of the 

initial linearized equations, incl. 50° 

Fig. 11. Numerical simulation of the 

initial linearized equations, incl. 40° 

 

Fig. 10 witnesses amplitude decrease. However, this change is rather slow. This 

case corresponds to the boundary situation. Linear equations (4.3) has asymptotically 

stable periodical solution with the small degree of stability. Fig. 11 corresponds to the 

knowingly unstable case for equations (4.3). Numerical simulation provides the 

oscillations amplitude up to 25°. This clearly renders the linearization assumption 

incorrect. Fig. 12 and 13 provide analogous result for the numerical simulation of the 



16 

 

initial nonlinear equations(1.2)-(1.3). Here ii  are the angles between the 

corresponding axes of the orbital and bound reference frames. 

  
Fig. 12. Numerical simulation of the 

initial equations, inclination 50° 

Fig. 13. Numerical simulation of the 

initial equations, inclination 40° 

 

Periodical motion can be seen in Fig. 12. However Fig. 13 clearly provides 

increase in the “amplitude” of oscillations. Fig. 14 brings the simulation results for 

the knowingly appropriate orbit. 

 
Fig. 14. Numerical simulation of the initial equations, inclination 70° 

 

Numerical simulation of equations (1.6) shows amplitude decrease for 

subequatorial orbits. This is due to the geomagnetic induction vector being almost 

perpendicular to the orbit plane. As a result control (1.5) has negligible impact on the 

in-plane motion (orbit inclination becomes a small parameter). The satellite moves in 

the gravitational field with the small damping torque. The oscillations amplitude 
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decreases for inclinations near 20-25°. One may assume that control (1.5) is still 

strong enough to notably shift the equilibrium position. So the control is available to 

some extent in the narrow inclinations range. Control efficiency is debatable however 

since the satellite is closer to the gravitationally stably position than to the necessary 

position. On top of that simulation of the initial equations (1.2)-(1.3) further narrows 

the inclinations range. This range and corresponding motion is of little interest and 

may only be considered as a backup measure for some subequatorial satellites. 

Conclusion 

The satellite equipped with an active magnetic control system and a flywheel is 

considered. The control is proposed to ensure the necessary attitude of the satellite in 

the orbit plane. Motion in the vicinity of necessary attitude is assessed. Periodical 

solutions are found for planar and spatial motion on polar and circumpolar orbits. 

Stability analysis is provided. Sharp amplitude increase is verified for orbits near 45°. 

Numerical simulation cases are provided. 
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