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УДК 517.53+517.9
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Дифференциальные уравнения для радиальных пределов в Z2

+ решений
одной дискретной интегрируемой системы

Изучается предельное свойство коэффициентов рекуррентных соотношений
до ближайших соседей. Конкретно, предполагая наличие пределов вдоль лу-
чей решетки коэффициентов, мы описываем этот предел в теминах решений
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1. Introduction
1.1. Orthogonal polynomials on the real line and the Jacobi matrices.
It is a well-known fact (see [12]) that given a probability measure 𝜇 on R with
infinite support, the sequence of its orthonormal polynomials {𝑝𝑗}∞𝑗=0 satisfies the
three-term recurrence relation

𝑥𝑝𝑛(𝑥) = 𝐴𝑛𝑝𝑛+1(𝑥) +𝐵𝑛𝑝𝑛(𝑥) + 𝐴𝑛−1𝑝𝑛−1(𝑥) , (1.1)

where the recurrence coefficients {𝐴𝑗, 𝐵𝑗}∞𝑗=0 satisfy 𝐴𝑗 > 0, 𝐵𝑗 ∈ R, and 𝑝−1 = 0.
The corresponding Jacobi matrix is

𝒥 (𝜇) =

⎛⎜⎜⎜⎝
𝐵0 𝐴0 0

𝐴0 𝐵1 𝐴1
. . .

0 𝐴1 𝐵2
. . .

. . . . . . . . .

⎞⎟⎟⎟⎠ . (1.2)

1.2. Multiple orthogonal polynomials and the nearest neighbor recur-
rence relations. Let us now describe multiple orthogonality situation with re-
spect to the vector-measure 𝜇⃗ := {𝜇𝑖}𝑑𝑖=1 on R. For any 𝑛⃗ := (𝑛1, . . . , 𝑛𝑑) ∈ Z𝑑

+,
let 𝑄𝑛⃗ be the monic polynomial of degree ≤ |𝑛⃗| := 𝑛1 + . . .+ 𝑛𝑑 which satisfies∫︁

𝑄𝑛⃗(𝑥)𝑥
𝑘𝑑𝜇𝑖 = 0, 𝑘 ∈ {0, . . . , 𝑛𝑖 − 1}, 𝑖 ∈ {1, . . . , 𝑑}. (1.3)

The polynomial 𝑄𝑛⃗(𝑥) is called the type II multiple orthogonal polynomial (MOP).
We say that 𝑛⃗ is a normal multi-index if 𝑄𝑛⃗ is unique (it is equivalent to deg𝑄𝑛⃗ =
|𝑛⃗|). If all multi-indices of the lattice Z𝑑

+ are normal then the system of measures
{𝜇𝑖}𝑑𝑖=1 are called perfect. It is known [13, 14, 3], that (similarly to the case with
one measure) MOPs for the perfect systems satisfy the following nearest neighbor
recurrence relations (NNRR) system

𝑧𝑄𝑛⃗(𝑧) = 𝑄𝑛⃗+𝑒⃗𝑗(𝑧) + 𝛽𝑛⃗,𝑗𝑄𝑛⃗(𝑧) +
𝑑∑︁

𝑖=1

𝛼𝑛⃗,𝑖𝑄𝑛⃗−𝑒⃗𝑖(𝑧). (1.4)

Here we have 𝑑 recurrence relations for 𝑗 = 1, . . . , 𝑑. Thus for each 𝑛⃗ ∈ Z𝑑
+

we have two sets of the coefficients for NNRR, namely {𝛽𝑛⃗,𝑗}𝑑𝑗=1 and {𝛼𝑛⃗,𝑖}𝑑𝑖=1.
In order to define by means of (1.4) the polynomials {𝑄𝑛⃗(𝑧} in unique way the
NNRR coefficients cannot be taken arbitrary. As it was shown in [14](see also [1]),
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the recurrence coefficients must satisfy the compatibility conditions (CC):

∇𝑗𝛽𝑛⃗,𝑖 = ∇𝑖𝛽𝑛⃗,𝑗

𝛽𝑛⃗,𝑖∇𝑗𝛽𝑛⃗,𝑖 − 𝛽𝑛⃗,𝑗∇𝑖𝛽𝑛⃗,𝑗 =
⟨
(
−→
∇𝑗 −

−→
∇ 𝑖), 𝛼⃗𝑛⃗

⟩
(∇𝑖 ln)𝛼𝑛⃗,𝑗 = (∇𝑗 ln) (𝛽𝑛⃗−𝑒𝑗 ,𝑖 − 𝛽𝑛⃗−𝑒𝑗 ,𝑗)

(1.5)

where we denote

∇𝑗𝛽𝑛⃗,𝑖 := 𝛽𝑛⃗+𝑒𝑗 ,𝑖 − 𝛽𝑛⃗,𝑖,
−→
∇ 𝑖 := (∇𝑖, · · · ,∇𝑖), (∇𝑖 ln)𝛼𝑛⃗ :=

(︂
𝛼𝑛⃗+𝑒𝑗

𝛼𝑛⃗
− 1

)︂
.

Here we present CC in a form taken from [2] which is equivalent to CC from [14].
The system of difference equations (1.5) is also called Discrete Integrable System
(DIS) for details see [1]. The boundary problem for DIS (1.5) in Z𝑑

+ means the
following. Given the boundary data: coefficients of the 𝑑-collections of the three-
terms recurrence relations, corresponding to usual orthogonal polynomials with
respect to each {𝜇𝑖}𝑑𝑖=1 measure. Then solving equations (1.5) we have to find all
NNRR coefficients {𝛽𝑛⃗,𝑗}𝑑𝑗=1 and {𝛼𝑛⃗,𝑖}𝑑𝑖=1.

1.3. Zero asymptotics and limits of the recurrence coefficients. Our goal
is to investigate the asymptotic behavior of the recurrence coefficients

{︀
𝛼𝑛⃗,𝑖, 𝛽𝑛⃗,𝑖

}︀
as | 𝑛⃗ | grows. This behavior is intimately connected to the asymptotic zero
distribution of multiple orthogonal polynomials 𝑄𝑛⃗. To state the problem, we
need to place some restrictions on the way | 𝑛⃗ | approaches infinity as well as the
measures 𝜇𝑖. The same time we have to be in a class of the perfect systems to
keep NNRR.

The important example of a perfect system of measures {𝜇𝑖} is the so-called
Angelesco system defined by*

supp(𝜇𝑖) = [𝑎𝑖, 𝑏𝑖], and [𝑎𝑖, 𝑏𝑖] ∩ [𝑎𝑗, 𝑏𝑗] = ∅ when 𝑖 ̸= 𝑗. (1.6)

Multiple orthogonal polynomial with respect to Angelesco system has the form:

𝑄𝑛⃗(𝑧) =:
𝑑∏︁

𝑖=1

𝑛𝑖∏︁
𝑙=1

(𝑧 − 𝑥𝑛⃗,𝑖,𝑙), 𝑥𝑛⃗,𝑖,𝑙 ∈ [𝑎𝑖, 𝑏𝑖].

Moreover, we restrict our attention to sequences of multi-indices such that

𝑛𝑖 = 𝑡𝑖| 𝑛⃗ |+ 𝑜 (| 𝑛⃗ |) , 𝑡⃗ = (𝑡1, . . . , 𝑡𝑑) ∈
(︀
0,1)𝑑, | 𝑡⃗ | = 1. (1.7)

*If supports of measures are intervals with nonintersecting interiors then system {𝜇𝑖} is perfect as well.
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Asymptotic zero distribution for 𝑄𝑛⃗(𝑧) (or limiting zero counting measure):

𝜔(𝑥) := lim
|𝑛⃗|→∞

1

| 𝑛⃗ |

𝑑∑︁
𝑖=1

𝑛𝑖∑︁
𝑙=1

𝛿(𝑥− 𝑥𝑛⃗,𝑖,𝑙), (1.8)

for Angelesco systems (1.6) with 𝜇′
𝑖 > 0 a.e. on [𝑎𝑖, 𝑏𝑖] in the regime (1.7) obtained

by Gonchar and Rakhmanov [10]. To state their result we fix 𝑡⃗ as in (1.7), and
denote

𝑀𝑡⃗

(︀
{𝑎𝑖, 𝑏𝑖}𝑑1

)︀
:=

{︀
𝜈⃗ = (𝜈1, . . . , 𝜈𝑑) : 𝜈𝑖 ∈ 𝑀𝑡𝑖(𝑎𝑖, 𝑏𝑖), 𝑖 ∈ {1, . . . , 𝑑}

}︀
,

where 𝑀𝑡(𝑎, 𝑏) is the set of positive Borel measures of mass 𝑡 supported on [𝑎, 𝑏].

Theorem 1 ([10]). 1)There exists the unique vector of measures 𝜔⃗ ∈ 𝑀𝑡⃗

(︀
{𝑎𝑖, 𝑏𝑖}𝑑1

)︀
:

𝐼[ 𝜔⃗ ] = min
𝜈∈𝑀𝑡⃗({𝑎𝑖,𝑏𝑖}𝑑1)

𝐼[ 𝜈⃗ ], 𝐼[ 𝜈⃗ ] :=
𝑑∑︁

𝑖=1

(︂
2𝐼[𝜈𝑖] +

∑︁
𝑘 ̸=𝑖

𝐼[𝜈𝑖, 𝜈𝑘]

)︂
, (1.9)

where 𝐼[𝜈𝑖] := 𝐼[𝜈𝑖, 𝜈𝑖] and 𝐼[𝜈𝑖, 𝜈𝑘] := −
∫︀ ∫︀

log |𝑧 − 𝑥|𝑑𝜈𝑖(𝑥)𝑑𝜈𝑘(𝑧).
2) Moreover, for the limiting counting measure (1.8) it holds: 𝜔 = |𝜔⃗|.

An important feature of the case 𝑑 > 1 (in comparison with classic 𝑑 = 1) is the
fact that measures 𝜔𝑖 might no longer be supported on the whole intervals [𝑎𝑖, 𝑏𝑖]
(the so-called pushing effect), but in general it holds that

supp(𝜔𝑖) = [𝑎𝑡⃗,𝑖, 𝑏𝑡⃗,𝑖] ⊆ [𝑎𝑖, 𝑏𝑖], 𝑖 ∈ {1, . . . , 𝑑}. (1.10)

Namely the supports of the extremal measures (not the supports of the multiple
orthogonality measures†) define the recurrence coefficients limits.

To describe the asymptotics of the recurrence coefficients, we shall need a
(𝑑+1)-sheeted compact Riemann surface, say R, that we realize in the following
way. Take 𝑑 + 1 copies of C. Cut one of them along the union

⋃︀𝑑
𝑖=1

[︀
𝑎𝑡⃗,𝑖, 𝑏𝑡⃗,𝑖

]︀
,

which henceforth is denoted by R(0). Each of the remaining copies cut along only
one interval

[︀
𝑎𝑡⃗,𝑖, 𝑏𝑡⃗,𝑖

]︀
so that no two copies have the same cut and denote them

by R(𝑖). To form R, take R(𝑖) and glue the banks of the cut
[︀
𝑎𝑡⃗,𝑖, 𝑏𝑡⃗,𝑖

]︀
crosswise

to the banks of the corresponding cut on R(0). It can be easily verified that thus
constructed Riemann surface has genus 0. Denote by 𝜋 the natural projection
from R to C. We also shall employ the notations z for a point on R and 𝑧(𝑖) for
a point on R(𝑖) with 𝜋(z) = 𝜋(𝑧(𝑖)) = 𝑧.

†For 𝑑 = 1 both these notions coincides.
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Since R has genus zero, one can arbitrarily prescribe zero/pole multisets of
rational functions on R as long as the multisets have the same cardinality. Hence,
we define ϒ𝑖, 𝑖 ∈ {1, . . . , 𝑑}, to be the rational function on R with a simple zero at
∞(0), a simple pole at ∞(𝑖), and otherwise non-vanishing and finite. We normalize
it so that ϒ𝑖(𝑧

(𝑖))/𝑧 → 1 as 𝑧 → ∞. Then the following theorem holds.

Theorem 2 ([2]). Let {𝜇𝑖}𝑑𝑖=1 be a system of measures satisfying (1.6) and such
that

𝑑𝜇𝑖(𝑥) = 𝜌𝑖(𝑥)𝑑𝑥, (1.11)

where 𝜌𝑖 is holomorphic and non-vanishing in some neighborhood of [𝑎𝑖, 𝑏𝑖]. Fur-
ther, let 𝒩𝑡⃗ = { 𝑛⃗ } be a sequence of multi-indices as in (1.7) for some 𝑡⃗ ∈ (0,1)𝑑.
Then the recurrence coefficients

{︀
𝛼𝑛⃗,𝑗, 𝛽𝑛⃗,𝑗

}︀
given by (1.4) and (1.3) satisfy

lim
𝒩𝑡⃗

𝛼𝑛⃗,𝑖 = 𝛼𝑡⃗,𝑖 and lim
𝒩𝑡⃗

𝛽𝑛⃗,𝑖 = 𝛽𝑡⃗,𝑖, 𝑖 ∈ {1, . . . , 𝑑}, (1.12)

where 𝛼𝑡⃗,𝑖 and 𝛽𝑡⃗,𝑖 are constants: z2ϒ𝑖(𝑧
(0)) = 𝛼𝑡⃗,𝑖(𝑧 + 𝛽𝑐⃗,𝑖) +𝒪

(︀
𝑧−1

)︀
as 𝑧 → ∞.

Remarks. 1) We note that Theorem 2 is valid for 𝑑 = 1 as well.
2) It is not too difficult to extend the proof (from [10]) of Theorem 1 to include
the case of touching intervals.
3)We also can affirm (at least for 𝑑 = 2) that Theorem 2 remains valid for the case
of touching intervals (technicalities can be taken from [5]) and for weight functions
(1.11) singularities of the types: Jacobi and Fisher-Hartwig weights [16]. �

We say that a probability measure on R belongs to the Nevai class (see [12]
and references therein for more details) 𝑁(𝛼, 𝛽) if its Jacobi coefficients (in (1.1))
satisfy 𝐵𝑛 → 𝛽 and 𝐴𝑛 → 𝛼 as 𝑛 → ∞.

Weyl’s theorem on compact perturbations says that any measure in 𝑁(𝛼, 𝛽)
has 𝜎𝑒𝑠𝑠(𝜇) = [𝛽 − 2𝛼, 𝛽 + 2𝛼]. For the (partial) converse, we have the Denisov–
Rakhmanov theorem stating that if 𝜎𝑒𝑠𝑠(𝜇) = [𝛽 − 2𝛼, 𝛽 + 2𝛼] and 𝑑𝜇

𝑑𝑥 > 0 a.e.
on [𝛽 − 2𝛼, 𝛽 + 2𝛼] then 𝜇 ∈ 𝑁(𝛼, 𝛽).

By the analogy, let us say that an perfect system of measures {𝜇𝑖}𝑑𝑖=1 belongs
to the multiple Nevai class if the nearest neighbor recursion coefficients have
limits along each ray of Z𝑑

+, starting at origin, that is: for every 𝑡⃗ in (1.7). Thus,
Theorem 2 is a partial analogue of the Denisov–Rakhmanov and Andeleso system
(from Theorem 2) belongs to the multiple Nevai class.

In the next Section 2 we state and proof our main result: a conditional
theorem on ODE (with respect to variable 𝑡) for the limiting value (in the regime
(1.7)) of the NNRR coefficients (𝑑 = 2). Then in Section 3 we present numeric
illustrations. Finally in Section 4 we consider the case of touching intervals.
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2. ODE for the limits of NNRR coefficients
2.1. Preliminaries for (𝑑 = 2). Now let us restrict ourselves to the special
case when two measures 𝜇1 and 𝜇2 form a perfect system.

We rewrite NNRR (1.4) for d=2 (changing the notations for the recurrence
coefficients):

𝑥𝑄𝑛,𝑚(𝑥) = 𝑄𝑛+1,𝑚(𝑥) + 𝑐𝑛,𝑚𝑄𝑛,𝑚(𝑥) + 𝑎𝑛,𝑚𝑄𝑛−1,𝑚 + 𝑏𝑛,𝑚𝑄𝑛,𝑚−1 (2.1)
𝑥𝑄𝑛,𝑚(𝑥) = 𝑄𝑛,𝑚+1(𝑥) + 𝑑𝑛,𝑚𝑄𝑛,𝑚(𝑥) + 𝑎𝑛,𝑚𝑄𝑛−1,𝑚 + 𝑏𝑛,𝑚𝑄𝑛,𝑚−1 (2.2)

for some sequences of coefficients 𝑎𝑛,𝑚, 𝑏𝑛,𝑚, 𝑐𝑛,𝑚, 𝑑𝑛,𝑚 satisfying 𝑎0,𝑚 = 𝑏𝑛,0 = 0.
Note that {𝑐𝑛,0}∞𝑛=0 and {√𝑎𝑛,0}∞𝑛=0 are the diagonal and off-diagonal co-

efficients of the Jacobi matrix 𝒥 (𝜇1), and {𝑑0,𝑚}∞𝑚=0 and {
√︀
𝑏0,𝑚}∞𝑚=0 are the

diagonal and off-diagonal coefficients of the Jacobi matrix of 𝒥 (𝜇2).
As for the first time was shown in [14] (see also [1]), the recurrence coefficients

must satisfy the compatibility conditions (CC):

𝑎𝑛,𝑚+1

𝑎𝑛,𝑚
=

𝑐𝑛,𝑚 − 𝑑𝑛,𝑚
𝑐𝑛−1,𝑚 − 𝑑𝑛−1,𝑚

, (2.3)

𝑏𝑛+1,𝑚

𝑏𝑛,𝑚
=

𝑐𝑛,𝑚 − 𝑑𝑛,𝑚
𝑐𝑛,𝑚−1 − 𝑑𝑛,𝑚−1

, (2.4)

𝑑𝑛+1,𝑚 − 𝑑𝑛,𝑚 = 𝑐𝑛,𝑚+1 − 𝑐𝑛,𝑚, (2.5)

𝑐𝑛,𝑚+1 − 𝑐𝑛,𝑚 =
𝑎𝑛+1,𝑚 + 𝑏𝑛+1,𝑚 − 𝑎𝑛,𝑚+1 − 𝑏𝑛,𝑚+1

𝑐𝑛,𝑚 − 𝑑𝑛,𝑚
, (2.6)

together with the boundary-type conditions 𝑎0,𝑚 = 0 and 𝑏𝑛,0 = 0 for all 𝑛,𝑚.
In other words the coefficients of NNRR (2.1)–(2.2) are solutions of the BVP for
DIS (2.3)–(2.6).

Note that one can take 𝑝2𝑛(𝑥) = 𝑄𝑛,𝑛(𝑥), 𝑝2𝑛+1(𝑥) = 𝑄𝑛+1,𝑛(𝑥), which
results in the “recurrence relation along the step-line”:

𝑥𝑝𝑛(𝑥) = 𝑝𝑛+1(𝑥) + 𝜅𝑛𝑝𝑛(𝑥) + 𝛾𝑛𝑝𝑛−1(𝑥) + 𝛿𝑛𝑝𝑛−2(𝑥), (2.7)

where

𝜅2𝑛 = 𝑐𝑛,𝑛, 𝜅2𝑛+1 = 𝑑𝑛+1,𝑛,

𝛾2𝑛 = 𝑎𝑛,𝑛 + 𝑏𝑛,𝑛, 𝛾2𝑛+1 = 𝑎𝑛+1,𝑛 + 𝑏𝑛+1,𝑛,

𝛿2𝑛 = 𝑎𝑛,𝑛(𝑐𝑛−1,𝑛−1 − 𝑑𝑛−1,𝑛−1), 𝛿2𝑛+1 = 𝑏𝑛+1,𝑛(𝑑𝑛,𝑛−1 − 𝑐𝑛,𝑛−1),

see, e.g., [6, 9].
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In this section we consider perfect systems (𝜇1, 𝜇2) belonging to the multiple
Nevai class 𝑁(𝐴,𝐵,𝐶,𝐷): the nearest neighbour recursion coefficients have limits
along each ray, that is: for every 𝑡 ∈ [0,1]

lim
𝑛+𝑚→∞,

𝑛
𝑛+𝑚→𝑡

𝑎𝑛,𝑚 = 𝐴(𝑡) (2.8)

lim
𝑛+𝑚→∞,

𝑛
𝑛+𝑚→𝑡

𝑏𝑛,𝑚 = 𝐵(𝑡) (2.9)

lim
𝑛+𝑚→∞,

𝑛
𝑛+𝑚→𝑡

𝑐𝑛,𝑚 = 𝐶(𝑡) (2.10)

lim
𝑛+𝑚→∞,

𝑛
𝑛+𝑚→𝑡

𝑑𝑛,𝑚 = 𝐷(𝑡) (2.11)

for some real-valued functions 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡) : [0,1] → R.
By the discussion in the previous section, Angelesco systems, satisfying to the

condition of Theorem2 belong to the multiple Nevai class 𝑀𝑁(𝐴,𝐵,𝐶,𝐷). Thus
𝑀𝑁(𝐴,𝐵,𝐶,𝐷) is non empty and the Angelesco systems (mentioned above) have
𝜇1 and 𝜇2 in the Nevai class 𝑁(

√︀
𝐴(1), 𝐶(1)) and 𝑁(

√︀
𝐵(0), 𝐷(0)), respectively.

Therefore we get the application of Weyl’s theorem: these Angelesco systems from
𝑀𝑁(𝐴,𝐵,𝐶,𝐷) have

𝜎𝑒𝑠𝑠(𝜇1) = [𝛽1−2𝛼1, 𝛽1+2𝛼1] and 𝜎𝑒𝑠𝑠(𝜇2) = [𝛽2−2𝛼2, 𝛽2+2𝛼2],
where

𝛼1 =
√︀

𝐴(1), 𝛽1 = 𝐶(1), (2.12)

𝛼2 =
√︀
𝐵(0), 𝛽2 = 𝐷(0). (2.13)

It is an interesting open problem to generalize the above analogue of Denisov–
Rakhmanov result (i.e. Theorem2) to more general measures (i.e. to Angelesco
systems with 𝜇𝑖 > 0 a.e. on 𝜎𝑒𝑠𝑠(𝜇𝑖)).

In this paper we investigate the possibility of describing functions 𝐴,𝐵,𝐶,𝐷
through differential equations. This is done in Theorem 3 below.

For the perfect systems from the multiple Nevai classessee also, [15]. Note
that if an Angelesco system is in the Nevai class, then the coefficients {𝜅𝑗}, {𝛾𝑗}, {𝛿𝑗}
of the step-line recurrence (2.7) are asymptotically two-periodic (see [11, 6, 8, 7],
and references therein).

Regarding to asymptotic zero distribution of MOP from Angelesco class, for
the case of 𝑑 = 2 we can add to the statement of Theorem1 the fact, that support
of the limiting zero density is [𝛽1 − 2𝛼1, 𝑒1] ∪ [𝑒2, 𝛽2 + 2𝛼2], where 𝑒1 ≤ 𝛽1 + 2𝛼1

and 𝑒2 ≥ 𝛽2 − 2𝛼2. Moreover, 𝑒1 − 𝑒2 → 0 (that is, 𝑒1 → 𝑒 and 𝑒2 → 𝑒 for some
𝑒) in the limiting case of touching supports (𝛽2 − 2𝛼2)− (𝛽1 + 2𝛼1) → 0.



– 9 –

2.2. Statement. Before to state the main result we introduce approximations
of the limiting functions of the Nevai class 𝑁(𝐴,𝐵,𝐶,𝐷), see (2.8)–(2.11).

For each 𝑘 ∈ Z+, let us “pack” the diagonal sequence {𝑎𝑛,𝑘−𝑛}𝑘𝑛=0 into a piece-
wise linear function 𝐴𝑘 as follows. For any 𝑘, we let 𝑚 = 𝑘 − 𝑛, 𝑡(𝑘)𝑛 = 𝑛

𝑛+𝑚 = 𝑛
𝑘 ,

𝜀(𝑘) = 1
𝑛+𝑚 = 1

𝑘 . Define
𝐴𝑘(𝑡

(𝑘)
𝑛 ) = 𝑎𝑛,𝑘−𝑛

and connect these points to make 𝐴𝑘(𝑡) piecewise linear on [0,1].
Similarly for 𝐵𝑘(𝑡), 𝐶𝑘(𝑡), 𝐷𝑘(𝑡).
Then (2.8)–(2.11) is equivalent to 𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘 converging pointwise on

[0,1] to 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡) as 𝑘 → ∞.
Let us assume

(i) 𝐴,𝐵,𝐶,𝐷 are piecewise continuously differentiable on [0,1];
(ii) The convergence is uniform and fast enough:

|𝐴𝑘(𝑡)− 𝐴(𝑡)| ≤ 𝑜(1𝑘) = 𝑜(𝜀(𝑘)), 𝑘 → ∞, (2.14)

and similarly for 𝐵,𝐶,𝐷.

Theorem 3. 1) Given a perfect system (𝜇1, 𝜇2) ∈ 𝑁(𝐴,𝐵,𝐶,𝐷) satisfying the
condition (i), (ii) above. Then the limiting functions 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡) satify
to the following system of differential equations:⎛⎝𝑡𝐸(𝑡) 0 (1− 𝑡)𝐴(𝑡)

0 (1− 𝑡)𝐸(𝑡) 𝑡𝐵(𝑡)
1

𝑡(1−𝑡)
1

𝑡(1−𝑡) 𝐸(𝑡)

⎞⎠⎛⎝𝐴′(𝑡)
𝐵′(𝑡)
𝐸 ′(𝑡)

⎞⎠ =

⎛⎝0
0
0

⎞⎠ (2.15)

where 𝐸(𝑡) = 𝐶(𝑡)−𝐷(𝑡).

2) Suppose a system of Angelesco satisfies conditions of Theorem 2. Then
there exist 𝑐1, 𝑐2 ∈ (0,1) such that the functions 𝐴,𝐵,𝐶,𝐷 : [0,1] → R are smooth
on [0, 𝑐1) and (𝑐2,1], and satisfy the system of differential equations⎧⎨⎩ (1 + 𝑡)𝑡𝐾 ′(𝑡) + 4𝑡𝐾(𝑡) + (2− 𝑡)(1− 𝑡)𝐿′(𝑡)− 4(1− 𝑡)𝐿(𝑡) = 0

𝑡2𝐾 ′(𝑡)

𝐾(𝑡)
+ 2𝑡 =

(1− 𝑡)2𝐿′(𝑡)

𝐿(𝑡)
− 2(1− 𝑡)

(2.16)

with initial/boundary conditions{︃
𝐾(0) = (𝛽1 − 𝛽2 − 2𝛼1)

2 − 𝛼2
2

𝐿(0) = 𝛼2
2,

{︃
𝐾(1) = 𝛼2

1

𝐿(1) = (𝛽1 − 𝛽2 − 2𝛼2)
2 − 𝛼2

1.

(2.17)
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where

𝐴(𝑡) = 𝑡2𝐾(𝑡), 𝐵(𝑡) = (1− 𝑡2)𝐿(𝑡), 𝐶(𝑡)−𝐷(𝑡) =
√︀
𝐾(𝑡) + 𝐿(𝑡).

Moreover, 𝐴,𝐵,𝐶,𝐷 are constant on the interval [𝑐1, 𝑐2].

Remarks. 1) We note that general (and conditional) part 1) of Theorem 3 admits
presence inside [0, 1] subdomain, where 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡) are constant. For
Angelesco systems it is a generic situation which happens when "pushing " is not
active, see [10].
2) Conditions i), ii) are fulfilled for Angelesco systems from Theorem 2. Namely,
condition i) follows directly from (1.12) and for ii) (from the proof of Theorem 2)
we even have in RHS of (2.14) the bound 𝑂( 1

𝑘2 ).
3) We note that known information about support of zero counting measure of
MOP for Angelesco system (see [10]) allows us to identify the subdomain where
𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡) are constant, i.e. interval [𝑐1, 𝑐2]. Then it is possible, using
BC (2.17) to solve ODE system (2.16) on [0, 𝑐1] and [𝑐2, 1].
4) It would be valuable to to show inductively, using the compatibility con-
ditions (2.3)–(2.6) and additional assumptions on the speed of convergence of
marginal Jacobi coefficients, that |𝐴𝑘(𝑡) − 𝐴𝑘+1(𝑡)| = 𝑂( 1

𝑘2 )
‡. Note that if suc-

cessful this would generalize Denisov–Rakhmanov theorem from Theorem 2 to
non-analytic weights.

2.3. Proof. We start with limiting relations (2.8)–(2.8). Then by linearity (or
Taylor theorem/mean-value theorem also work),

𝑎𝑛,𝑚+1 = 𝐴𝑘+1(
𝑛

𝑘+1) = 𝐴𝑘+1(
𝑛
𝑘 ) + 𝐴′

𝑘+1(
𝑛
𝑘 )

(︀
𝑛

𝑘+1 −
𝑛
𝑘

)︀
= 𝐴𝑘+1(

𝑛
𝑘 )− 𝐴′

𝑘+1(
𝑛
𝑘 )

𝑛
𝑘(𝑘+1)

= 𝐴𝑘+1(𝑡
(𝑘)
𝑛 )− 𝑡(𝑘)𝑛 𝜀(𝑘)𝐴′

𝑘+1(𝑡
(𝑘)
𝑛 ) + 𝑜(𝜀(𝑘))

Similarly,

𝑎𝑛+1,𝑚 = 𝐴𝑘+1(
𝑛+1
𝑘+1) = 𝐴𝑘+1(

𝑛
𝑘 ) + 𝐴′

𝑘+1(
𝑛
𝑘 )

(︀
𝑛+1
𝑘+1 −

𝑛
𝑘

)︀
= 𝐴𝑘+1(

𝑛
𝑘 )

+ 𝐴′
𝑘+1(

𝑛
𝑘 )

(︁
1

𝑘+1 −
𝑛

𝑘(𝑘+1)

)︁
= 𝐴𝑘+1(𝑡

(𝑘)
𝑛 ) + (1− 𝑡(𝑘)𝑛 )𝜀(𝑘)𝐴′

𝑘+1(𝑡
(𝑘)
𝑛 ) + 𝑜(𝜀(𝑘)),

as well as

𝑎𝑛−1,𝑚 = 𝐴𝑘−1(
𝑛−1
𝑘−1) = 𝐴𝑘−1(

𝑛
𝑘 ) + 𝐴′

𝑘−1(
𝑛
𝑘 )

(︀
𝑛−1
𝑘−1 −

𝑛
𝑘

)︀
= 𝐴𝑘−1(

𝑛
𝑘 )

+ 𝐴′
𝑘−1(

𝑛
𝑘 )

(︁
− 1

𝑘−1 +
𝑛

𝑘(𝑘−1)

)︁
= 𝐴𝑘−1(𝑡

(𝑘)
𝑛 )− (1− 𝑡(𝑘)𝑛 )𝜀(𝑘)𝐴′

𝑘−1(𝑡
(𝑘)
𝑛 ) + 𝑜(𝜀(𝑘)),

‡The same for 𝐵𝑘, 𝐶𝑘, 𝐷𝑘.
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and

𝑎𝑛,𝑚−1 = 𝐴𝑘−1(
𝑛

𝑘−1) = 𝐴𝑘−1(
𝑛
𝑘 ) + 𝐴′

𝑘−1(
𝑛
𝑘 )

(︀
𝑛

𝑘−1 −
𝑛
𝑘

)︀
= 𝐴𝑘−1(

𝑛
𝑘 ) + 𝐴′

𝑘−1(
𝑛
𝑘 )

𝑛
𝑘(𝑘−1)

= 𝐴𝑘−1(𝑡
(𝑘)
𝑛 ) + 𝑡(𝑘)𝑛 𝜀(𝑘)𝐴′

𝑘−1(𝑡
(𝑘)
𝑛 ) + 𝑜(𝜀(𝑘)),

Similar equalities hold for 𝐵,𝐶,𝐷.
Plugging these equalities into (2.3), and multiplying the terms out, we get

(𝐴𝑘+1𝐶𝑘−1 − 𝐴𝑘𝐶𝑘 − 𝐴𝑘+1𝐷𝑘−1 + 𝐴𝑘𝐷𝑘)+

𝜀(𝑘) (−𝐴𝑘+1(𝐶
′
𝑘−1 −𝐷′

𝑘−1)(1− 𝑡)− 𝐴′
𝑘+1(𝐶𝑘−1 −𝐷𝑘−1)𝑡) + 𝑜(𝜀(𝑘)) = 0,

(everything is evaluated at 𝑡 = 𝑡
(𝑘)
𝑛 ). The first bracket is 𝑜(𝜀(𝑘)) by (2.14), so

dividing by 𝜀(𝑘) and taking the limit 𝑘 → ∞, we get

𝐴(𝑡)(𝐶 ′(𝑡)−𝐷′(𝑡))(1− 𝑡) + 𝐴′(𝑡)(𝐶(𝑡)−𝐷(𝑡))𝑡 = 0 (2.18)

Similar arguments applied to (2.4)–(2.6) lead to three more ODE’s

𝐵(𝑡)(𝐶 ′(𝑡)−𝐷′(𝑡))𝑡+𝐵′(𝑡)(𝐶(𝑡)−𝐷(𝑡))(1− 𝑡) = 0 (2.19)
𝐶 ′(𝑡)𝑡+𝐷′(𝑡)(1− 𝑡) = 0 (2.20)

− 𝐶 ′(𝑡)𝑡 =
𝐴′(𝑡) +𝐵′(𝑡)

𝐶(𝑡)−𝐷(𝑡)
. (2.21)

Let us simplify this system a bit. First of all, let

𝐸(𝑡) = 𝐶(𝑡)−𝐷(𝑡).

Then from (2.21), 𝐶 ′ = −𝐴′+𝐵′

𝑡𝐸 , from (2.20), 𝐷′ = − 𝑡
1−𝑡𝐶

′ = 𝐴′+𝐵′

(1−𝑡)𝐸 , so 𝐸 ′ =

𝐶 ′ −𝐷′ = − 𝐴′+𝐵′

𝑡(1−𝑡)𝐸 . Thus we end up with the following ODE system:⎛⎝𝑡𝐸(𝑡) 0 (1− 𝑡)𝐴(𝑡)
0 (1− 𝑡)𝐸(𝑡) 𝑡𝐵(𝑡)
1

𝑡(1−𝑡)
1

𝑡(1−𝑡) 𝐸(𝑡)

⎞⎠⎛⎝𝐴′(𝑡)
𝐵′(𝑡)
𝐸 ′(𝑡)

⎞⎠ =

⎛⎝0
0
0

⎞⎠ (2.22)

Part 1) of the Theorem 3 is proved.
For Angelesco systems we have BC (2.12)– (2.13):

𝐶(1) = 𝛽1, 𝐴(1) = 𝛼2
1 (2.23)

𝐷(0) = 𝛽2, 𝐵(0) = 𝛼2
2 (2.24)

and the natural marginal BC

𝐴(0) = 0, 𝐵(1) = 0.
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Let us divide interval [0,1] into two disjoint sets:

𝐼1 = {𝑡 ∈ [0,1] : 𝐴′(𝑡) = 𝐵′(𝑡) = 𝐸 ′(𝑡) = 0} and 𝐼2 = [0,1] ∖ 𝐼1.
From [10] we know that: 𝐼1 consists of one point if Δ1 and Δ2 are touching, and
otherwise 𝐼1 is an interval [𝑐1, 𝑐2] inside (0,1).

For 𝑡 ∈ 𝐼2, we have that the determinant of the matrix in (2.22) must be
zero, i.e.,

𝑡(1− 𝑡)𝐸(𝑡)3 − 1−𝑡
𝑡 𝐴(𝑡)𝐸(𝑡)− 𝑡

1−𝑡𝐵(𝑡)𝐸(𝑡) = 0 (2.25)

which implies
𝐸(𝑡)2 = 1

𝑡2𝐴(𝑡) +
1

(1−𝑡)2𝐵(𝑡) (2.26)

on the set where 𝐸(𝑡) ̸= 0. This means that

2𝐸(𝑡)𝐸 ′(𝑡) = 1
𝑡2𝐴

′(𝑡) + 1
(1−𝑡)2𝐵

′(𝑡)− 2
𝑡3𝐴(𝑡) +

2
(1−𝑡)3𝐵(𝑡)

Plugging this into the third equation of (2.22), we get

2
𝑡(1−𝑡)(𝐴

′(𝑡) +𝐵′(𝑡)) + 1
𝑡2𝐴

′(𝑡) + 1
(1−𝑡)2𝐵

′(𝑡)− 2
𝑡3𝐴(𝑡) +

2
(1−𝑡)3𝐵(𝑡) = 0

which simplifies to

1+𝑡
𝑡 𝐴′(𝑡) + 2−𝑡

1−𝑡𝐵
′(𝑡)− 2(1−𝑡)

𝑡2 𝐴(𝑡) + 2𝑡
(1−𝑡)2𝐵(𝑡) = 0 (2.27)

The first two equations can be solved for 𝐸′(𝑡)
𝐸(𝑡) giving us

𝑡
1−𝑡

𝐴′(𝑡)
𝐴(𝑡) = 1−𝑡

𝑡
𝐵′(𝑡)
𝐵(𝑡) . (2.28)

So our new system of two ODE’s is

1+𝑡
𝑡 𝐴′(𝑡) + 2−𝑡

1−𝑡𝐵
′(𝑡)− 2(1−𝑡)

𝑡2 𝐴(𝑡) + 2𝑡
(1−𝑡)2𝐵(𝑡) = 0 (2.29)

𝑡
1−𝑡

𝐴′(𝑡)
𝐴(𝑡) = 1−𝑡

𝑡
𝐵′(𝑡)
𝐵(𝑡) . (2.30)

for 𝑡 ∈ 𝐼2, and with four boundary conditions

𝐴(1) = 𝛼2
1 𝐵(1) = 0, (2.31)

𝐴(0) = 0 𝐵(0) = 𝛼2
2. (2.32)

Warning: it might seem that this system is independent on 𝛽1, 𝛽2, but it’s
not correct. 𝛽1, 𝛽2 will change the interval 𝐼2!

To end the proof we involve an extra boundary conditions. As discussed
in the introduction, the limiting zero distribution of 𝑄𝑛,𝑚(𝑧) is supported on
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[𝛽1 − 2𝛼1, 𝑒1], [𝑒2, 𝛽2 + 2𝛼2] for some 𝑒1 ≤ 𝛽1 + 2𝛼1 and 𝑒2 ≥ 𝛽2 − 2𝛼2. In the
limit this should give us the following two extra boundary conditions:

𝐶(0) = 𝛽1 − 2𝛼1 (2.33)
𝐷(1) = 𝛽2 + 2𝛼2 (2.34)

Thus we have the system⎛⎝𝑡𝐸(𝑡) 0 (1− 𝑡)𝐴(𝑡)
0 (1− 𝑡)𝐸(𝑡) 𝑡𝐵(𝑡)
1

𝑡(1−𝑡)
1

𝑡(1−𝑡) 𝐸(𝑡)

⎞⎠⎛⎝𝐴′(𝑡)
𝐵′(𝑡)
𝐸 ′(𝑡)

⎞⎠ =

⎛⎝0
0
0

⎞⎠ (2.35)

with the boundary/initial conditions

𝐴(0) = 0, 𝐴(1) = 𝛼2
1,

𝐵(0) = 𝛼2
2, 𝐵(1) = 0,

𝐸(0) = 𝛽1 − 𝛽2 − 2𝛼1, 𝐸(1) = 𝛽1 − 𝛽2 − 2𝛼2.

Now recall that on the non-constant region 𝐼2 where 𝐸 ̸= 0, we have

𝐸(𝑡)2 = 1
𝑡2𝐴(𝑡) +

1
(1−𝑡)2𝐵(𝑡) (2.36)

Putting 𝑡 = 0, we therefore should expect 𝐴(0) = 𝐴′(0) = 0 and

𝐸(0)2 = 1
2𝐴

′′(0) +𝐵(0),

which implies

𝐴′′(0) = 2𝐸(0)2 − 2𝐵(0) = 2(𝛽1 − 𝛽2 − 2𝛼1)
2 − 2𝛼2

2 (2.37)

Similarly 𝑡 = 1 gives us 𝐵(1) = 𝐵′(1) = 0 and

𝐸(1)2 = 𝐴(1) + 1
2𝐵

′′(1),

which implies

𝐵′′(1) = 2𝐸(1)2 − 2𝐴(1) = 2(𝛽1 − 𝛽2 − 2𝛼2)
2 − 2𝛼2

1 (2.38)

We need to remove double zeros of 𝐴 and 𝐵 at 0 and 1, respectively, to
reduce our system to a standard initial value problem. So let

𝐾(𝑡) =
𝐴(𝑡)

𝑡2
, 𝐿(𝑡) =

𝐵(𝑡)

(1− 𝑡)2
.
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Then our system (2.35) becomes:⎛⎝𝑡𝐸(𝑡) 0 (1− 𝑡)𝐾(𝑡)
0 (1− 𝑡)𝐸(𝑡) 𝑡𝐿(𝑡)
𝑡

(1−𝑡)
1−𝑡
𝑡 𝐸(𝑡)

⎞⎠⎛⎝𝐾 ′(𝑡)
𝐿′(𝑡)
𝐸 ′(𝑡)

⎞⎠ =

⎛⎝ −2𝐸(𝑡)𝐾(𝑡)
2𝐸(𝑡)𝐿(𝑡)

− 2
1−𝑡𝐾(𝑡) + 2

𝑡𝐿(𝑡)

⎞⎠ (2.39)

with the boundary/initial conditions

𝐾(0) = 1
2𝐴

′′(0) = (𝛽1 − 𝛽2 − 2𝛼1)
2 − 𝛼2

2, 𝐾(1) = 𝐴(1) = 𝛼2
1,

𝐿(0) = 𝐵(0) = 𝛼2
2, 𝐿(1) = 1

2𝐵
′′(1) = (𝛽1 − 𝛽2 − 2𝛼2)

2 − 𝛼2
1,

𝐸(0) = 𝛽1 − 𝛽2 − 2𝛼1, 𝐸(1) = 𝛽1 − 𝛽2 − 2𝛼2.

The determinant of the matrix in (2.39) is equal to 𝑡(1 − 𝑡)𝐸(𝑡)(𝐸(𝑡)2 −
𝐾(𝑡) − 𝐿(𝑡)) which should be 0 on 𝐼2 due to (2.36), so numerical simulation
of this system is not likely to work well. So we need to eliminate 𝐸(𝑡) using
𝐸(𝑡)2 = 𝐾(𝑡) + 𝐿(𝑡). This leads to:

(1 + 𝑡)𝑡𝐾 ′(𝑡) + 4𝑡𝐾(𝑡) + (2− 𝑡)(1− 𝑡)𝐿′(𝑡)− 4(1− 𝑡)𝐿(𝑡) = 0 (2.40)
𝑡2𝐾 ′(𝑡)
𝐾(𝑡) + 2𝑡 = (1−𝑡)2𝐿′(𝑡)

𝐿(𝑡) − 2(1− 𝑡) (2.41)

with initial/boundary conditions (2.17){︃
𝐾(0) = (𝛽1 − 𝛽2 − 2𝛼1)

2 − 𝛼2
2

𝐿(0) = 𝛼2
2,

{︃
𝐾(1) = 𝛼2

1

𝐿(1) = (𝛽1 − 𝛽2 − 2𝛼2)
2 − 𝛼2

1.

Theorem is proved.
This system of ODE’s can be simulated. See the pictures below. Note that

essentially it’s two initial value problems – one at 𝑡 = 0 and one at 𝑡 = 1.

(a) (b)

Figure 1. The case 𝛼1 = 𝛼2 = 1, 𝛽1 = −𝛽2 = −2 (supports of 𝜇1 and 𝜇2 are symmetric and
touching): (a) Function 𝐴(𝑡) (b) Function 𝐵(𝑡) (𝑡 ∈ [0,1] corresponds to [0,200] on the graph)
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(a) (b)

Figure 2. The case 𝛼1 = 𝛼2 = 0.97, 𝛽1 = −𝛽2 = 1 (supports of 𝜇1 and 𝜇2 are symmetric but
do not touch): (a) Function 𝐴(𝑡) (b) Function 𝐵(𝑡) (𝑡 ∈ [0,1] corresponds to [0,2000] on the
graph, so 𝑡 = 1/2 is at the 𝑥-coordinate 1000)

3. Comparing numerics: Angelesco system 𝑑 = 2
The following is a simple but useful observation: the solution of the ODE

solved from 𝑡 = 0 depends only on the boundary conditions (2.17), that is only
on quantities (𝛽1 − 𝛽2 − 2𝛼1)

2 − 𝛼2
2 and 𝛼2

2. So if 𝛼2 and 𝛽2 are fixed (i.e., the
support of 𝜇2), and also 𝛽1 − 2𝛼1 is fixed (the left-most edge of the support of
𝜇1), then the boundary conditions at 𝑡 = 0 are going to be the same.

In other words, suppose we have an Angelesco system with supp𝜇1 = [𝑓1, 𝑓2],
supp𝜇2 = [𝑓3, 𝑓4]. Then the left parts (before the plateau) of functions 𝐴(𝑡), 𝐵(𝑡)

will coincide with the left parts of functions ̃︀𝐴(𝑡), ̃︀𝐵(𝑡) for the Angelesco system
having supp̃︀𝜇1 = [𝑓1, 𝑓3], supp̃︀𝜇2 = [𝑓3, 𝑓4] (touching supports, so ̃︀𝐴(𝑡), ̃︀𝐵(𝑡) have
no plateaus).

Similarly, suppose we have an Angelesco system with supp𝜇1 = [𝑓1, 𝑓2],
supp𝜇2 = [𝑓3, 𝑓4]. Then the right parts (after the plateau) of functions 𝐴(𝑡), 𝐵(𝑡)

will coincide with the right parts of functions ̂︀𝐴(𝑡), ̂︀𝐵(𝑡) for the Angelesco system
having supp̂︀𝜇1 = [𝑓1, 𝑓2], supp̂︀𝜇2 = [𝑓2, 𝑓4] (touching supports, so ̂︀𝐴(𝑡), ̂︀𝐵(𝑡) have
no plateaus).

Let us illustrate this with the pictures below. The blue dots will always
correspond to the functions 𝐴(𝑡) and 𝐵(𝑡) approximated via the NNR coefficients:
𝐴(𝑡) ≈ 𝑎𝑛,𝑚, 𝐵(𝑡) ≈ 𝑏𝑛,𝑚 with 𝑡 = 𝑛

𝑛+𝑚 and 𝑛+𝑚 ≈ 200 (increasing 𝑛+𝑚 does
not seem to noticeably change the picture). The solid curves will corresponds to
the numerical approximation of the solution of the ODE (using Mathematica, not
sure if it’s Runge–Kutta or something else).

First, let us start with 𝛽1 = −2, 𝛼1 = 1, 𝛽2 = 1, 𝛼2 = 0.5 (so that
supp𝜇1 = [−4,0] and supp𝜇2 = [0,2]).

In the next three pictures we will modify the left endpoint of supp𝜇2 while
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(a) (b)

Figure 3. Functions 𝐴(𝑡) and 𝐵(𝑡) when supp𝜇1 = [−4,0] and supp𝜇2 = [0,2]

keeping the other endpoints fixed.
So let us move to Fig.4: blue dots correspond to the simulations with 𝛽1 =

−2, 𝛼1 = 1, 𝛽2 = 1.25, 𝛼2 = 0.375, so that supp𝜇1 = [−4,0] and supp𝜇2 = [0.5,2]
(note that supp𝜇1 is the same as before, and supp𝜇2 has the same right endpoint
as before too, but now supports do not touch). On the same plot we include
the solutions to the ODE for the case supp𝜇1 = [−4,0], supp𝜇2 = [0,2] (orange
curve) and for the case supp𝜇1 = [−4,0.5], supp𝜇2 = [0.5,2] (red curve). Notice
the orange curve fits correctly around 𝑡 = 1 and red fits correctly around 𝑡 = 0.

(a) (b)

Figure 4. Blue dots: limits of coefficients when supp𝜇1 = [−4,0], supp𝜇2 = [0.5,2]; Orange
curve: ODE when supp𝜇1 = [−4,0], supp𝜇2 = [0,2]; Red curve: ODE when supp𝜇1 = [−4,0.5],
supp𝜇2 = [0.5,2]

Now we move on to Fig.5: blue dots correspond to the simulations with
𝛽1 = −2, 𝛼1 = 1, 𝛽2 = 1.5, 𝛼2 = 0.25, so that supp𝜇1 = [−4,0] and supp𝜇2 =
[1,2] (supp𝜇1 and the right endpoint of supp𝜇2 are the same as before). On the
same plot we include the solutions to the ODE for the case supp𝜇1 = [−4,0],
supp𝜇2 = [0,2] (orange curve) and for the case supp𝜇1 = [−4,1], supp𝜇2 = [1,2]
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(red curve). Notice the orange curve fits correctly around 𝑡 = 1 and red fits
correctly around 𝑡 = 0.

(a) (b)

Figure 5. Blue dots: limits of coefficients when supp𝜇1 = [−4,0], supp𝜇2 = [1,2]; Orange
curve: ODE when supp𝜇1 = [−4,0], supp𝜇2 = [0,2]; Red curve: ODE when supp𝜇1 = [−4,1],
supp𝜇2 = [1,2]

Finally we move on to Fig.6: blue dots correspond to the simulations with
𝛽1 = −2, 𝛼1 = 1, 𝛽2 = 1.8, 𝛼2 = 0.1, so that supp𝜇1 = [−4,0] and supp𝜇2 =
[1.6,2] (supp𝜇1 and the right endpoint of supp𝜇2 are the same as before). On
the same plot we include the solutions to the ODE for the case supp𝜇1 = [−4,0],
supp𝜇2 = [0,2] (orange curve) and for the case supp𝜇1 = [−4,1.6], supp𝜇2 =
[1.6,2] (red curve). Notice the orange curve fits correctly around 𝑡 = 1 and red
fits correctly around 𝑡 = 0.

(a) (b)

Figure 6. Blue dots: limits of coefficients when supp𝜇1 = [−4,0], supp𝜇2 = [1.6,2]; Orange
curve: ODE when supp𝜇1 = [−4,0], supp𝜇2 = [0,2]; Red curve: ODE when supp𝜇1 = [−4,1.6],
supp𝜇2 = [1.6,2]
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4. Appendix: parametrization for the touching intervals case
Here we present formulas for the limits of recurrence coefficients (1.12), (1.4)

for MOPs with respect to the Angelesco system (𝑑 = 2) supported on two touched
intervals [−𝑎, 0], 𝑎 > 0 and [0, 1]. These formulas are based on a parametrization
of the end points of the support of zero distribution, see (1.8), (1.10). This
parametrization was proposed in [18, 19] and developed in details (for the non-
diagonal case) in [17]. We start with this parametrization.

Let 𝑎 ∈ (0,+∞), 𝑏 ∈ (0,1) and parameters 𝑠 ∈ (1,2), 𝜏 ∈ (1,+∞) and
U := (1,2)× (1,+∞) is half-strip in R2. The following smooth functions

𝒜(𝑠, 𝜏) := 𝑅𝑠(𝜏)− 1, ℬ(𝑠, 𝜏) := 𝒜(𝑠, 𝜏)𝑆(𝑠)

1 +𝒜(𝑠, 𝜏)− 𝑆(𝑠)
,

where
𝑅𝑠(𝜏) :=

𝜏 2(𝜏 + 𝑠− 2)

(2𝑠− 1)𝜏 − 𝑠
, 𝑆(𝑠) :=

𝑠(2− 𝑠)3

(2𝑠− 1)3
,

define a diffeomorphism (𝒜,ℬ) of U on half - strip (0,+∞)𝑎× (0,1)𝑏. The inverse
transformation: (𝑎, 𝑏) ∈ (0,+∞)𝑎 × (0,1)𝑏 → (𝑠, 𝜏) ∈ U is defined by solution
of the equations (the fact of ∃! solutions was proven in [17])

∃ ! 𝑠 ∈ (0,1) : 𝑆(𝑠) =
𝑏(1 + 𝑎)

𝑎+ 𝑏
, ∃ ! 𝜏 > 1 : 1 + 𝑎 =

𝜏 2(𝜏 + 𝑠− 2)

(2𝑠− 1)𝜏 − 𝑠
. (4.1)

We also introduce a function Θ : U → (−1; 1)

Θ(𝑠, 𝜏) := (𝜏 − 𝑠)

(︂
2 + 2𝑠𝜏 − 𝑠− 𝜏

(2𝑠𝜏 − 𝑠− 𝜏)(𝑠+ 𝜏)(𝑠+ 𝜏 − 2)

)︂1/2

.

Given {𝜇1, 𝜇2} : supp𝜇1 = [−𝑎, 0] and supp𝜇1 = [0, 1], we consider ex-
tremal problem (1.9) for

𝜏1 =: (1 + 𝜃)/2, 𝜏2 =: (1− 𝜃)/2, 𝜃 ∈ (−1, 1).

We would like to know answers for the following questions:
1) How to find the value of

𝜃𝑎 := min{𝜃 : supp𝜔1 = [−𝑎,0]} = max{𝜃 : supp𝜔2 = [0,1]} ?
2) How to findS the value of 𝑏𝜃 : supp𝜔2 = [𝑏𝜃,1] ?

The answers from [17] are:
1) Excluding the variable 𝜏 from the equations 𝒜(2, 𝜏) = 𝑎 and Θ(2, 𝜏) = 𝜃,

we can get 𝜃𝑎 and 𝑎𝜃.

2) ∃ ! (𝑠, 𝜏) :

{︃
𝒜(𝑠, 𝜏) = 𝑎 ∈ (0; 𝑎𝜃)

Θ(𝑠, 𝜏) = 𝜃 ∈ (𝜃𝑎; 1)
⇒ 𝑏𝜃 := ℬ(𝑠, 𝜏).

SFor fixed 𝜃 ∈ (𝜃𝑎, 1)
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Proposition 1. Let [−𝑎, 0], [𝑏, 1] be supports (1.10) of extremal measures (1.9)
of the Angelesco system {𝜇1, 𝜇2}, and let

(︀
𝑠(𝑎, 𝑏), 𝜏

(︀
𝑎, 𝑠(𝑎, 𝑏)

)︀ )︀
be the image

of transformation (4.1). Then for limits (1.12) of the corresponding NNRR coef-
ficients we have

𝛼1,⃗𝑡 = 𝐶1
−𝑎𝑡2(𝜏 − 𝛼)

(𝜏 − 𝜏1)2(𝜏 − 𝜏2)
, 𝛽1,⃗𝑡 = 𝐶1𝛼1𝑎

2𝜏
3(𝜏 + 𝑠− 2)(−2𝜏 − 𝜏1)

(𝜏 − 𝜏1)4(𝜏 − 𝜏2)3
. (4.2)

where 𝜏1 + 𝜏2 = −(𝑠+ 𝜏 − 2), 𝜏1𝜏2 = −𝑠𝜏(𝑠+ 𝜏 − 2)

2𝑠𝜏 − 𝑠− 𝜏
, 𝜏1 < 𝜏2 < 𝜏 , (4.3)

𝐶1 :=
−𝑎𝜏 21 (𝜏1 − 𝛼)

(𝜏1 − 𝜏)2(𝜏1 − 𝜏2)
, 𝛼 = 2− 𝑠. (4.4)

Proof. The Riemann surface from the Subsection 1.3 can be defined by means
of the conformal map of the sphere C𝑤 → Rz

𝑧(𝑤) := 𝜋(z(𝑤)) =
𝑎𝑅𝑠(𝑤)

1 + 𝑎−𝑅𝑠(𝑤)
=

−𝑎𝑤2(𝑤 − 𝛼)

(𝑤 − 𝜏)(𝑤 − 𝜏1)(𝑤 − 𝜏2)
,

where 𝜋 : R → C is the natural projection and for the preimages of 𝜋−1(∞) :
𝜏 → ∞0, 𝜏1 → ∞1, 𝜏2 → ∞2 we have (4.3) .

Our goal is to define the meromorphic on R functions ϒ𝑖 and to deter-
mine their residues: z2ϒ𝑖(𝑧

(0)) = 𝛼𝑡⃗,𝑖(𝑧 + 𝛽𝑐⃗,𝑖) + 𝒪
(︀
𝑧−1

)︀
as 𝑧 → ∞. We have

ϒ(1)(𝑧(𝑤)) = 𝐶1
𝑤 − 𝜏

𝑤 − 𝜏1
, 𝛼1,⃗𝑡 =

(︁
𝑧ϒ(1)

)︁⃒⃒⃒
𝑤=𝜏

, 𝛽1,⃗𝑡 =

[︂
𝑧

(︂
𝑧

𝛼1
ϒ(1) − 1

)︂]︂⃒⃒⃒
𝑤=𝜏

,

where 𝑤 ∈ 𝐶 and 𝐶1 is defined from the normalization(︂
ϒ(1)

𝑧

)︂⃒⃒⃒
𝑤=𝜏1

= 1, ⇒ 𝐶1 =

(︂
𝑧(𝑤)

𝑤 − 𝜏1
𝑤 − 𝜏

)︂⃒⃒⃒
𝑤=𝜏1

=
−𝑎𝜏 21 (𝜏1 − 𝛼)

(𝜏1 − 𝜏)2(𝜏1 − 𝜏2)
.

Thus we get (4.4) and by the same way the expression for 𝛼1,⃗𝑡 in (4.2). Denoting

𝑃 (𝑤) :=
𝑤2(𝑤 − 𝛼)

(𝑤 − 𝜏1)2(𝑤 − 𝜏2)
;

𝑃 ′

𝑃
(𝑤) =

2

𝑤
+

1

𝑤 − 𝛼
− 2

𝑤 − 𝜏1
− 1

𝑤 − 𝜏2
,

we arrive to
𝛽1,⃗𝑡 = 𝐶1𝛼1𝑎

2 𝜏 2(𝜏 − 𝛼)

(𝜏 − 𝜏1)(𝜏 − 𝜏2)
·𝑃 (𝑤)− 𝑃 (𝜏)

𝑤 − 𝜏

⃒⃒⃒
𝑤=𝜏⏟  ⏞  

=𝑃 ′(𝜏)

= 𝐶1𝛼1𝑎
2𝜏

3(𝜏 − 𝛼)(2𝜏2 + 𝜏1 − 2𝛼)

(𝜏 − 𝜏1)4(𝜏 − 𝜏2)3
.

The Proposition is proved.
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