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Дудникова Т.В.
Асимптотическое поведение решений задачи Коши с периоди-

ческими начальными данными для нелинейной системы Лэмба

Рассматривается модель, состоящая из бесконечной струны, взаимо-
действующей с нелинейным осциллятором. Для нее изучается задача Коши с
периодическими начальными данными. Основная цель – доказать сходимость
решений при 𝑡 → ∞ к периодическим по времени решениям.
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The asymptotic behavior of solutions to the Cauchy problem with

periodic initial data for the nonlinear Lamb system

A model consisting of an infinite string coupled to a nonlinear oscillator is
considered. The Cauchy problem for the system with the periodic initial data is
studied. The main goal is to prove the convergence of the solutions as 𝑡 → ∞ to
time periodic solutions.
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1. Introduction
Consider the following problem for a function 𝑢(𝑥, 𝑡) ∈ 𝐶(R2):

(𝜇 + 𝑚𝛿(𝑥))𝑢̈(𝑥, 𝑡) = 𝜅𝑢′′(𝑥, 𝑡) + 𝛿(𝑥)𝐹 (𝑢(𝑥, 𝑡)), 𝑡 ∈ R, 𝑥 ∈ R. (1.1)

Here 𝑚 ≥ 0, 𝜇, 𝜅 > 0; 𝑢̇ ≡ 𝜕𝑢/𝜕𝑡, 𝑢′ ≡ 𝜕𝑢/𝜕𝑥, 𝛿(𝑥) is the Dirac 𝛿–function. The
initial data (as 𝑡 = 0) for Eq. (1.1) are assumed to be periodic, see Definition 1.5
below.

By definition, Eq. (1.1) is equivalent to the following system:

𝜇𝑢̈(𝑥, 𝑡) = 𝜅𝑢′′(𝑥, 𝑡), 𝑡 ∈ R, 𝑥 ∈ R ∖ {0}, (1.2)
𝑚𝑦(𝑡) = 𝐹 (𝑦(𝑡)) + 𝜅 [𝑢′(0+, 𝑡) − 𝑢′(0−, 𝑡)], 𝑡 ∈ R, (1.3)

where
𝑦(𝑡) = 𝑢(0−, 𝑡) = 𝑢(0+, 𝑡), 𝑡 ∈ R. (1.4)

Physically, the system describes small crosswise oscillations of an infinite string
stretched parallel to the 𝑂𝑥-axis. 𝜇 is the line density of the string, 𝜅 is its tension,
𝐹 (𝑦) is an external (nonlinear, in general) force field perpendicular to 𝑂𝑥. In the
case 𝑚 = 0, the string is coupled to a spring of a rigidity 𝐹 (𝑦). In the case 𝑚 > 0,
a ball of mass 𝑚 is attached to the string at the point 𝑥 = 0, and the field 𝐹 (𝑦)
subjects the ball.

The system (1.2)–(1.4) was introduced first by Lamb [4] for the linear case, i.e.,
when 𝐹 (𝑦) = −𝑟𝑦 with a positive constant 𝑟. This system can be considered as a
simple model for the phenomenon of radiation damping experienced by a vibrating
body in an energy conducting medium, for example, vibrations of an elastic sphere
in a gaseous medium, relativistic radiation of energy from a concentrated mass
by gravity waves and so on. For general nonlinear functions 𝐹 (𝑦), this model
was studied by Komech [10] for finite energy solutions. In the present paper, the
solutions of infinite energy with space-periodic initial data are considered. Main
goal is to prove that each solution 𝑢(𝑥, 𝑡) to the system for large times is close to
a time-periodic solution (see Theorem 1.6 below).

Let us describe our assumptions on the external force 𝐹 (𝑦).

Denote by 𝑉 (𝑦) = −
∫︁

𝐹 (𝑦) 𝑑𝑦 the potential energy of the external field,

𝐹 (𝑦) = −𝑉 ′(𝑦), 𝑦 ∈ R. We assume that

𝐹 (𝑦) ∈ 𝐶1(R), 𝐹 (𝑦) → ∓∞ as 𝑦 → ±∞. (1.5)

Obviously, condition (1.5) implies that

𝑉 ∈ 𝐶2(R), 𝑉 (𝑦) → ∞ as |𝑦| → ∞. (1.6)



– 4 –

Let us introduce a class ℰ of solutions 𝑢(𝑥, 𝑡) to Eq. (1.1) with locally finite
energy.

Definition 1.1. A function 𝑢(𝑥, 𝑡) belongs to ℰ if 𝑢 ∈ 𝐶(R2) and 𝑢̇, 𝑢′ ∈ 𝐿2
loc(R2),

where the derivatives are understood in the sense of distributions.

For 𝑢(𝑥, 𝑡) ∈ ℰ , the system (1.2)–(1.3) is understood as follows (see [10]).
For 𝑢 ∈ 𝐶(R2), Eq. (1.2) is understood in the sense of distributions in the

region (𝑥, 𝑡) ∈ R2, 𝑥 ̸= 0. Moreover, Eq. (1.2) is equivalent to the d’Alembert
decomposition

𝑢(𝑥, 𝑡) = 𝑓±(𝑥− 𝑎𝑡) + 𝑔±(𝑥 + 𝑎𝑡), ±𝑥 > 0, 𝑡 ∈ R, (1.7)

where 𝑎 =
√︀

𝜅/𝜇, 𝑓±, 𝑔± ∈ 𝐶(R), since 𝑢(𝑥, 𝑡) ∈ 𝐶(R2).
We now explain Eq. (1.3). Equality (1.7) implies

𝑢′(𝑥, 𝑡) = 𝑓 ′
±(𝑥− 𝑎𝑡) + 𝑔′±(𝑥 + 𝑎𝑡) for ± 𝑥 > 0, 𝑡 ∈ R,

where all derivatives are understood in the sense of distributions. For 𝑢(𝑥, 𝑡) ∈
𝐶(R2) satisfying (1.2), write

𝑢′(0±, 𝑡) := 𝑓 ′
±(−𝑎𝑡) + 𝑔′±(𝑎𝑡). (1.8)

Note that condition 𝑢(𝑥, 𝑡) ∈ ℰ implies that 𝑓 ′
±, 𝑔

′
± ∈ 𝐿2

loc(R). The derivative 𝑦(𝑡)
of 𝑦(𝑡) ∈ 𝐶(R) is understood in the sense of distributions. Moreover, for 𝑚 ̸= 0,
Eq. (1.3) and condition (1.5) imply that 𝑦(𝑡) = 𝑢̈(0±, 𝑡) ∈ 𝐿2

loc(R). Hence, if
𝑚 ̸= 0, then 𝑦(𝑡) ∈ 𝐶1(R) for any solution 𝑢 ∈ ℰ .

We study the Cauchy problem for the system (1.2)–(1.3) with the initial
conditions

𝑢|𝑡=0 = 𝑢0(𝑥), 𝑢̇|𝑡=0 = 𝑢1(𝑥), 𝑥 ∈ R, (1.9)
𝑦̇|𝑡=0 = 𝑦1 (if 𝑚 ̸= 0). (1.10)

We assume that 𝑦1 ∈ R and the initial data 𝑢0(𝑥), 𝑢1(𝑥) belong to the space ℋ.

Definition 1.2. The pair of functions (𝑢0, 𝑢1) belongs to the space ℋ if 𝑢0 ∈ 𝐶(R),
𝑢′0, 𝑢1 ∈ 𝐿2

loc(R).

Proposition 1.3. Let condition (1.6) hold and (𝑢0, 𝑢1) ∈ ℋ, 𝑦1 ∈ R. Then the
Cauchy problem (1.2)–(1.4), (1.9), (1.10) has a unique solution 𝑢(𝑥, 𝑡) ∈ ℰ .

This proposition is proved in Section 2.
To prove the main result we impose additional conditions on the initial data

(𝑢0, 𝑢1). At first, for an 𝜔 > 0, we introduce a class 𝑃 𝜔 of the space periodic
functions.



– 5 –

Definition 1.4. For 𝜔 > 0, we say that 𝑢 ∈ 𝑃 𝜔 if 𝑢(𝑥± 𝜔) = 𝑢(𝑥) for ±𝑥 > 0.

Definition 1.5. For 𝜔 > 0, (𝑢0, 𝑢1) ∈ ℋ𝜔 if 𝑢0 ∈ 𝐶1(R), 𝑢1 ∈ 𝐶(R) and
𝑢0, 𝑢

′
0, 𝑢1 ∈ 𝑃 𝜔.

In the case 𝑚 = 0, the following result holds.

Theorem 1.6. Let 𝑚 = 0, condition (1.5) hold and (𝑢0, 𝑢1) ∈ ℋ𝜔 for some
𝜔 > 0. Then for every solution 𝑢(𝑥, 𝑡) ∈ ℰ of the Cauchy problem (1.2)–(1.4),
(1.9) there exists a solution 𝑢𝑝(𝑥, 𝑡) ∈ ℰ to Eq. (1.1) such that

𝑢𝑝(𝑥, 𝑡 + 𝜔/𝑎) = 𝑢𝑝(𝑥, 𝑡) for (𝑥, 𝑡) ∈ R2 : |𝑡| > |𝑥|/𝑎, (1.11)

and for every 𝑅 > 0,∫︁
|𝑥|<𝑅

(︀
|𝑢̇(𝑥, 𝑡) − 𝑢̇𝑝(𝑥, 𝑡)|2 + |𝑢′(𝑥, 𝑡) − 𝑢′𝑝(𝑥, 𝑡)|2

)︀
𝑑𝑥

+ max
|𝑥|<𝑅

|𝑢(𝑥, 𝑡) − 𝑢𝑝(𝑥, 𝑡)| → 0 as 𝑡 → ∞. (1.12)

This theorem is proved in [3]. We prove the similar result in the case 𝑚 ̸= 0
under additional restrictions on the function 𝐹 (𝑦) (see Section 3).

In Appendix, we consider Eq. (1.1) for 𝑡 > 0 under the initial condition

𝑢(𝑥, 𝑡)|𝑡≤0 = 𝑝(𝑥 + 𝑎𝑡), 𝑥 ∈ R, (1.13)

where the function 𝑝(𝑧) ∈ 𝑃 𝜔, 𝑝 ∈ 𝐶1(R), 𝑝(𝑥) = 𝑝0 for 𝑥 ≤ 0, and 𝐹 (𝑝0) = 0. In
this case, the convergence (1.12) holds, i.e., the solution 𝑢(𝑥, 𝑡) of the problem (1.2)–
(1.4), (1.13) either is a time-periodic for |𝑥| ≤ 𝑎𝑡 with period 𝜔/𝑎 or converges
to a function 𝑢𝑝(𝑥, 𝑡) ∈ ℰ satisfying (1.11). Moreover, the function 𝑢𝑝(𝑥, 𝑡) is a
solution of Eq. (1.1) for 𝑡 > 0 under the condition 𝑢𝑝(𝑥, 𝑡)|𝑡≤0 = 𝑞(𝑥 + 𝑎𝑡). Here
𝑞(𝑥) = 𝑞0 for 𝑥 ≤ 0 and 𝑞(𝑥) = 𝑞0 + 𝑝(𝑥) − 𝑝0 for 𝑥 > 0, with some point 𝑞0 ∈ R
depending on 𝑝0.

We outline the strategy of the proof of (1.12). At first, using the d’Alembert
method, we reduce the problem (1.2)–(1.4), (1.9), (1.10) to the study of the
following Cauchy problem for the function 𝑦(𝑡),

𝑚𝑦 + (2𝜅/𝑎)𝑦̇ − 𝐹 (𝑦(𝑡)) = 2𝜅𝑝′(𝑎𝑡), 𝑡 ∈ R, (1.14)

with some 𝜔-periodic function 𝑝 (see formula (2.4) below) and with the initial
conditions

𝑦|𝑡=0 = 𝑦0 = 𝑢0(0),
𝑦̇|𝑡=0 = 𝑦1 (if 𝑚 ̸= 0).

(1.15)
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Further, for 𝑚 = 0, we show (see Theorem 3.1) that any solution of Eq. (1.14) either
𝜔/𝑎-periodic or tends to an 𝜔/𝑎-periodic solution 𝑦𝑝(𝑡), i.e., |𝑦(𝑡) − 𝑦𝑝(𝑡)| → 0 as
𝑡 → ∞. Finally, using the explicit formula (2.3) for 𝑢(𝑥, 𝑡) we derive the results
of Theorem 1.6.

If 𝑚 ̸= 0, then the behavior of solutions to Eq. (1.14) is more complex. In the
case when 𝐹 (𝑦) = −𝑎𝑥− 𝑏𝑦3, the equation of a form (1.14) is called the Duffing
equation with damping, see for example, [8, 17]. Eq. (1.14) is a particular case of
the generalized Liénard equations with a forcing term 𝑒(𝑡) = 2𝜅𝑝′(𝑎𝑡),

𝑦 + 𝑓(𝑦)𝑦̇ + 𝑔(𝑦) = 𝑒(𝑡). (1.16)

Eq. (1.16) with 𝑔(𝑦) = 𝑦 and 𝑒(𝑡) ≡ 0 was studied first by Liénard [7]. A class of
equations of the form (1.16) has been widely investigated in the literature, see,
for example, Cartwright [1], Littlewood [2], Levinson [6], Loud [8, 9], Reuter [15].
We refer the reader to the survey works [5, 12, 13, 14, 16] for a detailed discussion
of the results and methods concerning these equations. Some results concerning
Eq. (1.14) are given in Section 3. In particular, condition (1.6) implies that for
large times the pairs 𝑌 (𝑡) = (𝑦(𝑡), 𝑦̇(𝑡)) (where 𝑦(𝑡) is a solution of (1.14)) belong
to a fixed bounded region of R2. Denote by 𝑈(𝑡,0) the solving operator to the
Cauchy problem (1.14), (1.15). By the Pliss results [12, 13], there exists a set
𝐼 ⊂ R2 which is invariant w.r.t. 𝑈(𝜔/𝑎,0). Moreover, the set 𝐼 is not empty
and has zero Lebesgue measure. Introduce an integral set 𝒮 ⊂ {(𝑌 (𝑡), 𝑡) ∈ R3}
consisting of the solutions of Eq. (1.14) with the initial values (𝑦0, 𝑦1) ∈ 𝐼. Let
𝒮𝜏 denote the intersection of 𝒮 and the hyperplane 𝑡 = 𝜏 , and 𝜌(𝑌,𝒮𝜏) stand for
the distance between a point 𝑌 ∈ R2 and the set 𝒮𝜏 . In Section 3 we check that
every solution of Eq. (1.14) tends to the set 𝒮 as 𝑡 → ∞, i.e., 𝜌(𝑌 (𝜏),𝒮𝜏 ) → 0 as
𝜏 → ∞. Hence the explicit formula (2.3) for the solutions 𝑢(𝑥, 𝑡) implies that for
any 𝑅 > 0,

inf
{︁ ∫︁
|𝑥|<𝑅

(︀
|𝑢̇(𝑥, 𝑡) − 𝑢̇𝑝(𝑥, 𝑡)|2 + |𝑢′(𝑥, 𝑡) − 𝑢′𝑝(𝑥, 𝑡)|2

)︀
𝑑𝑥

+ max
|𝑥|<𝑅

|𝑢(𝑥, 𝑡) − 𝑢𝑝(𝑥, 𝑡)|
}︁
→ 0 as 𝑡 → ∞, (1.17)

where the infinitum is taken over all solutions 𝑢𝑝(𝑥, 𝑡) ∈ ℰ of the problem (1.2)–(1.3)
such that 𝑢𝑝(0±, 𝑡) = 𝑦𝑝(𝑡) and (𝑦𝑝(𝑡), 𝑦̇𝑝(𝑡)) ∈ 𝒮𝑡.

We give additional restrictions on the function 𝐹 (𝑦) (see Examples 3.5–3.7
below) under which the set 𝐼 has a unique point and then Eq. (1.14) has a unique
stable periodic solution. In this case, every solution of Eq. (1.14) tends to a 𝜔/𝑎-
periodic solution 𝑦𝑝(𝑡) as 𝑡 → ∞, and convergence (1.12) holds.
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2. Existence of solutions
In this section we prove Proposition 1.3. The method of construction of finite

energy solutions to the Cauchy problem (1.2)–(1.4), (1.9), (1.10) was given by
Komech [10]. We apply this method to the infinite energy solutions. For simplicity,
we consider only the case 𝑡 > 0. Substituting (1.7) into initial conditions (1.9), we
have

𝑓±(𝑧) =
𝑢0(𝑧)

2
− 1

2𝑎

∫︁ 𝑧

0

𝑢1(𝑦) 𝑑𝑦 + 𝐶± for ± 𝑧 > 0,

𝑔±(𝑧) =
𝑢0(𝑧)

2
+

1

2𝑎

∫︁ 𝑧

0

𝑢1(𝑦) 𝑑𝑦 − 𝐶± for ± 𝑧 > 0,
(2.1)

where we can put constants 𝐶± = 0. On the other hand, substituting (1.7) into
the condition (1.4), we have

𝑦(𝑡) = 𝑓−(−𝑎𝑡) + 𝑔−(𝑎𝑡) = 𝑓+(−𝑎𝑡) + 𝑔+(𝑎𝑡) for 𝑡 ∈ R.

Hence, we can determinate 𝑔−(𝑧) with 𝑧 > 0 and 𝑓+(𝑧) with 𝑧 < 0 as follows:

𝑔−(𝑧) = 𝑦(𝑧/𝑎) − 𝑓−(−𝑧), 𝑓+(−𝑧) = 𝑦(𝑧/𝑎) − 𝑔+(𝑧) for 𝑧 > 0. (2.2)

Therefore, for 𝑡 > 0 we obtain

𝑢(𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑓+(𝑥− 𝑎𝑡) + 𝑔+(𝑥 + 𝑎𝑡) for 𝑥 ≥ 𝑎𝑡
𝑦(𝑡− 𝑥/𝑎) + 𝑔+(𝑥 + 𝑎𝑡) − 𝑔+(𝑎𝑡− 𝑥) for 0 ≤ 𝑥 < 𝑎𝑡
𝑦(𝑡 + 𝑥/𝑎) + 𝑓−(𝑥− 𝑎𝑡) − 𝑓−(−𝑎𝑡− 𝑥) for − 𝑎𝑡 ≤ 𝑥 < 0
𝑓−(𝑥− 𝑎𝑡) + 𝑔−(𝑥 + 𝑎𝑡) for 𝑥 < −𝑎𝑡

(2.3)

where 𝑓± ∈ 𝐶(R±), 𝑓 ′
± ∈ 𝐿2

loc(R±) with R± = {𝑥 ∈ R : ±𝑥 > 0}. Moreover, by
definition (1.8), we have

𝑢′(0+, 𝑡) := 𝑓 ′
+(−𝑎𝑡) + 𝑔′+(𝑎𝑡) = 2𝑔′+(𝑎𝑡) − 𝑦̇(𝑡)/𝑎,

𝑢′(0−, 𝑡) := 𝑓 ′
−(−𝑎𝑡) + 𝑔′−(𝑎𝑡) = 2𝑓 ′

−(−𝑎𝑡) + 𝑦̇(𝑡)/𝑎.

Hence, Eq. (1.3) writes

𝑚𝑦(𝑡) = 𝐹 (𝑦(𝑡)) + 2𝜅 [𝑔′+(𝑎𝑡) − 𝑓 ′
−(−𝑎𝑡) − 𝑦̇(𝑡)/𝑎], 𝑡 > 0.

Denote
𝑝(𝑧) :=

𝑢0(𝑧) + 𝑢0(−𝑧)

2
+

1

2𝑎

∫︁ 𝑧

−𝑧

𝑢1(𝑦) 𝑑𝑦, 𝑧 ∈ R. (2.4)

Therefore,

𝑝(0) = 𝑢0(0), 𝑝′(𝑎𝑡) = 𝑔′+(𝑎𝑡) − 𝑓 ′
−(−𝑎𝑡) ∈ 𝐿2

loc(R+),
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and we obtain the following evolution equation for 𝑦(𝑡), 𝑡 > 0:

𝑦̇(𝑡) = (𝑎/2𝜅)𝐹 (𝑦(𝑡)) + 𝑎𝑝′(𝑎𝑡), 𝑡 > 0, if 𝑚 = 0, (2.5)
𝑚𝑦(𝑡) = 𝐹 (𝑦(𝑡)) − (2𝜅/𝑎)𝑦̇(𝑡) + 2𝜅𝑝′(𝑎𝑡), 𝑡 > 0, if 𝑚 > 0. (2.6)

Eq. (2.1) implies the following initial condition for the function 𝑦(𝑡):

𝑦(0) = 𝑓±(0) + 𝑔±(0) = 𝑢0(0). (2.7)

Eqs (2.5) and (2.6) are rewritten in the equivalent integral form,

𝑦(𝑡) =
𝑎

2𝜅

𝑡∫︁
0

𝐹 (𝑦(𝑠)) 𝑑𝑠 + 𝑝(𝑎𝑡) − 𝑝(0) + 𝑦(0), 𝑡 ≥ 0, if 𝑚 = 0, (2.8)

𝑚𝑦(𝑡) =

𝑡∫︁
0

𝑑𝑠

𝑠∫︁
0

𝐹 (𝑦(𝜏)) 𝑑𝜏 +
2𝜅

𝑎

𝑡∫︁
0

(𝑝(𝑎𝑠) − 𝑦(𝑠)) 𝑑𝑠

+𝑚𝑦(0) + 𝑚𝑦̇(0)𝑡 +
2𝜅

𝑎
(𝑦(0) − 𝑝(0)) 𝑡, 𝑡 ≥ 0, if 𝑚 > 0. (2.9)

Lemma 2.1 below implies Proposition 1.3 immediately.

Lemma 2.1. (i) Let 𝑚 = 0 and all assumptions of Proposition 1.3 hold. Then
for any 𝑦0 ∈ R, Eq. (2.5) has a unique solution 𝑦(𝑡) = 𝑈(𝑡,0)𝑦0 ∈ 𝐶(R+).
(ii) Let 𝑚 > 0. Then for any (𝑦0, 𝑦1) ∈ R2, Eq. (2.6) has a unique solution
(𝑦(𝑡), 𝑦̇(𝑡)) = 𝑈(𝑡,0)(𝑦0, 𝑦1), and 𝑦(𝑡) ∈ 𝐶1(R+).
(iii) For 𝑚 ≥ 0, the following bound holds,

sup
[0,𝜏 ]

[𝑚|𝑦̇(𝑡)| + |𝑦(𝑡)|] ≤ 𝐶1𝜏 + 𝐶2 for any 𝜏 > 0. (2.10)

Proof. We prove Lemma 2.1 only in the case 𝑚 > 0. For 𝑚 = 0 the proof is
similarly. It follows from (2.9), condition (1.5) and from the contraction mapping
principle that for any fixed initial data 𝑦(0+) and 𝑦̇(0+), the solution 𝑦(𝑡) to
Eq. (2.9) has a unique solution on a certain interval 𝑡 ∈ [0, 𝜀) with an 𝜀, 𝜀 > 0. Let
us derive an a priori estimate for 𝑦(𝑡). This estimate will imply the existence and
uniqueness of the global solution of (2.6) for any 𝑦(0+) and 𝑦̇(0+). We multiply

Eq. (2.6) by 𝑦̇(𝑡). Using
𝑑

𝑑𝑡
𝑉 (𝑦(𝑡)) = −𝐹 (𝑦(𝑡))𝑦̇(𝑡), we obtain

𝑑

𝑑𝑡

(︂
𝑚𝑦̇2(𝑡)

2
+ 𝑉 (𝑦(𝑡))

)︂
= 2𝜅𝑝′(𝑎𝑡)𝑦̇(𝑡) − 2𝜅

𝑎
𝑦̇2(𝑡) ≤ 𝑎𝜅

2
(𝑝′(𝑎𝑡))2.
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Let us integrate this inequality and obtain

𝑚𝑦̇2(𝑡)

2
+ 𝑉 (𝑦(𝑡)) ≤ 𝑚𝑦̇2(0)

2
+ 𝑉 (𝑦(0)) +

𝑎𝜅

2

∫︁ 𝑡

0

|𝑝′(𝑎𝑠)|2 𝑑𝑠, 𝑡 > 0.

Hence, for any 𝜏 > 0, there exist constants 𝐶1, 𝐶2 > 0 such that

sup
𝑡∈[0,𝜏 ]

[︂
𝑚𝑦̇2(𝑡)

2
+ 𝑉 (𝑦(𝑡))

]︂
≤ 𝐶1𝜏 + 𝐶2. (2.11)

Condition (1.6) implies the estimate (2.10). Lemma 2.1 is proved.

The following result follows from the Gronwall inequality and from a priori
estimate (2.10) (see [10]).

Lemma 2.2. Let 𝑚 = 0 and 𝑦1(𝑡) and 𝑦2(𝑡) be two solutions of Eq. (2.5) with
the initial values 𝑦1(0) and 𝑦2(0), respectively. Then for every 𝜏 > 0,

‖𝑦̇1(𝑡) − 𝑦̇2(𝑡)‖𝐿2(0,𝜏) + max
[0,𝜏 ]

|𝑦1(𝑡) − 𝑦2(𝑡)| ≤ 𝐶(𝜏)|𝑦1(0) − 𝑦2(0)|, (2.12)

where a constant 𝐶(𝜏) is bounded for bounded 𝑦1(0), 𝑦2(0). The similar result
holds for Eq. (2.6) in the case 𝑚 ̸= 0.

3. The proof of the main result
Since (𝑢0, 𝑢1) ∈ ℋ𝜔, the function 𝑝 defined in (2.4) has the following proper-

ties:
𝑝 ∈ 𝐶1(R), 𝑝(𝑧 ± 𝜔) = 𝑝(𝑧), ±𝑧 > 0.

Then the function 𝑝′(𝑎𝑡) in Eqs (2.5) and (2.6) is periodic with 𝜔/𝑎–period, and
𝑝′(𝑎𝑡) ∈ 𝐶(R+).

3.1. The string–spring system (𝑚 = 0). At first, we study the behavior of
solutions to Eq. (2.5).

Theorem 3.1. Let condition (1.5) hold. Then the following assertions are true.
(i) All solutions of Eq. (2.5) are bounded.
(ii) Eq. (2.5) has at least one 𝜔/𝑎-periodic solution.
(iii) Any solution 𝑦(𝑡) of Eq. (2.5) either is 𝜔/𝑎-periodic or tends to an 𝜔/𝑎-
periodic solution 𝑦𝑝(𝑡) as 𝑡 → ∞ such that for every 𝑅 > 0,∫︁ 𝑡+𝑅

𝑡

|𝑦̇(𝑠) − 𝑦̇𝑝(𝑠)|2 𝑑𝑠 + sup
𝑠∈[𝑡,𝑡+𝑅]

|𝑦(𝑠) − 𝑦𝑝(𝑠)| → 0 as 𝑡 → ∞. (3.1)
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Assertions (i) and (ii) follows from the results of [12, §9]. These assertions
imply item (iii) by Theorem 9.1 from [12].

Proof of Theorem 1.6. Let 𝑢(𝑥, 𝑡) be a solution of the problem (1.2)–
(1.4), (1.9). Then, 𝑢(0, 𝑡) = 𝑦(𝑡) is the solution of Eq. (2.5) with the initial
condition 𝑦(0) = 𝑢0(0). By [3, Lemma 3.2], for any 𝑦0 ∈ R there exists the limit
of 𝑈(𝑛𝜔/𝑎,0)𝑦0 as 𝑛 → ∞. Write 𝑦0 := lim

𝑛→∞
𝑈(𝑛𝜔/𝑎,0)𝑢0(0). Then, 𝑦𝑝(𝑡) =

𝑈(𝑡,0)𝑦0 is the 𝜔/𝑎-periodic solution of Eq. (2.5) and convergence (3.1) holds.
Put 𝑢̄0(𝑥) = 𝑢0(𝑥) − 𝑢0(0) + 𝑦0 and define functions 𝑓±(𝑥) and 𝑔±(𝑥) so as

𝑓±(𝑥) and 𝑔±(𝑥) in (2.1) but with 𝑢̄0(𝑥) instead of 𝑢0(𝑥). Introduce a function
𝑢𝑝(𝑥, 𝑡) as follows

𝑢𝑝(𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑓+(𝑥− 𝑎𝑡) + 𝑔+(𝑥 + 𝑎𝑡) for 𝑥 ≥ 𝑎𝑡
𝑦𝑝(𝑡− 𝑥/𝑎) + 𝑔+(𝑥 + 𝑎𝑡) − 𝑔+(𝑎𝑡− 𝑥) for 0 ≤ 𝑥 < 𝑎𝑡
𝑦𝑝(𝑡 + 𝑥/𝑎) + 𝑓−(𝑥− 𝑎𝑡) − 𝑓−(−𝑎𝑡− 𝑥) for − 𝑎𝑡 ≤ 𝑥 < 0
𝑓−(𝑥− 𝑎𝑡) + 𝑔−(𝑥 + 𝑎𝑡) for 𝑥 < −𝑎𝑡

(3.2)

Then 𝑢𝑝(𝑥, 𝑡) is the solution of (1.2)–(1.4) with the initial data (𝑢̄0, 𝑢1) and
𝑢𝑝(0, 𝑡) = 𝑦𝑝(𝑡). Since (𝑢̄0, 𝑢1) ∈ ℋ𝜔, the functions 𝑓−(±𝑥 − 𝑎𝑡) and 𝑔+(±𝑥 +
𝑎𝑡) in (3.2) are 𝜔/𝑎–periodic in 𝑡. Then the equality (1.11) holds, and the
convergence (1.12) follows from (2.3) and (3.1), since

𝑔+(𝑥 + 𝑎𝑡) − 𝑔+(𝑎𝑡− 𝑥) = 𝑔+(𝑥 + 𝑎𝑡) − 𝑔+(𝑎𝑡− 𝑥)
𝑓−(𝑥− 𝑎𝑡) − 𝑓−(−𝑎𝑡− 𝑥) = 𝑓−(𝑥− 𝑎𝑡) − 𝑓−(−𝑎𝑡− 𝑥).

Remark 3.2. Let us consider the problem (1.1) for 𝑡 > 0 with initial data (1.9),
satisfying the following conditions: (𝑢0, 𝑢1) ∈ ℋ and 𝑢1 has a form

𝑢1(𝑥) =

{︂
𝑎(2𝑝′+(𝑥) − 𝑢′0(𝑥)), 𝑥 ≥ 0,
𝑎(𝑢′0(𝑥) − 2𝑝′−(𝑥)), 𝑥 < 0,

(3.3)

where 𝑝± ∈ 𝐶1(R±) and 𝑝±(𝑥) is 𝜔-periodic for ±𝑥 > 0, but 𝑢0(𝑥), 𝑢1(𝑥) are
not 𝜔-periodic, in general. Then 𝑓−(𝑧) = 𝑝−(𝑧) for 𝑧 < 0 and 𝑔+(𝑧) = 𝑝+(𝑧) for
𝑧 > 0. Hence, by formula (2.3), the solution 𝑢(𝑥, 𝑡) for 𝑡 > 0 has the form

𝑢(𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑢0(𝑥− 𝑎𝑡) − 𝑝+(𝑥− 𝑎𝑡) + 𝑝+(𝑥 + 𝑎𝑡) for 𝑥 > 𝑎𝑡
𝑦(𝑡− 𝑥/𝑎) + 𝑝+(𝑥 + 𝑎𝑡) − 𝑝+(𝑎𝑡− 𝑥) for 0 < 𝑥 < 𝑎𝑡
𝑦(𝑡 + 𝑥/𝑎) + 𝑝−(𝑥− 𝑎𝑡) − 𝑝−(−𝑎𝑡− 𝑥) for − 𝑎𝑡 < 𝑥 < 0
𝑝−(𝑥− 𝑎𝑡) + 𝑢0(𝑥 + 𝑎𝑡) − 𝑝−(𝑥 + 𝑎𝑡) for 𝑥 < −𝑎𝑡

where 𝑦(𝑡) is a solution of Eq. (2.5) with the 𝜔-periodic function 𝑝(𝑥) := 𝑝+(𝑥) +
𝑝−(−𝑥), 𝑥 > 0, and satisfies the initial condition (2.7). Then the results of
Theorems 3.1 and 1.6 remain true as 𝑡 → +∞.
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3.2. The string–oscillator system (𝑚 > 0). Put

𝑐 = 1/𝑚, 𝑘 = 2𝜅/(𝑎𝑚) = 2
√
𝜅𝜇/𝑚.

Then Eq. (2.6) is equivalent to the following system{︂
𝑦̇ = 𝑣,
𝑣̇ = 𝑐𝐹 (𝑦) − 𝑘 𝑣 + 𝑘𝑎 𝑝′(𝑎𝑡).

(3.4)

Denote by 𝑌 (𝑡, 𝑌0, 𝑡0) = (𝑦(𝑡, 𝑌0, 𝑡0), 𝑦̇(𝑡, 𝑌0, 𝑡0)) = 𝑈(𝑡, 𝑡0)𝑌0 the solution of the
Cauchy problem for the system (3.4) with the initial data

𝑌0 = (𝑦, 𝑦̇)|𝑡=𝑡0 = (𝑦0, 𝑦1). (3.5)

Definition 3.3. The system is called dissipative (or D-system) if for any (𝑌0, 𝑡0) ∈
R3 there exists a 𝑅, 𝑅 > 0, such that lim

𝑡→∞
‖𝑌 (𝑡, 𝑌0, 𝑡0)‖ < 𝑅.

Lemma 3.4. Let condition (1.5) hold. Then the following assertions hold.
(i) The system (3.4) is dissipative, and there exist constants 𝑀,𝑁 > 0 such that
for large time the solutions of the system (3.4) belong to a bounded set

{(𝑦0, 𝑦1) ∈ R2 : |𝑦0| ≤ 𝑀, |𝑦1| ≤ 𝑁}, (3.6)

and 𝑀 and 𝑁 are independent on the parameters 𝑘 and 𝑐 of the system (3.4).
(ii) The system (3.4) has at least one 𝜔/𝑎–periodic solution.

Assertion (i) of Lemma 3.4 follows from the results of Cartwright and Lit-
tlewood, Reuter and others (see [1, 2, 15] and the review works [16, Ch. VII], [5,
Ch. XI, §4], and [14, Theorem 5.5.4]). According to the Opial theorem (see, e.g.,
[14, Theorem 5.3.6]) instead of condition (1.5) it suffices to assume that

lim
𝑦→+∞

𝐹 (𝑦) < −𝑟, lim
𝑦→−∞

𝐹 (𝑦) > 𝑟, where 𝑟 = max
𝑡∈R

|𝑝′(𝑎𝑡)|.

Assertion (i) implies assertion (ii) by the Brouwer Fixed Point Theorem (see [12,
Ch. 1, §2]).

Introduce a mapping 𝑇 : R2 → R2 as 𝑇 = 𝑈(𝜔0,0), 𝜔0 := 𝜔/𝑎. The map 𝑇
is called the Poincaré transformation associated with the periodic system (3.4).
Lemma 3.4 and the Pliss results (see [13, Ch. 2, §2]) imply that there exists an
invariant set 𝐼 w.r.t. 𝑇 , i.e., 𝑇𝐼 = 𝐼. This set is called characteristical set of the
dissipative system (3.4) or a global attractor of the diffeomorphism 𝑇 . The set 𝐼
has the following properties (see [12]–[14]):

∙ 𝐼 is closed and bounded.
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∙ 𝐼 is stable w.r.t. 𝑇 , i.e., for any 𝜀 > 0 there exists 𝛿 > 0 such that if
𝜌(𝑌0, 𝐼) < 𝛿 then 𝜌(𝑇𝑚𝑌0, 𝐼) < 𝜀 for every 𝑚 ∈ N.

∙ For all 𝑌0 ∈ R2, 𝜌(𝑇 𝑛𝑌0, 𝐼) → 0, 𝑛 → ∞.
∙ There exists a fixed point of the mapping 𝑇 belonging to 𝐼 , i.e., there exists

an 𝜔0 = 𝜔/𝑎-periodic solution (or harmonics) of the system (3.4).
∙ The set 𝐼 has zero Lebesgue measure by Theorem 1.9 from [13].

Define a set 𝒮 as

𝒮 := {(𝑌, 𝑡) ∈ R3 : 𝑌 = 𝑌 (𝑡, 𝑌0, 𝑡0), 𝑌0 ∈ 𝐼, 𝑡 ∈ R}.

The set 𝒮 has the following properties:
∙ 𝒮 is bounded and closed.
∙ 𝒮 is 𝜔0–periodic, i.e., for (𝑌, 𝑡) ∈ 𝒮, (𝑌, 𝑡 + 𝑛𝜔0) ∈ 𝒮, ∀𝑛 ∈ N.
∙ 𝒮 is invariant, i.e., if (𝑌0, 𝑡0) ∈ 𝒮, then (𝑌 (𝑡, 𝑌0, 𝑡0), 𝑡) ∈ 𝒮 for all 𝑡 ≥ 𝑡0.
∙ 𝒮 is stable, i.e., ∀𝜀 > 0 ∃𝛿 > 0 such that if 𝜌(𝑌0,𝒮𝑡0) < 𝛿, then

𝜌(𝑌 (𝑡, 𝑌0, 𝑡0),𝒮𝑡) < 𝜀, ∀𝑡 ≥ 𝑡0,

where 𝒮𝜏 = 𝒮 ∩ {𝑡 = 𝜏}.
∙ 𝒮 is stable in whole, i.e., for all 𝑌 (𝑡, 𝑌0, 𝑡0) ∈ R2 we have

lim
𝑡→∞

𝜌(𝑌 (𝑡, 𝑌0, 𝑡0),𝒮𝑡) = 0.

However, these properties of 𝒮 do not imply, in general, the convergence (3.1).
Now we consider the particular case of the system (3.4) when 𝐼 has a unique point.
Then (3.4) is called the system with convergence (see [12, §7, Definition 7.1]). In
this case, the system (3.4) has a unique stable 𝜔0-periodic solution 𝑌𝑝(𝑡), and any
another solution 𝑌 (𝑡, 𝑌0, 𝑡0) tends to this periodic solution, i.e.,

lim
𝑡→∞

‖𝑌 (𝑡, 𝑌0, 𝑡0) − 𝑌𝑝(𝑡)‖ = 0,

and the result (3.1) follows.

Below we give examples of the restrictions on the function 𝐹 (𝑦) when the
system (3.4) has convergence property.

Example 3.5. Assume that
(F1) 𝐹 (𝑦) = −𝑟𝑦 with a constant 𝑟 > 0.

Then by the Levinson theorem (see [6], [12, Theorem 8.1], [14, Theorem 5.2.1]),
Eq. (2.6) has a unique 𝜔0–periodic solution and all other solutions tend to this
periodic solution as 𝑡 → +∞.

Example 3.6. Assume that for 𝑦1 ̸= 𝑦2, we have
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(F2) 𝑘2/2 − 1 ≤ −𝑐
𝐹 (𝑦2) − 𝐹 (𝑦1)

𝑦2 − 𝑦1
≤ 1, 1 < 𝑘2/2 ≤ 2, where 𝑘 =

√
𝜅𝜇/𝑚 is

the constant in (3.4).
Then according to the Zlamál theorem (see, e.g., [14, Theorem 5.3.2], [18]) all
solutions tend exponentially to a unique periodic solution as 𝑡 → +∞.

Example 3.7. (see [12, Theorem 8.4], [5, Ch.XI, §5] or [17]) Assume that
(F3) 𝐹 ∈ 𝐶2(R), 𝐹 ′(𝑦) < 0 for |𝑦| ≤ 𝑀 ; ∃𝛽 > 0 such that 𝐹 (𝑦) sgn 𝑦 ≤ −𝛽 for

|𝑦| ≥ 𝑀 with the constant 𝑀 from the bound (3.6). Moreover, the constant
𝑘 from (3.4) is enough large,

𝑘 > (1/2)𝑁 max
|𝑦|≤𝑀

(|𝐹 ′′(𝑦)|/|𝐹 ′(𝑦)|) ,

where the constant 𝑁 is defined in the bound (3.6).
Then the system (3.4) has convergence property. For instance, the function
𝐹 (𝑦) = −𝑎𝑦3 − 𝑏𝑦 with constants 𝑎, 𝑏 > 0 satisfies these conditions.

Note that condition (F1) is a particular case of (F3).

Corollary 3.8. Let condition (F2) or (F3) be true. Then the following assertions
hold.
(i) There exists a unique 𝜔0-periodic solution 𝑦𝑝(𝑡) of Eq. (2.6), and for any
another solution 𝑦(𝑡) the convergence (3.1) holds.
(ii) The convergence (1.12) holds with the function 𝑢𝑝(𝑥, 𝑡) satisfying (1.11).

Proof. Assertion (i) follows from the results mentioned above. Now we check
assertion (ii). Indeed, let 𝑢(𝑥, 𝑡) be a solution of the problem (1.2)–(1.4), (1.9),
(1.10). Then there exists the limit

lim
𝑛→∞

𝑇 𝑛(𝑢0(0), 𝑦1) =: (𝑦0, 𝑦1),

and (𝑦0, 𝑦1) is a unique point of the set 𝐼. Hence (𝑦𝑝(𝑡), 𝑦̇𝑝(𝑡)) = 𝑈(𝑡,0)(𝑦0, 𝑦1) is
the unique 𝜔/𝑎-periodic solution of the system (3.4) and the convergence (3.1)
holds. Put 𝑢̄0(𝑥) = 𝑢0(𝑥) − 𝑢0(0) + 𝑦0 and define functions 𝑓±(𝑥) and 𝑔±(𝑥) by
formulas (2.1) but with 𝑢̄0(𝑥) instead of 𝑢0(𝑥). Define 𝑢𝑝(𝑥, 𝑡) by (3.2). Then
𝑢𝑝(𝑥, 𝑡) is the solution of the problem (1.2)–(1.4) with the initial data (𝑢̄0, 𝑢1, 𝑦1).
Since (𝑢̄0, 𝑢1) ∈ ℋ𝜔, the functions 𝑓−(±𝑥 − 𝑎𝑡) and 𝑔+(±𝑥 + 𝑎𝑡) in (3.2) are
𝜔/𝑎–periodic in 𝑡. Hence the equality (1.11) holds, and the convergence (1.12)
follows from (2.3) and (3.1).
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4. Appendix: Limit amplitude principle
Here we apply the results to the following problem for a function 𝑢(𝑥, 𝑡) ∈

𝐶(R2):

(𝜇 + 𝑚𝛿(𝑥))𝑢̈(𝑥, 𝑡) = 𝜅𝑢′′(𝑥, 𝑡) + 𝛿(𝑥)𝐹 (𝑢(𝑥, 𝑡)), 𝑡 > 0, 𝑥 ∈ R, (4.1)
𝑢(𝑥, 𝑡) |𝑡≤0 = 𝑝(𝑥 + 𝑎𝑡), 𝑥 ∈ R. (4.2)

Here 𝑚 ≥ 0, 𝑎 =
√︀

𝜅/𝜇. In the case 𝑚 > 0 we assume that either condition (F2)
or (F3) holds. The function 𝑝 from Eq. (4.2) satisfies the following conditions:
P1 𝑝 ∈ 𝐶1(R).
P2 There exist numbers 𝜔 > 0 and 𝑝0 ∈ R such that 𝐹 (𝑝0) = 0 and

𝑝(𝑧 + 𝜔) = 𝑝(𝑧) for 𝑧 > 0, 𝑝(𝑧) = 𝑝0 for 𝑧 ≤ 0.

Note that the function 𝑝(𝑥+𝑎𝑡) is a solution of Eq. (4.1) for 𝑡 < 0. Therefore,
we can consider Eq. (4.1) for 𝑡 ∈ R. In particular, we have

𝑢0(𝑥) = 𝑢|𝑡=0 = 𝑝(𝑥), 𝑢1(𝑥) = 𝑢̇|𝑡=0 = 𝑎𝑝′(𝑥), 𝑥 ∈ R,
𝑦(0) = 𝑢0(0) = 𝑝0, 𝑦̇(0) = 0.

Then 𝑓±(𝑧) = 0 and 𝑔±(𝑧) = 𝑝(𝑧) for ±𝑧 > 0. Therefore, by (2.3),

𝑢(𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑝(𝑥 + 𝑎𝑡) for 𝑥 > 𝑎𝑡,
𝑦(𝑡− 𝑥/𝑎) − 𝑝(𝑎𝑡− 𝑥) + 𝑝(𝑥 + 𝑎𝑡) for 0 < 𝑥 < 𝑎𝑡,
𝑦(𝑡 + 𝑥/𝑎) for −𝑎𝑡 < 𝑥 < 0,
𝑝0 for 𝑥 < −𝑎𝑡.

(4.3)

where 𝑦(𝑡) is a solution to Eq. (2.6) (or Eq. (2.5)) for 𝑡 > 0, and 𝑦(𝑡) = 𝑝0 for
𝑡 ≤ 0. By Proposition 1.3, the Cauchy problem (4.1)–(4.2) has a unique solution
𝑢(𝑥, 𝑡) ∈ ℰ for every function 𝑝 ∈ 𝐶1(R).

Let 𝑚 ≥ 0 and 𝑦𝑝(𝑡) be the 𝜔/𝑎-periodic solution of Eq. (2.5) or (2.6)
with the initial date 𝑝0 = lim𝑛→∞ 𝑇 𝑛𝑝0 (if 𝑚 = 0) or with the initial data
(𝑝0, 𝑦1) = lim𝑛→∞ 𝑇 𝑛(𝑝0,0) (if 𝑚 > 0). We extend 𝑦𝑝(𝑡) ≡ 𝑝0 for 𝑡 < 0 and define

𝑢𝑝(𝑥, 𝑡) =

{︂
𝑦𝑝(𝑡− 𝑥/𝑎) − 𝑝(𝑎𝑡− 𝑥) + 𝑝(𝑥 + 𝑎𝑡) for 𝑥 > 0, 𝑡 > 0,
𝑦𝑝(𝑡 + 𝑥/𝑎) for 𝑥 < 0, 𝑡 > 0.

(4.4)

Then 𝑢𝑝(𝑥, 𝑡) ∈ ℰ , 𝑢𝑝(𝑥, 𝑡) is the solution of Eq. (4.1) under the condition

𝑢𝑝(𝑥, 𝑡)|𝑡≤0 = 𝑝(𝑥 + 𝑎𝑡),

where 𝑝(𝑥) = 𝑝0 + 𝑝(𝑥) − 𝑝0 for 𝑥 ∈ R. Moreover, the identity (1.11) holds. Then
convergence (1.12) follows from equality (4.3) and bound (3.1).
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23, 901–912, 946–954 (1928).

[8] W.S. Loud, On periodic solutions of Duffing’s equation with damping, J.
Math. Phys. 34, 173–178 (1955).

[9] W.S. Loud, Boundedness and convergence of solutions of 𝑥′′+𝑐𝑥′+𝑔(𝑥) = 𝑒(𝑡),
Duke Math. J. 24 (1), 63–72 (1957).

[10] A.I. Komech, On stabilization of string-nonlinear oscillator interaction, J.
Math. Anal. Appl. 196, 384–409 (1995).

[11] J.L. Massera, The existence of periodic solutions of systems of differential
equations, Duke Math. J. 17, 457–475 (1950).

[12] V.A. Pliss, Nonlocal Problems of Theory Oscillations, Moscow–Leningrad:
Nauka, 1964 [in Russian].

[13] V.A. Pliss, Integral Sets of Periodic Systems of Differential Equations,
Moscow: Nauka, 1977 [in Russian].



– 16 –

[14] R. Reissing, G. Sansone, R. Conti, Qualitative Theory of Non-Linear Dif-
ferential Equations, M.: Nauka, 1974 [translation on Russian of the book
Qualitative Theorie Nichtlinearer Differentialgleichungen, Edizioni Cremonese,
Roma, 1963].

[15] G.E.H. Reuter, Boundedness theorems for nonlinear differential equations of
the second order, Jour. London Math. Soc. 27, 48–58 (1952).

[16] G. Sansone, R. Conti, Non-Linear Differential Equations, Macmillan, New
York, 1964.

[17] K. Shiraiwa, Boundedness and convergence of solutions of Duffing’s equation,
Nagoya Math. J. 66, 151–166 (1977).

[18] M. Zlámal, Über die Stabilität der nichtlinearen erzwungenen Schwingungen,
Czech. Math. J. 4, 95–103 (1954).


	Introduction
	Existence of solutions
	The proof of the main result
	The string–spring system (m=0)
	The string–oscillator system (m>0)

	Appendix: Limit amplitude principle
	References

