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§ 1. Introduction

It seems strange, but convergence and divergence of power series (PS) seem

to be a source of controversy in mathematics up to present days. Since the
famous maxim by Abel that “Divergent series are the invention of the devil...”,
many prominent mathematicians had obtained important results that prove

the contrary, i.e., they are as useful and meaningful as convergent ones.
The notion that if a formal PS diverges, then the offending object (a solution

to an ODE, a first integral, a normalizing transformation, etc.) somehow does
not exist is firmly engrained in popular mathematical thinking. For example,

we read in a modern paper on convergence of some PS that “if the series
converges, then this expansion corresponds to some solution to the equation”.

This statement rivals the famous saying by M.Twain that “Clams will lie quiet
if music be played to them”.

According to Borel-(Ritt) theorem, any formal PS is an asymptotic series

for some analytical function in a sector. Of course, this function is not unique,
since any algorithm we use to obtain an asymptotic series will necessarily miss

an exponentially small (i.e., flat) function that can be added to that analytical
function. Thus an asymptotic series is a class of equivalence of some functions

rather then a function in itself.
The operative word in the above statement is “asymptotic”, and convergence

or divergence have nothing to do with it.
Hence if a formal PS obtained as a result of an asymptotic solution of a

problem converges, then this does not necessarily mean that the solution (or

whatever it is we are looking for) is analytical.
Here is a (trivial) example, y(x) = x + C exp(−1/x), that satisfies the

equation x2 y′(x) = y(x) − x + x2. Thus the first integral of this equation
is not analytical at the origin despite the obvious convergence of the PS. And

an existence of a flat addition to a formal PS does not imply the divergence of
the PS.

Although, as we will see, in some cases asymptotic series and flat functions

are inextricably mixed together.
The question whether a divergent PS represents an analytical function is

trivial by Borel theorem. On the other hand, the question what is the function
that it does represent, is usually very difficult, and should be treated case by

case.
This is what we will be doing in this paper.

We will consider some rather unusual power generating functions (GF) for
some well known classical combinatorial sequences.
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As is well known, power GFs come (mostly) in two kinds, i.e., ordinary GFs,

and EGFs, or exponential GFs (where the n-th number is divided by n!). This
division by n! guarantees the convergence of EGF and produces an analytical
generating function for the sequence.

In this paper, we will consider the sequences of Bernoulli, Bell, Stirling,
Euler and Tangent numbers. The EGFs for these numbers are well known.

However, these numbers increase very rapidly, so ordinary GFs for them
will necessarily diverge in any neighborhood of the origin (apart from GF for

Stirling numbers of the second kind, which converges). Some of these GFs
appear in combinatorial problems (see [1, p. 85]) as formal PS, and then
continued fractions (CF) are used for their summation (see Sect. 2).

In a recent book a GF for Bernoulli numbers was introduced, as well as
a number of related functions [2, p. 239]. It was demonstrated that these

functions have remarkable combinatorial properties, and have some interesting
applications.

In Sect. 2, we will fill some blanks left in the presentation of GF for Bernoulli
numbers in [2]. Namely, it was demonstrated in [2, p. 241] that a formal PS for

Bernoulli numbers satisfies a functional equation, and the PS is unique. The
functional equation takes the form

β1

(
x

1− x

)
− β1(x) = x2. (1)

It was proved (see [3]) that this formal PS does represent an analytical function,

since a convergent CF expansion of the GF exists. And it was established that
this analytical GF and its generalizations are related to the Gamma function.

We will demonstrate just how close these functions are related to the Γ
function, and find these functions in an explicit and closed form (in fact, in
several forms). We will also produce an exponentially small addition to these

functions, and thus find a general solution to Eq (1) and related equations.
In the following sections, we will treat Bell, Stirling, Euler and Tangent

numbers as promised, and produce analytical GFs for these numbers that have
divergent PS expansions.

For this, we will need to use summation of divergent PS. There are many
forms of such summation including, ironically, the Abel summation. However,

they are mostly applicable to convergent PS outside their radius of convergence.
One of the most powerful summation techniques is transformation of PS

to a CF. Pade approximations of truncated series are closely related to this

method. Often, it is possible to prove (constructively) this way the existence
of an analytical function with a given power expansion. For example, Euler

used this technique for summation of the series of factorials (see [4]).
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However, it is seldom possible to express a CF in a closed form even if it ex-

ists. So, instead, we use another powerful summation technique closely related
to Borel summation and Laplace transform, and called factorial transformation
or transformation to factorial series (FS).

Factorial transformation is certainly known (see [5]), but surprisingly not
well known. This deplorable fact was also mentioned in [6], where a survey of

applications of FS can be found. So far, FS are used mainly as an acceleration
of convergence technique for PS.

It turns out that classical combinatorial sequences have a close rapport with
the factorial transformation in such a way that the resulting FS are expressed
in a closed form. This is invariably linked with a hypergeometric pattern in a

FS that can be recognized with the help of a CAS (we use Maple). The details
will be given in appropriate places.

To conclude this introductory section, a few words on notation that we use.
There are many different notations for Stirling numbers and even for bi-

nomial coefficients. We avoid combinatorial notation with square and curly
brackets and use traditional self-explanatory one that is also portable (i.e.,

from CAS to LaTeX).

§ 2. Bernoulli numbers and their GFs

Bernoulli numbers are ubiquitous in mathematics, and, consequently, they
have been studied very thoroughly. The classical EGF for these numbers takes

the form
x

exp(x)− 1
=
∞∑
n=0

B(n)

n!
xn. (2)

Thus
B(0) = 1, B(1) = −1/2, B(2) = 1/12, B(3) = 0, . . .

Sometimes, another function for EGF is used, namely, x exp(x)/(exp(x)− 1).
Since these functions differ by x, it follows that, for this EGF, B(1) = 1/2,

and no other difference. Multiplying both sides of (2) by exp(x), and collecting
similar terms, we obtain the identity

n−1∑
m=0

C(n,m)B(m) = 0, n > 1, (3)

where C(n,m) is the binomial coefficient.
As it was pointed out in [2] (in the Appendix written by Don Zagier), usually

only one of generating functions, i.e., GF or EGF, is useful or interesting. For
Bernoulli numbers, this is not the case.
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Consider a formal PS

β1(x) =
∞∑
n=0

B(n) xn+1, (4)

which obviously diverges. Here and below, the equality is taken in asymptotical
sense where appropriate.

We have used the same notation β1(x) in (4) as in (1), since this PS satisfies

(1) formally. It can be proved as in [2, p. 241] by substitution of rhs(4) in (1)
and collecting similar terms using binomial identity. Then we would obtain the

identity (3).
The solution is unique as a formal PS, but we know that a divergent PS

does not represent a unique function. So where do we find a flat addition to
(4)? It turns out that it is very simple in this case.

Proposition 1. Let f(x) = f(x + p) be any p-periodic function, p ∈ C.

Then the function

β̃1(x) = β1(x) + f

(
p

x

)

is the general solution to the functional equation (1).
Proof is obvious, since f(p/x) satisfies the homogenous Eq (1); and the

contrary, the relation b(x/(1− x)) = b(x) implies 1-periodicity of the function
c(x) = b(1/x). �

Thus, for example, the function exp(2π i/x) gives a flat addition to GF (4)
in the upper half-plane.

The problem remains how to calibrate, so to speak, an asymptotic series (4)

such that a unique analytical function be produced that represents GF (4) for
Bernoulli numbers.

It can be done as follows.
An obvious change of variable in (1) gives the equation

β1(x)− β1

(
x

1 + x

)
=

x2

(1 + x)2
.

We substitute here x ∈ {1, 1/2, 1/3, . . .}, i.e., the harmonic series, and sum up
these identities. They telescope, and we obtain

β1(1) =
π2

6
− 1.

Similarly, we can start with x = 1/n instead of x = 1, and obtain

β1

(
1

n

)
=
∞∑
k=n

1

(k + 1)2
= Ψ(1, n+ 1),
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where Ψ(x) = d log Γ(x)
dx

is digamma (or psi-) function, and Ψ(k, x) = d log Ψ(k−1,x)
dx

,

k ∈ N, Ψ(0, x) = Ψ(x) are polygamma functions.
Now it is easy to guess that n can be replaced by 1/x in the above identity.

Proposition 2. The function Ψ(1, 1 + 1/x) is a special solution to Eq (1)
with the asymptotic expansion (4).

Proof. We can either verify this fact by substitution using well known
identities for polygamma functions, or we can differentiate twice the following
obvious identity

log Γ(t)− log Γ(t+ 1) = − log t,

with respect to t, then substitute there t = 1/x. As is well known, Ψ(1, 1+X) �
1/X as X → +∞, and Ψ(1, 2) = π2/6− 1. Thus Ψ(1, 1+1/x) � x as x→ +0,

and it is calibrated (of fixed at a regular point) as needed. �
As a corollary, we obtain asymptotic expansion of the function Ψ(1, 1 +X)

at X = +∞ explicitly. Of course, this expansion is well known, but Bernoulli
numbers are rarely mentioned.

In [2], several generalizations were given for the function β1(x) that we briefly
consider.

First, the functions βk(x) were introduced that satisfy equations

βk

(
x

1− x

)
− βk(x) = k xk+1, k ∈ N. (5)

Similar argument as above gives formal PS for βk(x)

βk(x) =
∞∑
n=0

C(n+ k − 1, n)B(n) xn+k; (6)

and it was established in [2, p. 242] that these functions satisfy recurrent ODEs

x2 dβk(x)

dx
= kβk+1(x), k ∈ N.

It turns out that these functions also have simple explicit forms

βk(x) =
(−1)k−1
(k − 1)!

Ψ(k, 1 + 1/x), k ∈ N, (7)

which can be verified easily.
We cannot use the previous formula for generalization of the functions βk(x)

for integers k < 0 for obvious reasons, and the use of (6) for k < 1 simply gives

Bernoulli polynomials (−1)k B(−k,−1/x).
So another combinatorial way to introduce these functions was used in [2].

Namely,

γk(x) =
∞∑

n≥max(1,−k)

(n− 1)!

(n+ k)!
B(n+ k) xn, k ∈ Z.
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Then we obtain (see [2])

γ−k(x) = (k − 1)! βk(x), k > 0,

and, in particular, γ−1(x) = β1(x).
The functions γk(x) satisfy recurrent ODEs

x2 dγk(x)

dx
= γk−1(x)− B(k)

k!
x, k ≥ 0, (8)

as well as a series of functional equations similar to (5) (see [2, p. 243]).
The function γ0(x) has the asymptotic expansion

γ0(x) =
∞∑
n=1

B(n)

n
xn. (9)

We substitute k = 0 in (8) and obtain

x2 dγ0(x)

dx
= β1(x)− x,

from which we obtain

γ0(x) = −Ψ(1/x)− log(x)− x+ const. (10)

Since asymptotic expansion of the function Ψ(X) as X → ∞ is known, then
const = 0 in the above formula.

Now we can verify explicitly that

γ0

(
x

1− x

)
− γ0(x) = log(1− x) + x, (11)

in accordance with [2, Eq (A.14)].

The same argument gives explicit

γ1(x) =
log x

x
+

1

x
+ log Γ

(
1

x

)
− 1

2
log x− 1

2
log(2π),

where we already fixed an arbitrary constant using known asymptotic proper-

ties of Γ function.
And finally, we give the function γ2(x).

We need to solve the ODE

x2 dγ2(x)

dx
= γ1(x)− x

12
.

This gives

γ2(x) =
log x

2 x
+

1

2 x
+
log 2

2 x
+
log π

2 x
− log x

12
− log x

2 x2
− 3

4 x2
−
∫ 1/x

0
log Γ(t)+const.
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And here the problem is how to fix an arbitrary constant.

We cannot use a known asymptotic expansion of log Γ(t) at the origin, and
then integrate it, since it is not a local problem (due to 1/x as upper limit).
And we cannot use the ODE above or the functional equation [2, Eq (A.15)],

since the arbitrary constant is cancelled.
A numerical estimate gives const ≈ 0.24875447.

On the other hand

γ2(x) =
∫ x

0

⎛
⎝γ1(x)

x2
− 1

12 x

⎞
⎠ dx,

since the function under this integral � −x/360.
So one way or another, we obtain a quadrature.
It is clear that we cannot keep solving ODEs (8) without problems. In-

evitably, new transcendents will appear that we know nothing about.

As an application, we compute some values of Riemann ζ function with
a totally unorthodox use of the Euler-Maclaurin summation formula. This

formula takes the form (see [7, p. 518])

n∑
k=m

f(k) =
∫ n

m
f(x) dx+

1

2
(f(m) + f(n))+

N∑
j=1

B(2 j)

(2 j)!

(
f (2 j−1)(n)− f (2 j−1)(m)

)
(12)

+
1

(2N + 1)!

∫ n

m
B(2N + 1, x− [x]) f (2N−1)(x) dx.

Here B(n, x) is Bernoulli polynomial, [x] is the integer part of x, f (n)(x) is the

n-th derivative of an analytical function f(x) for which both sides of (12) make
sense.

The formula (12) is precise, since it is with the remainder. Usually this
formula is used for very effective numerical approximations.

First, we consider the harmonic series and compute the Euler’s constant γ.

This means we take f(x) = 1/x in (12).
We make the following operations on (12):

(a) drop the remainder altogether;
(b) subtract logn from both sides;

(c) substitute m = 1 and n =∞;
(d) take the limit N →∞.

After some simplifications we obtain the identity

γ =
1

2
+
∞∑
j=1

B(2 j)

2 j
.

which seems absurd, but it is not (and belongs to Euler).
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We recall the formula (9) and introduce a new function

ζ0(x) = γ0(x) + 1 + log(x) = 1− x−Ψ(1/x). (13)

Then γ = ζ0(1) = −Ψ(1), which is correct.

Thus we simply used an asymptotic expansion (9), then put there x = 1.
This substitution is not correct formally, but if we had transformed the series

(9) into a CF, or simply used a closed form (10) already known and then put
there x = 1, then this operation is perfectly legitimate.

Now we consider the Basel problem, i.e., we compute the value ζ(2). This
means we take f(x) = 1/x2.

We make the same operations on (12) omitting (b). Thus we obtain the

identity

ζ(2) = 1 +
∞∑
j=0

B(j) = 1 + β1(1) = 1 + Ψ(1, 1 + 1),

which is correct (see (4) and Prop. 2).

Several CF expansions of GF for Bernoulli numbers are given in [2, p. 258],
and they converge at appropriate arguments. Thus these CF expansions also

give CFs for π2 (this fact is missing in [2]).
Now we find the Apéry constant ζ(3) in the same way, i.e., we take f(x) =

1/x3. Similar manipulations as above give

ζ(3) = 1 +
1

2

∞∑
j=1

(2 j + 1)B(2 j). (14)

Now we need to make sense of the rhs() of this formula.

Proposition 3. A finite number of multiplications/divisions by x, power
transformations x → xr, r ∈ Q, and differentiation with respect to x of (4)

gives asymptotic series that are expressed through polygamma functions.
Proof is obvious. First we apply prescribed transformations to the formal

PS (4), and then to its representation Ψ(1, 1 + 1/x) in the same order. �
Thus we obtain

∞∑
j=1

(2 j + 1)B(2 j) x2 j = x− 1− 1

x2
Ψ(2, 1 + 1/x).

Putting here x = 1 and using this in (14) gives ζ(3) = ζ(3), which is certainly

true.
If we knew how to express the values of polygamma functions without ζ

function, we would have obtained a representation of the Apéry constant.

We believe that if a formal procedure keeps giving correct results, then there
is some truth behind it. In this case, the liberal use of divergent series above

can be easily justified.
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We introduce a set of functions ζn(x), n ∈ N by the following formula

ζn(x) = 1 +
(−1)n+1

n! xn
Ψ

(
n, 1 +

1

x

)
= 1 +

1

n!

∞∑
j=0

⎛
⎝n−1∏
k=1

(j + k)

⎞
⎠B(j) xj, (15)

which is a reformulation of asymptotic expansions of polygamma functions.
Then we see that our informal procedure with the Euler-Maclaurin summation

formula keeps giving ζn(1) = ζ(n+1), n ∈ N, and ζ0(1) = γ as in (13) (compare
also with (6)).

The divergent PS on the right of (15) can also be used numerically for small
x quite effectively, just like original Euler-Maclaurin formula is very effective
for numerical evaluations. For example, for n = 2 and x = 0.5, summation

up to the smallest term in rhs(15) gives ≈ 1.308414, which gives the error less
than 0.0002 to the true value given by lhs(15). For x = 0.1, the error is less

than 10−24.
Another way to use (15) numerically is to obtain a CF expansion of rhs(15).

But this should be treated carefully, since slight modifications of the formula
may produce very different CFs, which are far from being equivalent.

As an example, we find a new CF expansion for the Apéry constant.

For this, we take the function

ζ̃2(x) =
x

2
− 1

2
+ ζ2(x) = 1 +

1

2
x2 − 1

12
x4 +

1

2
x6 − 3

20
x8 +

5

12
x10 + . . . ,

and find its regular CF expansion

ζ̃2(x) = 1+
x2

4 +
4 x2

3 +
2 x2

1 +
6 x2

5 + . . .

= b0+
a1 x

2

b1+

a2 x
2

b2+
. . . = b0+

∞
K
n=1

an x
2

bn
, (16)

where we have used Gauss’ notation for CF expansion. Then we put x = 1 in
this formula and obtain

ζ(3) = b0 +
∞
K
n=1

an
bn
, (17)

where partial denominators bn, n = 0, 1, 2, . . . in (17) are 1, 4, 3, 1, 5, 1, 7, 1, 9, 1,

11, 1, 13, . . ., which coincides with the partial denominators in CF expansion
of tan(1) (see [8, A093178]), i.e., 1, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, . . . And

partial numerators an, n = 1, 2, 3, . . . in (17) are

1, 4, 2, 6, 9, 18, 24, 40, 50, 75, 90, 126, 147, 196, 224, 288, 324, 405, . . .,
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which coincides with the sequence [8, A028724], that has interesting combina-

torial properties, and that is given by a simple formula, i.e.

a(n) =
1

2

[
n

2

] [
n− 1

2

] [
n− 2

2

]
= {0, 0, 0, 1, 2, 6, 9, 18, 24, 40, 50, . . .}, n ∈ N.

We remark that similar manipulations with the polylog function

Li3(x) =
∞∑
n=1

xn

n3

produce very ugly CFs with extremely rapidly growing coefficients. And if
we simply express ζ(3) in CF form, then we obtain the partial numerators
1, 1, 1, . . ., and the partial denominators

1, 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 1, 1, 2, 7, 1, 1, 7, 11, . . . ,

which [8] does not recognize other than as it is [8, A013631].
Now we have to prove that CF (17) with the properties describe above

actually gives ζ(3).

Theorem 1. The formula (17) is true.
Proof. First, we simplify (17) separating odd and even indices. Simple

calculation gives an for n > 2, and bn for n ≥ 2:

an =

⎧⎨
⎩

1
16
(n− 1) (n+ 1)2, n odd

1
16
n2 (n+ 2), n even,

bn =

⎧⎨
⎩ n+ 1, n− 1 odd

1, n− 1 even.

Next, we make equivalence transform (see [9, p. 127]) of CF (17) and write
it in the simple form, i.e.,

ζ(3) = 1 +
∞
K
n=1

1

bn cn
= 1 +

∞
K
n=1

1

qn
, (18)

where

c1 =
1

a1
, c2 =

a1
a2
, cn =

1

an cn−1
, n > 2. (19)

We have

{c1, c2, . . .} = {1, 1
4
, 2,

1

12
,
4

3
,
1

24
, 1, . . .}.

It turns out that the recurrence relation for cn can be solved explicitly. We
skip some calculations, and obtain

cn = 4(−1)
n+1

n∏
j=3

a
(−1)n+1+j

j , n ∈ N,
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where empty product, as usual, equals 1. This formula is identical with (19)

for n > 1, as it is easily verified. Now, skipping again some calculations, we
obtain surprisingly simple formula for the partial denominators qn = bn cn in
(18)

qn =
8

n+ 1
, n odd; qn =

2 (n+ 1)

n (n+ 2)
, n even,

which gives

{q1, q2, . . .} = {4, 3
4
, 2,

5

12
,
4

3
,
7

24
, 1,

9

40
, . . .}.

It immediately follows that both CFs, (17) and (18), converge, since the sum
of the partial denominators qn gives two harmonic series, and thus diverges.

Well known formulas for convergents of a CF, i.e., Pn/Qn take the form

P−1 = 1, P0 = 1, Pn = qn Pn−1 + Pn−2, n ≥ 1
Q−1 = 0, Q0 = 1, Qn= qnQn−1+Qn−2, n ≥ 1.

(20)

We again treat odd and even indices separately, and, skipping some cum-
bersome calculations, obtain the formula for Qn:

Qn =
1

2
(n+ 1) (n+ 3), n odd; Qn =

1

4
(n+ 2)2, n even.

Now we use the formula for convergents

Pn

Qn
− Pn−1

Qn−1
=

(−1)n+1

QnQn−1
,

which gives the convergent (as we already know) series as n→∞
Pn

Qn
= 1 +

n∑
k=1

(−1)k+1

Qk Qk−1
.

Converting this to partial fractions, this sum evaluates to ζ(3) as n → ∞,
which completes the proof. �

Since denominators Qn of convergents Pn/Qn are found by simple formulas,
one would expect the same for the numerators Pn, since they are found by the

same recurrent formula (20). But this is not the case. We have

Pn =

⎧⎪⎪⎨
⎪⎪⎩
1 +m (m+ 1) (Ψ(2, m+ 1) + 2 ζ(3)) n odd

1
2 (m+ 1)2 (Ψ(2, m) + 2 ζ(3)) +

(m+ 1)2

m3 + m+ 2
2 (m+ 1)

, n even,

where m = [(n+ 1)/2]. This formula seems transcendental, but it is not, since

Ψ(2, m+ 1) + 2 ζ(3) = 2
m∑
n=1

1

n3
.
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Thus Pn are not integers.

As far as we know, there was only one CF for ζ(3) with a regular pat-
tern found by Stieltjes and Ramanujan (see [10, p. 46], and references there).
Apéry apparently tried to use it for the proof of irrationality of ζ(3), but the

convergence rate was found not fast enough.
Unfortunately, our CF (17) converges even more slowly, as numerical exper-

iments reveal, so we would not use it further. On the other hand, there are
ways of improving convergence of CFs, so CF (17) may be useful.

Another promising development would be to obtain similar representations
for γ and ζ(2n+ 1), n > 1, but this is beyond the scope of the present paper.

Finally, we remark that what we did with the Euler-Maclaurin summation

formula is very similar to the Ramanujan summation (see [11]). It seems worth
the effort to try to “abuse” the Euler-Boole summation formula (see [11, p.

135]) in the same way, but again, we have to abstain for now.

§ 3. Factorial transformation

First, we define the Pochhammer symbol

(x)a = Γ(x+ a)/Γ(x), x, a ∈ C.

For clarity

(x)n =
n−1∏
k=0

(x+ k), n ∈ N.

Then we have for n,m ∈ N0

(x)n =
n∑

m=0

(−1)n+m S1(n,m) xm, xn =
n∑

m=0

(−1)n+m S2(n,m) (x)m, (21)

where S1(n,m), S2(n,m) are Stirling numbers of the first and second kind.
The Stirling numbers have fundamental combinatorial properties on a par

with the factorial. Thus (21) can be proved based on their combinatorial defini-
tions just like it was done in [2, Prop. 2.6]. But we take a shortcut and define

Stirling numbers by the relations (21), i.e., we use them as GFs for Stirling
numbers.

So we use here the signed Stirling numbers (unlike [2], where unsigned num-
bers are used). Thus S1(n,m) = (−1)n+m |S1(n,m)|, and for S2(n,m) ≥ 0
this makes no difference. Some formulas look simpler with signed numbers and

some with unsigned, but we have to make a choice.
Now we define the function

Q(x, n) = (−1)nΓ
(
1 +

1

x

)
/Γ

(
n+ 1 +

1

x

)
=

(−1)n
x

(
1

x

)−1
n+1

.
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Theorem 2. For any formal PS, both series

∞∑
n=0

an x
n =

∞∑
n=0

Q(x, n)
n∑

m=0

(−1)m S1(n,m) am, (22)

have the same asymptotic expansion as x→ 0, Re(x) > 0.
Proof can be found in the book [5], where FS were developed for asymptotic

series at infinity. The formula (22) is simply a reformulation for PS at the origin.
But since [5] is a rarity, and uses obsolete notation, we give here a separate

proof.
We can take (22) as the definition of factorial transformation, and rhs(22)

as definition of FS.
First, we give some different forms of the function Q(x, n). We have

Q(x, n) =
n∑

k=0

(−1)n+kC(n, k)

(1 + k x)n!
=

(−1)n
x n!

B

(
n+ 1,

1

x

)
=
∞∑
j=0

(−1)j S2(j, n) x
j,

(23)
where, only in this formula, B(u, v) is the Euler Beta function (we will not use

it).
All equalities in (23) are verified easily except the last one, which gives a GF

for Stirling numbers of the second kind. The last formula is proved as follows.
We expand the fraction 1/(1+k x) in the first equality (23) in PS in x, then

change the summation order. Then, comparing with the last equality (23), we

obtain the identity

S2(m, n) =
1

n!

n∑
k=0

(−1)n+kC(n, k) km. (24)

This identity is well known (see [2, p. 30]), where it is proved by demonstration
that both sides of (24) satisfy the same recurrent relation. This is a rather

cumbersome but straightforward calculation (see [2, p. 32]).
The recurrent relation for the numbers S2(m, n) is

S2(n+ 1, m) = S2(n,m− 1) +mS2(n,m), (25)

S2(0, 0) = 1, S2(0, 1) = S2(1, 0) = 0, and, obviously, S2(n,m) = 0 for n < m.

Thus summation in the last sum in (23) starts at j = n.
The formula (25) is obtained from the definition (21) if we express xn+1 in

two ways: (a) as in (21) with n→ n+ 1; and (b) xn by (21) times x. Then we
use an obvious identity for Pochhammer symbol

x (x)m = (x)m+1 −m (x)m.
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Now that we have this useful GF for Stirling numbers S2(n,m), we use it

in (22) as Q(x, n) instead of the original one. Then, after some manipulations
with the sums, we obtain the necessary and sufficient condition for (22) to be
true, i.e.,

n∑
j=1

S2(n, j)S1(j,m) = δn,m,

where δn,m is the Kronecker symbol.
This is a well known orthogonality condition for Stirling numbers, and it

follows directly from the definition (21) if we use the first formula in the second.

�
Since the GF Q(x, n) for Stirling numbers S2(n,m) is a rational function,

we deduce that S2(n,m) (unlike S1(n,m)) cannot grow too rapidly as n→∞.
It was shown in [12] that if FS at infinity (i.e., x replaced by 1/x in (22))

converges, then it converges for 0 < const < Re(x). This means that rhs(22)
(if convergent) converges in a circle of some radius R0 with the center at x0 =

R0 > 0.
As we proved, both sides of (22) give the same asymptotic PS as x → 0.

Moreover, it was proved in [12] that the remainders after truncation at the n-th

term for both series in (22) have the same order of smallness, i.e., both PS and
FS give approximations of the same order to the value of the function.

Further, it was shown in [12] that “most of the ordinary functions of anal-
ysis” can be expressed as convergent FS. The author went so far as to claim

that “the theory of asymptotic series is reduced to the level of the theory of
convergent series”.

We would not go that far in our assessments, but as we will see, FS (22)

gives a very powerful summation tool on a par with CF if not better.
The last statement can be made more specific.

It is well known that convergents to a CF are equivalent to a (N − 1, N),
(N,N), or (N,N − 1) Pade approximant of the original PS.

It is easy to see that the partial FS (22) to the order N is equal to a rational
function with the denominator

DN(x) =

∣∣∣∣∣∣
xN

Q(x,N)

∣∣∣∣∣∣ =
N∏
k=1

(1 + k x),

which is a polynomial of degree N , and the numerator which is also a polyno-
mial of degree N .

Thus a partial FS is similar both to Pade approximation and to a partial

CF approximation. But, unlike them both, FS expansion almost certainly
converges, and can frequently be expressed in a closed form as we will see

shortly.
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We remark that FS were known for at least a 100 years before Pade approx-

imations. Then, as we mentioned, they were mostly forgotten. But in the last
50 years or so, powerful algorithms were developed for summation of binomial
sums and for hypergeometric sums in general (see [13]). This means that if a

series has a hypergeometric pattern, then it can be recognized with the help of
a modern CAS, and the series summed up in a closed form.

As an example, we consider the following sum

S(x) =
∞∑
n=0

Q(x, n)

n!
,

which is not valid at first glance, since the functions Q(x, n) have singularities

at x = −1/k, k = 1, 2, . . . , n. Thus singularities keep piling up, and this
sum cannot converge to an analytical function at the origin. But it converges

nonetheless for Re(x) > 0, since it is easy to see that S(x) is a FS for the
following asymptotic series

∞∑
m=0

⎛
⎝ m∑
n=0

S2(m, n)

n!

⎞
⎠ (−1)m xm = F ([ ], [1+1/x],−1) = Γ

(
1 +

1

x

)
J1/x(2), (26)

where F ([ ], [ ], z) is a generalized hypergeometric function, and Jv(z) is the
Bessel function of the first kind.

We remark that CAS as a rule cannot expand Bessel or hypergeometric
functions in PS with respect to parameters. But there is a trick for this. If we
take F ([ ], [1+ 1/x], z), expand it in PS in z, then substitute z = −1, and then

expand in PS in x, then we obtain lhs(26).
Thus (26) can be read both ways, i.e., from left to right it is a GF for the

sequence

a(m) = (−1)m
m∑
n=0

S2(m, n)

n!
, m ∈ N0,

and from right to left it is an asymptotic expansion for the Bessel function with
respect to a parameter.

If fact, since Q(0, n) = 0, n > 0, and Q(x, n) � (−1)n/n! as x → ∞, FS
indeed have a tendency to converge for Re(x) > 0. We give another example

∞∑
n=0

Q(x, n)n! =
∞∑

m=0

⎛
⎝ m∑
n=0

S2(m, n)n!

⎞
⎠ (−1)m xm = F ([1, 1], [1 + 1/x],−1).

Now we construct FSs for Bernoulli numbers.
But first we need to point out that a divergent asymptotic PS may produce

different functions for Re(x) > 0 and for Re(x) < 0 (or in other sectors, i.e.,
a situation similar to the Stokes phenomenon). In fact, this property can be

taken as a characteristic one for divergent series.
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Thus we produce two FS for Bernoulli numbers.

First, we consider

G(x) =
∞∑
n=0

(−1)nB(n) xn. (27)

As we will see, β1(x) 	= xG(−x) (see (4)).
We apply Theorem 2, and obtain

G(x) =
∞∑
n=0

Q(x, n)
n∑

m=0

S1(n,m)B(m) =
∞∑
n=0

Q(x, n) a0(n).

Now we have to make sense of the inner sum in this formula, i.e., a0(n), which

is, in fact, a Stirling transform of the sequence B(m), m = 0, 1, . . .
Since this is a demonstration of a technique, we will go in some detail.

We consider the sequences

{a1(n)} = {(n+ 1)! a0(n)}; {a2(n)} =
⎧⎨
⎩
a1(n+ 1)

a1(n)

⎫⎬
⎭ , n ∈ N0,

then we observe that a2(n) = −(n+ 1)2. Going back, we obtain the identity

a0(n) =
n∑

m=0

S1(n,m)B(m) = (−1)n n!

n+ 1
. (28)

To prove (28), we take inverse Stirling transform of both sides of (28) and

obtain

B(n) =
n∑

m=0

S2(n,m) (−1)m m!

m+ 1
,

which is a known identity (see [2, Theorem 2.8]).
Thus we obtain

G(x) = F ([1, 1, 1], [2, 1+
1

x
], 1) =

1

x
Ψ

(
1,

1

x

)
, (29)

where the hypergeometric function converges at the argument z = 1, since
1 + 1 + 1 < 2 + (1 + 1/x) implies x > 0. The second equality in (29) will be

explained later in this section.
Thus G(x) is defined in the right half-plane as hypergeometric function and

analytically continued to the left half-plane by rhs(29).
Now we take GF β1(x) in (4) as an asymptotic series and apply Theorem 2.

We obtain FS

β1(x) = x+ x
∞∑
n=1

Q(x, n)
n∑

m=1

(−1)m S1(n,m)B(m),

where summation is started at n = 1 for convenience.
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Similar but more lengthy manipulations with the inner sum reveal the iden-

tity
n∑

m=1
(−1)n S1(n,m)B(m) = (−1)n+1 (n− 1)!

n+ 1
, n ∈ N, (30)

which implies

B(n) =
n∑

m=1

S2(n,m) (−1)n+m+1 (m− 1)!

m+ 1
, n ∈ N.

These identities can be proved as before (see [2, Theorem 2.8]).
Combining these formulas with Prop. 2, we obtain (along with the promised

FS) a hypergeometric representation of the polygamma function

Ψ

(
1, 1 +

1

x

)
= x− x2

2 (1 + x)
F

(
[1, 1, 2],

[
3, 2 +

1

x

]
, 1

)
, (31)

which is new (as far as we know).
Convergency test for the hypergeometric function in (31) gives x < −1, and

0 < x, which is in accordance with lhs(31).

However, rhs(31) is not the same function as lhs(31), since the latter is
defined, say, at x = −2/3, but rhs(31) is not. So lhs(31) is an analytical

continuation of rhs(31). In addition, rhs(31) converges very slowly for big x,
so this formula is more useful from right to left than otherwise.

Now we recall the original functional Eq (1). Since both sides of (31) sat-
isfy Eq (1) formally, we can take it either as a hypergeometric transformation
formula (probably a new one), or we simply obtain another representation of

the polygamma function

Ψ

(
1, 1 +

1

x

)
= x− x2

2 (1− x)

(
2 x− F

(
[1, 1, 2],

[
3, 1 +

1

x

]
, 1

))
, (32)

which converges for Re(x) > 0 (x = 1 is not a singularity: F ([1, 1, 2], [3, 2], 1) =

F ([1, 1], [3], 1) = 2).
Using the substitution x → x/(1 + x) in (1) repeatedly, we obtain a se-

quence of equations such that their lhs() telescope. Thus we obtain another
representation

β1(x) = x2
∞∑
n=1

1

(1 + nx)2
= Ψ

(
1, 1 +

1

x

)
.

Similar summation works for βk(x) in (5), and even for γ0(x) (see (10), (11)),
but not further. Thus we can write other representations of lhs(32) through

F ([1, 1, 2], [3, n+ 1/x], 1), n ∈ N.
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Finally, capitalizing on the property of Bernoulli numbers, we see that

G(x) = x + β1(x)/x = x + Ψ(1, 1 + 1/x)/x, which gives rhs(29). Thus we
have yet another hypergeometric transformation formula

xF ([1, 1, 1], [2, x+ 1], 1) = 1 + x− x

2 (x+ 1)
F ([1, 1, 2], [3, 2+ x], 1).

where we put x → 1/x. This formula transforms poorly convergent function
on the left as x→ 0 to better convergent one on the right.

§ 4. Bell numbers

The two well known EGFs for Stirling numbers are

∞∑
n=0

S1(n,m)

n!
xn =

logm(1 + x)

m!
,

∞∑
n=0

S2(n,m)

n!
xn =

(exp(x)− 1)m

m!
. (33)

If we sum up the first of these sums from m = 0 to m = ∞, we will obtain

S1(0, 0) = 1, S1(1, 0) + S1(1, 1) = 1, and the following identity

n∑
m=0

S1(n,m) = 0, n > 1.

But the summation of the second EGF in (33) produces the identity

∞∑
n=0

1

n!

⎛
⎝ n∑
m=0

S2(n,m)

⎞
⎠xn = exp(exp(x)− 1), (34)

which is, in fact, a well known EGF for Bell numbers, which we denote B(n)

(not to confuse with Bernoulli numbers B(n)).
Thus Bell numbers are less “fundamental” than the Stirling numbers. Still,

they are very important in combinatorics, so we will try to produce an ordinary
GF for these numbers.

The first attempt at summation of the GF for Bell numbers as a FS fails.
We only give it as an example that FS not always converge.

Thus we consider

U(x) =
∞∑
n=0

B(n) xn = 1 +
∞∑
n=1

Q(x, n)
n∑

m=1

(−1)m S1(n,m) B(m),

where summation in FS starts at n = 1 for convenience.

Comparative investigation of integer sequences, which is done with the help
of online encyclopedia [8], gives the representation

U(x) =
∞∑
n=0

(−1)n
1 + x (n+ 1)

Q(x, n)n!Ln(−1),
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where Ln(x) is the Laguerre polynomial.

The sequence n!Ln(−1) is recognized by [8], and we have

Ln(−1) � exp(−1/2 + 2n1/2)

2n1/4 π1/2
, n→∞

(see [8, A002720]). Here y � x means y = x (1 + o(1)) as x→ ∞. Thus U(x)

does not exist as an FS.
The second option is

W (x) =
∞∑
n=0

(−1)nB(n) xn =
∞∑
n=0

Q(x, n)
n∑

m=0

S1(n,m) B(m) =
∞∑
n=0

Q(x, n),

where the last equality follows from the representation (34) and orthogonality
property of Stirling numbers.

Thus we have

W (x) = exp(−1)F
([

1

x

]
,

[
1 +

1

x

]
, 1

)
=

1

x

∫ 1

0
exp(t− 1) t1/x−1 dt, (35)

where rhs(35) follows from the integral representation of Γ and incomplete Γ

functions, that also express W (x).
To verify lhs(35) with a CAS, we need the trick that was already described.

Here we take exp(−z)F ([1/x], [1+1/x], z), expand it in PS in z, then substitute
z = 1, and then expand in PS in x.

The GF (35) also explains why the first attempt at construction of a GF for

Bell numbers failed. The function W (x) as an integral rhs(35) is not defined
for Re(x) < 0. But W (x) as lhs(35) is an analytical function defined in the

complex plane except the poles xn = −1/n, n ∈ N. Thus W (x) is also valid
for x < 0, x 	= xn, and, technically, gives the GF U(x), except that it does not

provide asymptotic expansions in any sector with the line x ∈ (−∞, 0).

§ 5. Euler and Tangent numbers

These numbers are put together for a very good reason, as we will see. The
two well known EGFs for these numbers are

∞∑
n=0

E(n)

n!
xn =

1

cosh(x)
,

∞∑
n=0

T (n)

n!
xn = 1 + tanh(x). (36)

There are several rather complicated explicit formulas for Euler numbers

E(n) that can be found in literature (that we skip).
Tangent numbers T (n) are usually defined slightly differently than in (36),

but this again is done for a purpose. We have

T (n) =
4n+1 − 2n+1

n+ 1
B(n+ 1), n ∈ N0,

where, and only in this formula, Bernoulli number B(1) = 1/2 (see (2)).
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Proposition 4. The sequences of Euler and Tangent numbers are binomial

transforms of each other, i.e., for n ∈ N0, we have

T (n) =
n∑

m=0

C(n,m) (−1)mE(m), E(n) =
n∑

m=0

C(n,m) (−1)m T (m). (37)

Proof. An obvious identity for EGFs (36), namely

exp(−x) (1 + tanh(x)) =
1

cosh(x)

gives the second equality (37) either by the well known multiplication rule for

EFGs, or by simply collecting similar terms. Then the first equality (37) follows
automatically by the property of binomial transform being an involution. �

We denote formal GFs for Euler and Tangent numbers as Eg(x) and Tg(x).
First, we consider FS for Euler numbers. Theorem 2 gives

Eg(x)=
∞∑
n=0

E(n) xn=
∞∑
n=0

Q(x, n)
n∑

m=0

(−1)m S1(n,m)E(m)=
∞∑
n=0

Q(x, n) a0(n),

where {a0(n)} is the Stirling transform of the sequence {(−1)nE(n)}.
The sequence {a0(n)/n!}, as it turns out, has a recognizable pattern
⎧⎨
⎩
a0(n)

n!

⎫⎬
⎭ =

{
1, 0,
−1
2
,
1

2
,
−1
4
, 0,

1

8
,
−1
8
,
1

16
, 0,
−1
32

,
1

32
,
−1
64

, 0, . . .

}
, n ∈ N0,

which can be summarized as follows

a0(n) =
|(n mod 4)− 1| (−1)[(n+1)/2]+[n/4]

2[(n+1)/2]
n!, n ∈ N0.

Thus we need to consider four different cases of hypergeometric summation
dependent on (n mod 4).

In order to simplify the formulas, we introduce the functions

g: (x, k) −→ (k + 1) x+ 1

4 x
,
(k + 2) x+ 1

4 x
,
(k + 3) x+ 1

4 x
,
(k + 4) x+ 1

4 x
,

which produces a sequence of 4 rational functions, and

f : (x, k) −→ F ([1, g(1, k − 1)], [g(x, k)],−1/4) ,
which gives a hypergeometric function dependent on g(x, k).

Then, skipping some cumbersome calculations and collecting formulas, we
obtain

Eg(x) = 1−Q(x, 2) f(x, 2) + 3Q(x, 3) f(x, 3)− 6Q(x, 4) f(x, 4).
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For clarity, we give just one term of this expression, Q(x, 2) f(x, 2),

x2

(x+ 1) (2 x+ 1)
F

([
3

4
, 1, 1,

5

4
,
3

2

]
,

[
3 x+ 1

4 x
,
4 x+ 1

4 x
,
5 x+ 1

4 x
,
6 x+ 1

4 x

]
,
−1
4

)
.

Except for the obvious singularities xn = −1/n, n ∈ N, the GF Eg(x) is well

defined in the complex plane due to the argument z = −1/4, which guarantees
rapid convergence.

Now we consider FS for Tangent numbers. Theorem 2 gives

Tg(x)=
∞∑
n=0

T (n) xn=
∞∑
n=0

Q(x, n)
n∑

m=0

(−1)m S1(n,m) T (m)=
∞∑
n=0

Q(x, n) b0(n),

where {b0(n)} is the Stirling transform of the sequence {(−1)n T (n)}.
The sequence {b0(n)/2/n!} also has a recognizable pattern. In fact, it is the

same as for Euler numbers only shifted by 2 and with minus sign⎧⎨
⎩
b0(n)

2n!

⎫⎬
⎭ =

{
1

2
,
−1
2
,
1

4
, 0,
−1
8
,
1

8
,
−1
16

, 0,
1

32
,
−1
32

,
1

64
, 0, . . .

}
, n ∈ N0,

which can be summarized as follows

b0(n) =
|(n− 2 mod 4)− 1| (−1)[(n−1)/2]+[(n−2)/4]

2[(n+1)/2]
n!, n ∈ N0.

Thus, as before, we need to consider four different cases of hypergeometric

summation dependent on (n mod 4).
Skipping some cumbersome calculations and collecting formulas, we obtain

Tg(x) = 1−Q(x, 1) f(x, 1) +Q(x, 2) f(x, 2)− 6Q(x, 4) f(x, 4).

As it is often the case, asymptotic PS are very useful for numerical evaluation

of a function at a singularity even if they diverge. For example, summation
of PS for Euler numbers up to the smallest term for x = 0.1, which takes

16 terms, gives the error less then 1.01 × 10−6 compared to the true value
Eg(0.1) = 0.990449430463732220. The same test for Tangent PS for x = 0.1,
which takes 14 terms, gives the error less then 0.95 × 10−6 compared to the

true value Tg(0.1) = 1.098138472266119760.
At the same time, GFs Eg(x) and Tg(x) give an example of how differently

formal PS behave before and after summation. Such an example, we believe,
was not given before.

Proposition 5. Let the sequences {gn} and {hn} be binomial transforms of

each other, and let g(x) and h(x) be their respective formal GFs, i.e.,

g(x) =
∞∑
n=0

gn x
n, h(x) =

∞∑
n=0

hn x
n,
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then

g(x) =
1

1− x
h

( −x
1− x

)
, (38)

considered as formal PS transformation.

Proof. The identity (38) for GFs is, of course, well known (see [14], where
an obsolete form of binomial transform is used). It is clearly an involution and

easily confirmed with formal manipulation of PS.�

Thus one would expect the same property (38) hold for Eg(x) and Tg(x),
except that their FS are not defined for Re(x) < 0.

We denote alternative versions of GFs for Euler and Tangent numbers as
E−g (x) and T−g (x), i.e.,

E−g (x) =
∞∑
n=0

(−1)nE(n) xn, T−g (x) =
∞∑
n=0

(−1)n T (n) xn

keeping in mind that FS for them are still defined for Re(x) > 0.

Actually, E−g (x) = Eg(x), and

T−g (x) = 1 +Q(x, 1) f(x, 1)−Q(x, 2) f(x, 2)+ 6Q(x, 4) f(x, 4),

i.e, Tg(x) + T−g (x) = 2, which follows from cosh(x) being even, and tanh(x)

being odd (see (36)).
Thus, instead of (38), we have two identities

Eg(x) =
1

1 + x
Tg

(
x

1 + x

)
, T−g (x) =

1

1 + x
E−g

(
x

1 + x

)
,

which are not involutions, i.e., not reversable in the sense Eg ←→ Tg.

We can solve this system of four functional equations and obtain the iden-
tities

Eg(x)=
2

1 + x
− 1

1 + 2 x
Eg

(
x

1 + 2 x

)
, Tg(x)=2− 1

1 + 2 x
Tg

(
x

1 + 2 x

)
. (39)

These identities can be considered either as hypergeometric transformation
formulas, or as functional equations that generate Euler and Tangent numbers
just like Eq (1) generated Bernoulli numbers.

§ 6. Stirling numbers of the first kind

Stirling numbers of the second kind, that are considered in [14] for some
strange reason as being more “fundamental” than their counterpart of the first

kind, already have very useful GFs Q(x, n) (see (23)). Here we construct similar
GFs for sequences {S1(n,m), n ∈ N0}, m ∈ N0.
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The functions Q(x, n) are rational. Hence changing sign of x basically makes

no difference, since their PS converge at the origin. For GFs for S1(m, n), this is
manifestly not the case, since, for example, S1(n, 1) = (−1)n−1 (n− 1)!, n > 0.
Thus their PS diverge at the origin, and we may need to consider two separate

FS summations as we did for the Bell numbers.
Let us denote formal GFs for the sequences {S1(n,m), n ∈ N0} as

Ym(x) =
∞∑
n=0

S1(n,m) xn, m ∈ N0. (40)

Note that the summation here starts actually at n = m, i.e., Ym(x) � xm.

Thus, obviously, Y0(x) ≡ 1, and Y1(x) satisfies the famous Euler equation
(see [4])

x2 Y ′1(x) + Y1(x) = x,

that was used countless times as an example of an ODE having a divergent
asymptotic PS solution.

Thus we already have a summed up GF Y1(x) as

Y1(x) = exp

(
1

x

)
Ei

(
1,

1

x

)
= exp

(
1

x

) ∞∫
1

1

t
exp

(−t
x

)
dt, Re(x) > 0,

where Ei() is the integral exponent function.

Proposition 5. The GFs Ym(x) satisfy the following recurrent ODEs

x2 Y ′m(x) + Ym(x) = x Ym−1(x), m ∈ N. (41)

Proof. We already have the base of induction. Let (41) hold for k < m.

Substitution of (40) in (41) gives the recurrent relation for the numbers S1(n,m)

S1(n+ 1, m) = S1(n,m− 1)− nS1(n,m),

which follows directly from the definition (21). �
The general solution to (41) is

Ym(x) = exp

(
1

x

)⎛⎜⎝
x∫
0

1

t
Ym−1(t) exp

(−1
t

)
dt+ const

⎞
⎟⎠ , (42)

where an arbitrary const = 0, since Ym(x) � xm. In particular,

Y2(x) = exp

(
1

x

) x∫
0

1

t
Ei

(
1,

1

t

)
dt. (43)

Just for the record, the GFs Q(x, n) also satisfy recurrent ODEs

x (1 + nx)Q′(x, n) + x2Q′(x, n− 1) = Q(x, n), n ∈ N,

that can be used to prove the first equality in (23).
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The ODEs (41) and their solutions Ym(x) give an example of how (almost)

inextricably flat functions can be linked to analytical functions represented by
divergent PS.

Problems begin when we try to express Ym(x) in explicit form.

We have a head start with Y1(x), since there are three century of study
behind it. But let us express it first as a general solution to Euler ODE and

then find an arbitrary constant. We have

Y1(x)=exp

(
1

x

)(∫ 1

x
exp

(−1
x

)
dx+ C

)
=exp

(
1

x

)(∫ 1

x
F

(
[ ], [ ],

−1
x

)
dx+ C

)

= exp

(
1

x

)(
C + log x+

1

x
F

(
[1, 1], [2, 2],

−1
x

))
, C = −γ,

where γ is, not surprisingly, the Euler constant. In fact, Y1(1) = δ is the
Euler-Gompertz constant (see [10, p. 423]), and we have

δ = eEi(1, 1) = e (F ([1, 1], [2, 2],−1)− γ) = 0.59634736232319407434.

Thus we face a non-local problem of finding an asymptotics of an integral, or
an asymptotics of a hypergeometric function at infinity in order to match the

local asymptotics of the function at the origin (compare with γ2(x) in Sect. 2).
We can move exactly one step further along this path before we run out of

explicit arbitrary constants. We have

Y2(x) = e1/x
⎛
⎝π2

12
+

γ2

2
− γ log x+

log2 x

2
− 1

x
F

(
[1, 1, 1], [2, 2, 2],

−1
x

)⎞⎠, (44)

due to the integral (43), which can be evaluated explicitly at x = 1.
Let us denote

[k]m = [k, k, . . . , k], (m times), k = 1, 2.

Proposition 6. The GFs Ym(x), m ∈ N have explicit forms

Ym(x) = e1/x
⎛
⎝Cm + Rm(log x) +

(−1)m−1
x

F

(
[1]m+1, [2]m+1,

−1
x

)⎞⎠ , (45)

where Cm are uniquely defined constants expressed in quadratures, and Rm(x)
are polynomials of degree m without constant terms.

Proof is easily obtained by induction. �

Since the function exp(1/x) is flat on the wrong side of the origin, we face
a paradoxical situation, i.e., an exact formula is not necesserily a good thing.

Namely, we cannot compute the functions Ym(x) too close to the origin even if
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we knew the constants Cm exactly (and, in a sense, we do know them). This is

because irrational numbers cannot be known exactly from the computational
viewpoint. Thus a small error for small x > 0 is multiplied by exp(1/x) and
ruins the result. So the original divergent PS (40) or partial FS for them are

better for computation for small x.
For example, we take Y2(x) and x = 0.1. The exact result to 16 decimal

places (all correct) is Y2(0.1) = 0.7770348214281297 × 10−2. Summation of
PS (40) to the smallest term truncates at n = 10 and gives the error less than

5.2×10−5. If fact the PS for Y2(x) is alternating, so the series can be accelerated.
Factorial transformation does just that and produces rapidly convergent FS.
Ten terms of FS give an error less than 2 × 10−6, and 20 terms give an error

less than 1.1× 10−9.
If we take x = 0.01 and use ordinary double float arithmetic (≈ 16 decimal

places), then both PS (40) and FS for it give Y2(0.01) = 0.97105257566526×
10−4 (all digits correct), but in exact formula (44), all digits are lost.

Unfortunately, Stirling transforms of sequences {(−1)n S1(n,m), n ∈ N},
m ∈ N do not appear to have a hypergeometric pattern. Thus FS for PS (40)

are most likely not summable in a closed form. For example, if we take the
sequence {(−1)n S1(n, 1), n ∈ N}, then (thanks to [8])

log(1− log(1− x)) =
∞∑
n=1

(−1)n
n!

⎛
⎝ n∑
m=1

(−1)m S1(n,m)S1(m, 1)

⎞
⎠xn,

and since

log(1− log(1− x)) = xF ([1, 1], [2], x)F ([1, 1], [2],−xF ([1, 1], [2], x)),

it can hardly be expected to simplify to a hypergeometric form.
An alternative form of FS (with (−x)n instead of xn) does not produce

anything new except

log(1 + log(1 + x)) =
∞∑
n=1

1

n!

⎛
⎝ n∑
m=1

S1(n,m)S1(m, 1)

⎞
⎠xn.

But there appears to be another transformation entirely different from FS.
We cannot fail to notice a certain symmetry between two Stirling transforms

on the one hand and the functions Yn(x) and Q(x, n) on the other. Thus we
have

Theorem 3. For any formal PS, both series
∞∑
n=0

an x
n =

∞∑
n=0

Yn(x)
n∑

m=0

S2(n,m) am, (46)

have the same asymptotic expansion as x→ 0, Re(x) > 0.
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Proof is exactly the same as for the Theorem 2, since the most difficult part

of that proof was to establish the last equality in (23). And here we started this
section with its counterpart (40). The rest is the same, since Stirling numbers
are mutually orthogonal. �

The usefulness of this “anti-factorial” transform is highly questionable. But
we will demonstrate in the next section that it works.

§ 7. Borel integral summation

This paper would be incomplete without considering Borel summation, which

is known as (almost) the most powerful and useful summation technique on the
market (see [15, p. 182]).

Borel summation is basically a combination of Borel and Laplace transforms.
Borel transform produces an EGF from the original GF to be summed. This

EGF is expected to be an analytical function such that a simple form of Laplace
transform is applicable. This can be summarized as follows

∞∑
n=0

an x
n =

∞∫
0

exp(−t)
⎛
⎝ ∞∑
n=0

an
n!

(x t)n
⎞
⎠ dt, (47)

where rhs(47) defines lhs(47) as a summed up formal PS in an integral form
(since both sides of (47) have the same asymptotic expansion).

Thus Borel summation is especially useful when we already have an EGF,
as is the case with most combinatorial sequences.

In this section, we examine what Borel summation can do for combinatorial

sequences considered in this paper.
It turns out that Borel summation indeed can sum up almost all of them

in an integral form. Thus Borel summation is at least as strong as factorial
summation (i.e., PS→ FS). However, Borel summation produces quadratures,

which are certainly analytical functions, but not as good as functions expressed
in a closed form in known functions.

This observation becomes transparent when we try to plot a function or find

some of its properties.
Thus factorial summation, when applicable on a par with Borel summation,

gives much more than the latter and basically evaluates the quadratures that
Borel summation produces in closed forms.

First, we consider the function G(x) for Bernoulli numbers (see (27)). Using
EGF (2) with x→ −x, we obtain

G(x) = x
∞∫
0

t exp(−t)
1− exp(−x t)dt =

1

x
Ψ(1,

1

x
).
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This is, actually, a unique quadrature that was evaluated by CAS indepen-

dantly without the help from factorial summation.
The functional Eq (1) has the solution

β1(x) = x2
∞∫
0

t exp(−t)
exp(x t)− 1

dt = Ψ(1, 1 +
1

x
).

Combining the formulas (23) and (33), we produce an integral representation

of a key function in factorial summation, i.e.,

Q(x, n) =
(−1)n
n!

∞∫
0

exp(−t) (1− exp(−t x))ndt.

This formula immediately gives Borel sum for GF W (x) for Bell numbers (see

Sect. 4)

W (x) =
∞∫
0

exp(−t) exp(exp(−t x)− 1)dt,

(see also (35)).

It is now clear why FS U(x) was not summable. Borel summation gives

U(x) =
∞∫
0

exp(−t) exp(exp(t x)− 1)dt,

which does not exist for Re(x) > 0.
Euler and Tangent GFs give especially interesting examples of evaluation of

integrals in a closed form. We have

Eg(x) =
∞∫
0

exp(−t)
cosh(t x)

dt, Tg(x) =
∞∫
0

exp(−t) (1 + tanh(t x)) dt.

Since these integrals can be evaluated at special values of x explicitly, we have
some unusual hypergeometric evaluations. For example, Eg(1) = log 2, and

log 2=1− 1

6
F

([
3

4
, 1

]
,

[
7

4

]
,
−1
4

)
− 1

8
F

(
[1, 1], [2],

−1
4

)
− 1

20
F

([
1,

5

4

]
,

[
9

4

]
,
−1
4

)
.

Also, Tg(1) = π/2, and

π

2
=1+

1

2
F

([
1

2
, 1

]
,

[
3

2

]
,
−1
4

)
+
1

6
F

([
3

4
, 1

]
,

[
7

4

]
,
−1
4

)
− 1

20
F

([
1,

5

4

]
,

[
9

4

]
,
−1
4

)
.

The functional identities (39) can also be considered as integral transforma-
tions for these GFs. They can be applied recursively. We give just one

∞∫
0

exp(−t) (1 + tanh(t x)) dt = 2− 1

1 + 2 x

∞∫
0

exp(−t)
(
1 + tanh

(
t x

1 + 2 x

))
dt,
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which is far from being obvious.

Finally, we use Borel summation for GF for Stirling numbers S1(n,m) and
obtain another representation for the functions Ym(x), i.e.,

Ym(x) =
1

m!

∞∫
0

exp(−t) logm(1 + t x)dt, m ∈ N0. (48)

It is easy to verify that integration by parts gives Y1(x) and Y2(x) explicitly
as before, but for m > 2, this does not produce anything meaningful.

Explicit forms (48) for Ym(x) allow to demonstrate that the transform for
asymptotic PS in Theorem 3 works. For example, consider the sequence

{a(n) = (−1)n n!, n ∈ N0}, This is a shifted sequence for the Stirling numbers
S1(n, 1); thus the GF for {a(n)} is Y1(x)/x. Since the inverse Stirling transform

in Theorem 3 for {a(n)} produces {(−1)n}, we can sum up the integrals there
and obtain

1

x
exp

(
1

x

)
Ei

(
1,

1

x

)
=
∞∫
0

exp(−t)
1 + t x

dt.

Of course, this can also be obtained directly by Borel summation.
In conclusion, we remark that divergent PS have numerous applications

from combinatorics (see [1]) to quantum physics (see [16]). In a recent review
[17], we read that “the relevance of asymptotic series in physical problems is

hard to overestimate”, and that “perturbation series for quantum mechanical
systems are almost always divergent, and define instead asymptotic series for

the perturbed energy eigenvalues”.
As a reflection of such an importance of divergent PS, an article in Wikipedia

on divergent series counts more than 15 summation techniques. The factorial

summation is noticeably absent.
Hopefully, we have demonstrated that factorial transform can be at least as

useful for summation of divergent PS as the Borel summation.
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