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Alexander Dmitrievich Bruno

Asymptotic solution of some nonlinear problems

We propose algorithms that allow for nonlinear equations to obtain asymptotic

expansions of solutions in the form of: (a) power series with constant coefficients,

(b) power series with coefficients which are power series of logarithm and (c) power

series of exponent of a power series with coefficients which are power series as well.

These algorithms are applicable to nonlinear equations (A) algebraic, (B) ordinary

differential and (C) partial differential, and to systems of such equations as well.

We give the description of the method for one ordinary differential equation and we

enumerate some applications of these algorithms.

Key words: expansions of solutions to ODE, power expansions, complicated expan-

sions, exponential expansions.
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Асимптотическое решение некоторых нелинейных задач. Препринт Инсти-

тута прикладной математики им. М.В. Келдыша РАН, Москва, 2018.

Предлагаются алгоритмы, позволяющие получать для нелинейных урав-

нений асимптотические разложения решений в виде: (а) степенных рядов с

постоянными коэффициентами, (б) степенных рядов с коэффициентами, являю-

щимися степенными рядами от логарифма и (в) степенных рядов экспоненты

степенного ряда, коэффициенты которых суть степенные ряды. Эти алгоритмы

применимы к нелинейным уравнениям: (A) алгебраическим, (B) обыкновенным

дифференциальным и (C) в частных производных, а также к системам таких

уравнений. Изложение ведётся для одного обыкновенного дифференциального

уравнения. Перечислены некоторые из приложений этих алгоритмов.

Ключевые слова: разложения решений ОДУ, степенные разложения, слож-

ные разложения, экспоненциальные разложения.

© А.Д. Брюно, 2018

© Институт прикладной математики им. М.В. Келдыша, 2018



1. Introduction

Tendency to solve the mathematical problems numerically increases in last time

according to increasing of power of computers. And study of mathematicians is

oriented to that instead of the study Mathematics itself. I.e. Mathematics is substituted

by Arithmetic. That is especially true for problems, which cannot be solved by

methods of Classic Analysis and Functional Analysis. Here I will describe a set of

such problems, which can be solved by methods of Nonlinear Analysis, allowing to

compute asymptotic forms and asymptotic expansions of solution of different classes

of equations: algebraic, ordinary differential and partial differential. And of systems

of such equations as well. One-year course of lectures on Nonlinear Analysis was

given at the Mathematical Department of the Lomonosov Moscow State University.

In the present lecture, I will explain main notions and methods of Nonlinear Analysis

on examples of an ordinary differential equation

f(x, y, y′, . . . , y(n)) = 0,

where f is a polynomial of its arguments. These methods allow to obtain its solutions

in the form of asymptotic expansions

y(x) =
∞∑
k=0

ϕk(x) (1)

when x → 0 or x → ∞. At the end, I will give a list of its applications.

For simplicity, here we consider the expansions with real power exponents only.

2. Selection of the leading terms

2.1. Order of a function [1]. Let put

ω =

{
−1, if x → 0,

+1, if x → ∞.

The number

pω(ϕ) = ω lim sup
xω→∞

log|ϕ(x)|
ω log|x|

calculated for the fixed arg x ∈ [0, 2π), is called as order of the function ϕ(x). For
the power function ϕ(x) = const · xα the order p(ϕ) = Re α for any ω and arg x.
The expansion (1) is called as asymptotic, if

ωp(ϕk) > ωp(ϕk+1), k = 0, 1, 2, . . . .
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2.2. Truncated sums [2, 3]. Let x be independent and y be dependent variables,
x, y ∈ C. The differential monomial a(x, y) is a product of an usual monomial cxr1yr2,
where c = const ∈ C, (r1, r2) ∈ R2, and a finite number or derivatives dly/dxl, l ∈ N.
The sum of differential monomials

f(x, y) =
∑

ai(x, y) (2)

is called as the differential sum. We want to select from it all such monomials ai(x, y),
which have the biggest order after the substitution

y = const xp, p ∈ R (3)

Under the substitution

xq1yq2 = const xq1+pq2 = const x〈P,Q〉,

where P = (1, p) = (p1, p2), Q = (q1, q2), 〈P,Q〉 = p1q1+ p2q2 is the scalar product.
For fixed p and ω, the biggest order will give those monomial const xq1yq2, for which

ω 〈P,Q〉

has the maximal value.

Analogously, the differential monomial a(x, y) corresponds to its (vectorial)
power exponent Q(a) = (q1, q2) ∈ R2 with the following rules:

Q(cxr1yr2) = (r1, r2); Q(dly/dxl) = (−l, 1);

power exponent of a product of monomials is a vectorial sum of their exponents:

Q(a1a2) = Q(a1) +Q(a2).

The set S(f) of vectorial power exponents Q(ai) of all differential monomials
ai(x, y), containing in the differential sum (2), is called as the support of the sum

f(x, y). Evidently, S(f) ∈ R2. The convex hull Γ(f) of the support S(f) as called as
the polygon of the sum f(x, y). The boundary ∂Γ(f) of the polygon Γ(f) consists of

vertices Γ
(0)
j and edges Γ

(1)
j . We call them as generalized faces Γ

(d)
j , where the upper

index shows the dimension of the face, and low index shows its number. Each face

Γ
(d)
j corresponds to the truncated sum

f̂
(d)
j (x, y) =

∑
ai(x, y) along Q(ai) ∈ Γ

(d)
j ∩ S(f). (4)

After substitution (3), all terms in (4) have the same order, which is 〈P,Q〉, if the
vector ωP = ω(1, p) is the exterior normal to the edge or vertex Γ

(d)
j . So the biggest

value of ω 〈P,Q〉 achieved on Q ∈ Γ
(d)
j .
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Example. Let us consider the third Painlevé equation

f(x, y)
def
= −xyy′′ + xy′

2 − yy′ + ay3 + by + cxy4 + dx = 0, (5)

assuming that its complex parameters a, b, c, d 6= 0. Here the first three differential
monomials have the same power exponent Q1 = (−1, 2), then Q2 = (0, 3), Q3 =
(0, 1), Q4 = (1, 4), Q5 = (1, 0). They are shown in Fig. 1 in coordinates q1, q2. Their

convex hull Γ(f) is a triangle with three vertexes Γ
(0)
1 = Q1, Γ

(0)
2 = Q4, Γ

(0)
3 = Q5,

and with three edges Γ
(1)
1 , Γ

(1)
2 , Γ

(1)
3 . The vertex Γ

(0)
1 = Q1 corresponds to the truncated

sum

f̂
(0)
1 (x, y) = −xyy′′ + xy′

2 − yy′,

and the edge Γ
(1)
1 corresponds to the truncated sum

f̂
(1)
1 (x, y) = f̂

(0)
1 (x, y) + by + dx. �

q2

−1 0 1

q1

Q1

Q2

Q3

Q4

Q5

Γ
(1)
1

Γ
(1)
2

Γ
(1)
3

Figure 1. Support S(f), polygon Γ(f) and its edges Γ
(1)
j for the third Painlevé equa-

tion (5).

Let the plane R2
∗ be such conjugate to the plane R2, that the scalar product

〈P,Q〉 def
= p1q1 + p2q2

be defined for P = (p1, p2) ∈ R2
∗ and Q = (q1, q2) ∈ R2. Each face Γ

(d)
j corresponds

to its own normal cone U
(d)
j ⊂ R2

∗. It consists of the exterior normals P to the face
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Γ
(d)
j . The normal coneU

(1)
j of the edge Γ

(1)
j is a ray orthogonal to the edge Γ

(1)
j and

directed outside of the polygon Γ(f). The normal coneU
(0)
j of the vertex Γ

(0)
j is the

open sector (angle) at the plane R2
∗ with vertex in the origin P = 0 and restricted by

rays, which are the normal cones of edges, adjoined to the vertex Γ
(0)
j . Generally

U
(d)
j = {P : 〈P,Q′〉 = 〈P,Q′′〉 > 〈P,Q′′′〉 , P ′, P ′′ ∈ Γ

(d)
j , P ′′′ ∈ Γ\Γ(d)

j } .

Example. For the equation (5), normal cones U
(d)
j of faces Γ

(d)
j are shown in

Fig. 2.�

p2

p1

U
(0)
2

U
(0)
3

U
(0)
1

U
(1)
1

U
(1)
2

U
(1)
3

Figure 2. Normal conesU
(d)
j to vertices and edges Γ

(d)
j of the polygon of Fig. 1.

So each face Γ
(d)
j corresponds to the normal coneU

(d)
j in the plane R2

∗ and the
truncated sum (4).

2.3. Variations [3, 4]. In Classic Analysis, it is known the Taylor formula

f(x0 +∆) =
∞∑
k=0

1

k!
f (k)(x0)∆

k.

In the Functional Analysis, there is it analog

f(x, y0 + z) =
∞∑
k=0

1

k!

δk

δyk
f

∣∣∣∣
y=y0

zk, (6)

where f(x, y) is a differential sum,
δk

δyk
f(x, y) is its k-variation along y (derivative

of Frechet or Gateaux). It is taken on the function y = y0(x) and is an operator
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which is applied to the k-power of the small addendum zk. All that is doing in the
infinity-dimensional spaces. If f(x, y) is an usual polynomial (without derivatives),

then
δk

δyk
f =

∂k

∂yk
f . But variations are defined for differential polynomials containing

derivatives.

Example. If f =
∂ky

∂xk
, then

δf

δy
=

∂k

∂xk
. �

Theorem 1. Let p(y0) = p0, p
(
y
(k)
0

)
= p0 − k, k = 1, 2, . . . , p(z) = p1, along the

curves y = const xp the order p(f) = p̃ and ω(p1 − p0) < 0, then expansion (6) is

asymptotic, where

ωp

(
δk

δyk
f

∣∣∣∣
y=y0

zk

)
6 ωp̃+ kω(p1 − p0), k = 0, 1, 2, . . .

Corollary 1. In the situation of the Theorem 1

ωp

(
δ

δy
f

∣∣∣∣
y=y0

z

)
< ωp (f(y0)) .

i.e. the order of the first variation is less than the order of f(y0).

3. Power expansions of solutions [3, 5]

3.1. Statement of the problem.

Problem. Let we have the ordinary differential equation

f(x, y) = 0, (7)

where f(x, y) is a differential sum. For solutions y = ϕ(x) of the equation (7) for
x → 0 and x → ∞ to find all expansions of the form

y = crx
r +
∑

csx
s, cr, cs = const ∈ C, cr 6= 0, (8)

where the power exponents r, s ∈ R,

ωr > ωs. �

Computation of the expansions (8) consists of two steps: computation of the

first term

y = crx
r, cr 6= 0

and computation of other terms in (8).
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Theorem 2. If the expansion (8) satisfies equation (7) and ω(1, r) ∈ U
(d)
j , then the

truncation y = crx
r of solution (8) is a solution of the truncated equation f̂

(d)
j (x, y) =

0.

So, to find all truncated solutions y = crx
r of the equation (7), we must compute:

the support S(f), polygon Γ(f), all its faces Γ
(d)
j and their normal conesU

(d)
j . Then

for each truncated equation f̂
(d)
j (x, y) = 0, we must find all such its power solutions

y = crx
r, for which one of two vectors ±(1, r) is in the normal coneU

(d)
j .

3.2. Solving a truncated equation. The vertex Γ
(0)
j = {Q} corresponds to the

truncated equation f̂
(0)
j (x, y) = 0 with the point support Q = (q1, q2). Let put

g(x, y) = x−q1y−q2f̂
(0)
j (x, y), then g(x, cxr) does not depend from x and c and is a

polynomial of r. Hence, the power exponent r of the solution y = crx
r to the equation

f̂
(0)
j (x, y) = 0 is a root of the characteristic equation

χ(r)
def
= g(x, xr) = 0, (9)

and the coefficient cr is arbtrary. Among real roots r of the equation (9), we must take

only such, for which the vector ω(1, r) is in the normal coneU
(0)
j of the vertex Γ

(0)
j .

Example. In equation (5), the vertex Γ
(0)
1 = Q1 = (−1, 2) corresponds to the

truncated equation

f̂
(0)
1 (x, y)

def
= −xyy′′ + xy′

2 − yy′ = 0, (10)

and f̂
(0)
1 (x, xr) = x2r−1[−r(r − 1) + r2 − r] ≡ 0, i.e. any expression y = cxr is

a solution of the equation (10). Here ω = −1 and we are interested only in such

these solutions, for which the vecor −(1, r) ∈ U
(0)
1 . According to Fig. 2, it means

that r ∈ (−1, 1). So the vertex Γ
(0)
2 corresponds to two-parameter family of power

asymptotic forms of solutions

y = cxr, arbitrary c 6= 0, r ∈ (−1, 1). � (11)

The edge Γ
(1)
j corresponds to the truncated equation f̂

(1)
j (x, y) = 0. Its normal

cone U
(1)
j is the ray {P = λω′(1, r′), λ > 0}. Inclusion ω(1, r) ∈ U

(1)
j means

equalities ω = ω′ ans r = r′. They determine exponent r of the truncated solution
y = crx

r and value ω. To find the coefficient cr, we must substitute the expression

y = crx
r into the truncated equation f̂

(1)
j (x, y) = 0. After cancellation of some power

of x, we obtain the algebraic determining equation for the coefficient cr

˜̃f(cr)
def
= x−sf̂

(1)
j (x, crx

r) = 0.
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Each its root cr 6= 0 corresponds to its asymptotic form y = crx
r.

Example. In equation (5), the edge Γ
(1)
1 corresponds to the truncated equation

f̂
(1)
1 (x, y)

def
= −xyy′′ + xy′

2 − yy′ + by + dx = 0. (12)

As U
(1)
1 = {P = −λ(1, 1), λ > 0}, then ω = −1 and r = 1. After substitution

y = c1x in the truncated equation (12) and cancel by x, we obtain for c1 equation

bc1 + d = 0. Hence, c1 = −d/b. So, the edge Γ
(1)
1 corresponds to unique power

asymptotic form of solution

y = −(d/b)x, x → 0. � (13)

3.3. Critical numbers of the truncated solution. If the truncated solution y = crx
r

is found, then the change y = crx
r + z brings the equation f(x, y) = 0 to the form

f(x, cxr + z)
def
= f̃(x, z)

def
= L (x)z + h(x, z) = 0,

where L (x) is a liner differential operator and the support S(L z) consists of one

point (ν̃, 1), which is a vertex Γ̃
(0)
1 of the polygon Γ(f̃), and the support S(h) has

not the point (ν̃, 1). The operator L (x) is the first variation δf̂
(d)
j /δy on the curve

y = crx
r. Let ν(k) be the characteristic polynomial of the differential sum L (x)z,

i.e.

ν(k) = x−v−kL (x)xk.

The real roots k1, . . . , kκ of the polynomial ν(k), which satisfy the inequality ωr >
ωki, are called as crirical numbers of the truncated solution y = crx

r.

Example. The first variation for the truncated equation (10) is

δf̂
(0)
1

δy
= −xy′′ − xy

d2

dx2
+ 2xy′

d

dx
− y′ − y

d

dx
.

At the curve y = crx
r, that variation gives the operator

L (x) = crx
r−1

[
−r(r − 1)− x2

d2

dx2
+ 2rx

d

dx
− r − x

d

dx

]
.

The characteristic polynomial of the sum L (x)z, i.e. L (x)xk, is

ν(k) = cr[−r(r − 1)− k(k − 1) + 2rk − r − k] = −cr(k − r)2.

It has one double root k1 = r, which is not a critical number, because it does not
satisfy the inequality ωr > ωk1. Hence, the truncated solution (11) has not critical
numbers.
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The first variation for the truncated equation (12) is

δf̂
(1)
1

δy
=

δf̂
(0)
1

δy
+ b.

At the curve (13), i.e. y = c1x, c1 = −d/b, the variation gives the operator

L (x) = c1

[
−x2

d2

dx2
+ 2x

d

dx
− 1− x

d

dx
− b2

d

]
and the characteristic polynomial

ν(k) = −c1[k
2 − 2k + 1 + b2/d].

Its roots are k1,2 = 1 ± b/
√
−d. If Im (b/

√
−d) 6= 0, then the critical numbers are

absent. If Im (b/
√
−d) = 0, then only one root k1 = 1 + |b/

√
−d| satisfies the

inequality ωr > ωki, and it is the unique critical number of the power asymptotic
form (13). �

3.4. Computation of the power expansion of a solution [3, § 3]. Let Γ
(0)
j be a

vertex of the polygon Γ(f) and vectorsM1 andM2 are directed from the vertex along

the adjoint edges, and all points of the shifted support S(f) − Γ
(0)
j have the form

l1M1 + l2M2 with integers l1, l2 > 0. Then the set

K
(0)
j (r)

def
= {s = r + l1r1 + l2r2, целые li > 0, l1 + l2 > 0},

where ri = 〈(1, r),Mi〉, i = 1, 2.

Let Γ
(1)
j be an edge of the polygon Γ(f) with vertexes Γ

(0)
k , Γ

(0)
l and with the

normal ω(1, r). Then

K
(1)
j

def
= K

(0)
k (r) ∩K

(0)
l (r).

Theorem 3. If the truncated solution y = crx
r corresponds to the vertex Γ

(0)
j with

ω(1, r) ⊂ U
(0)
j or to the edge Γ

(1)
j with ω(1, r) ⊂ U

(1)
j and all critical numbers of

the truncated solution does not ly in the set K = K
(0)
j (r) or K

(1)
j , then the initial

equation has a solution in the form of expansion (8), where s runs the set K
(0)
j (r) or

K
(1)
j correspondingly.

Proof is based on the asymptotic expansions

f(x, y) = f̂
(d)
j (x, y) +

ˆ̂
f(x, y) + . . . , y = crx

r + csx
s + . . .
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Substituting one into another and using Corollary 1, we obtain the equation

f(x, crx
r + csx

s + . . . ) = f̂
(d)
j (x, crx

r) +
δf̂

(d)
j

δy

∣∣∣∣∣
y=crxr

· csxs+

+
ˆ̂
f(x, crx

r) + . . . = 0.

But here f̂
(d)
j (x, crx

r) = 0 and the leading terms are next two. Hence, the equation

δf̂
(d)
j

δy

∣∣∣∣∣
y=crxr

· csxs + ˆ̂
f(x, crx

r) = 0,

must be satisfied. It gives the equation of the form

ν(s)cs + bs = 0, bs = const ∈ C.

As s ∈ K and according to condition of the Theorem ν(s) 6= 0, then moving along
s ∈ K with decreasing ωs we successfully compute coefficients cs of expansion (8).

Example. The vertex Γ
(0)
1 = Q1 for the equation (5) corresponds to vectors

M1 = (1, 1),M2 = (1,−1), so r1 = 1 + r, r2 = 1− r, where |r|< 1 and the set

K
(0)
1 (r) = {s = r + l1(1 + r) + l2(1− r), целые l1, l2 > 0, l1 + l2 > 0}. (14)

As there are no critical numbers, then according to Theorem 3, each truncated solu-

tion (11) corresponds to the solution (8) with s ∈ K
(0)
1 (r).

The edge Γ
(1)
1 has two vertices Q1 and Q5 = (1, 0), r = 1. Here, according

to (14), K
(0)
1 (1) = {1 + 2l1} for the vertex Q1. For the vertex Γ

(0)
3 = Q5, we

have M1 = (−1, 1), M2 = (0, 2). So r1 = 0, r2 = 2, and K
(0)
3 (1) = K

(0)
1 (1) =

{1 + 2l1, integral l1 > 0}. If Im (b/
√
−d) 6= 0, then the truncated solution (13) has

no critical numbers and, in the expansion (8) all power exponents s are odd integral
numbers more then 1, and coefficients cs are unique constants. If Im (b/

√
−d) = 0,

then there is only one critical number k1 = 1 + |b/
√
−d|. Hence, if the number k1 is

not odd, then there is the expansion (8). �

4. Complicated expansions of solutions [3, § 5], [7, 8]

Truncated equations can have nonpower solutions, which can be continued

into asymptotic expansions. Here we will look for solutions of the full equation

f(x, y) = 0 in the form of the complicated asymptotic expansions

y = ϕr(log x)x
r +
∑

ϕs(log x)x
s, ωs < ωr, (15)

where ϕr(log x) and ϕs(log x) are series on decreasing powers of logarithm.
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Theorem 4. If the series (15) is a solution of the full equation (7) and ω(1, r) ⊂ U
(d)
j ,

then y = ϕrx
r is a solution of the corresponding truncated equation f̂

(d)
j (x, y) = 0.

A truncated equation, corresponding to a vertex, has a nonpower solution only

in very degenerate cases [3, § 5]. So, here we will consider only truncated equations,

corresponding to edges Γ
(1)
j .

4.1. Case of the vertical edge Γ
(1)
j . If the edge Γ

(1)
j is vertical, then its normal cone

is

U
(1)
j = λω(1, 0), λ > 0,

and all points Q = (q1, q2) ∈ Γ
(1)
j have the same coordinate q1. Let put

g(x, y) = x−q1f̂
(d)
j (x, y),

then the support S(g) lies at the coordinate axis q1 = 0. For the truncated equation,

all power solutions with ω(1, r) ∈ U
(1)
j are constants y = y0 = const, where y0 is a

root of the determining equation

g̃(y)
def
= g(0, y) = 0.

To find nonpower solutions of the equation g(x, y) = 0we make the logarithmic

transformation

ξ
def
= lnx. (16)

According to Theorem 2.4 from [2, Ch. VI], here the differential sum g(x, y)

comes to the differential sum h(ξ, y)
def
= g(x, y) and the equation g = 0 takes the form

h(ξ, y) = 0. (17)

From (16), we see that ξ → ∞ as x → 0 and as x → ∞, because ξ and x are complex,
i.e. for the equation (17) we obtain the problem with

p > 0.

Applying the described above technique to the equation (17), we select truncated

equations ĥ
(d)
l (ξ, y) = 0 with ω = 1 and find their power solutions y = cρξ

ρ. Each of

them corresponds to its characteristic polynomial ν∗(k∗), its own critical numbers k∗j
and its own setK∗. Under conditions of Theorem 3 on k∗j andK

∗, we find the power
expansion of solution to equation h(ξ, y) = 0 in the form

y = cρξ
ρ +

∑
cσξ

σ, σ ∈ K∗, σ < ρ, cρ, cσ = const ∈ C.



– 13 –

Besides, the solution y = cξρ to the truncated equation ĥ
(d)
l (ξ, y) = 0 corresponds to

its own complicated characteristic equation µ(κ) = 0. It is formed by the following
way. We have the variation

δĥ
(d)
l

δy
=

M∑
i=1

bi(ξ, y)µi

(
d

dξ

)
,

where bi are differential monomials and µi are differential operators with constant

coefficients

µi

(
d

dξ

)
=

li∑
k=0

αik
dk

dξk
, αik = const ∈ C.

Among all monomials bi(ξ, y), we select such, which give the maximal power of ξ
after the substitution y = ξρ: bi = βiξ

n + . . . , i = 0, . . . ,M , where n is the maximal

power of ξ in all bi and βi = 0 or const. Polynomial

µ(κ) =
M∑
i=0

βiµi(κ),

where dk/dξk are changed byκk, is called as complicated-characteristic for the double

truncated solution y = cρξ
ρ.

Theorem 5. If root of polynomials ν∗(k∗) and µ(κ) for a vertical edge does not

ly in sets K∗ and K correspondingly, then the double truncated solution y = cρξ
ρ

corresponds to a solution to the full equation in the form of complicated expansion (15).

Proof is similar to the proof of Theorem 3.

4.2. Inclined edge.

Theorem 6. The power transformation

y = xαz (18)

transforms the differential sum f(x, y) into the differential sum g(x, z) = f(x, y).
Here their supports and normal cones are connected by the affine transformations

S(g) = S(f)A, Ug = A∗−1Uf ,

where matrices are A =

(
1 0
α 1

)
, A∗−1 =

(
1 −α
0 1

)
.
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The case of the inclined edge Γ
(1)
j with the normal vector (1, r) is reduced to the

case of the vertical edge Γ̃
(1)
j by means of the power transformation (18) with α = r.

After computation of Sections 3 and 4.1 for the transformed equation, we obtain a

double truncated solution z = cρξ
ρ together with characteristic polynomial ν∗(k∗)

and complicated-characteristic polynomial µ(κ). From Theorems 5 and 6 we obtain

Corollary 2. For an inclined edge with normal (1, r), if roots of polynomials ν∗(k∗)
and µ(κ) do not belong to sets K∗ and K − r correspondingly, then the double

truncated solution z = cρξ
ρ corresponds to a solution to the full equation in the form

of complicated expansion.

Example. In the truncated equation (12), corresponding to the edge Γ
(1)
1 with

normal −(1, 1), we make the power transformation

A =

(
1 0
1 1

)
.

As y′ = xz′+ z, y′′ = xz′′+2z′, then equation (12) after canceling by x and grouping
takes the form

ĝ(x, z)
def
= −x2zz′′ + x2z′

2 − xzz′ + bz + d = 0. (19)

Its support consists of three points Q̃2 = (0, 2), Q̃4 = (0, 1), Q̃1 = 0, lying at the
axis q1 = 0. Now we make the logarithmic transformation ξ = ln x. As z′ = ż/x,
z′′ = (z̈ − ż)/x2, where ˙ = d/dξ, then equation (19) after grouping takes the form

h
def
= −zz̈ + ż2 + bz + d = 0. (20)

Its support and polygon are shown in Fig. 3 in the case bd 6= 0.

Let us consider case b 6= 0. The edge Γ̃
(1)
1 of Fig. 3 corresponds to the truncated

equation

ĥ
(1)
1

def
= −zz̈ + ż2 + bz = 0. (21)

It has power solution z = −bξ2/2. The edge Γ̃
(1)
1 has 2 vertices (−2, 2) and (0, 1).

For the vertex (−2, 2), vectors M1 = (2,−1) and M2 = (2,−2). Here r = 2. So
r1 = 0, r2 = −2,K∗ = {2− 2l1}. For the vertex (0, 1), vectorsM1 = (−2, 1) and
M2 = (0,−1). So r1 = 0, r2 = −2, K∗ = {2 − 2l1}, integral l1 > 0. The charac-
teristic polynomial of the solution z = −bξ2/2 is ν∗(k∗) = (b/2)

(
k∗2 − 5k∗ + 4

)
=

(b/2)(k∗ − 1)(k∗ − 4). As here r∗ = 2, then there is only one critical number

k∗1 = 1 < r∗. As it does not belong to the setK∗, then according to Theorem 3, the

equation (20) has a solution of the form

z = −b

2
ξ2 +

∞∑
k=0

c−2kξ
−2k. (22)
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1

2

−2 −1 0

˜
Γ
(1)
1

q1

q2

Figure 3. Support and polygon of equation (20).

Indeed solutions to equation (20) have the form

z = −b

2
(ξ + c̃)2 − d

2b
, (23)

where c̃ is arbitrary constant. The solution (22) corresponds to the case c̃ = 0.
According to (21), the first variation is

δĥ
(1)
1

δz
= −z̈ − z

d2

dξ2
+ 2ż

d

dξ
+ b.

So
δĥ

(1)
1

δz
= b1µ1

(
d

dξ

)
+ b2µ2

(
d

dξ

)
+ b3µ3,

where b1 = −z, b2 = 2ż, b3 = −z̈ + b, µ1 =
d2

dξ2
, µ2 =

d

dξ
, µ3 = 1. As ρ = 2, then

the leading term is b1µ1. It gives the characteristic polynomial µ1(κ) = κ2 without

nonzero roots. Hence, there are no complicated critical roots, and we can apply 5.

After the power transformation y = xz and cancel by x, the full equation (5) takes
the form

g
def
= −x2zz′′ + x2z′

2 − xzz′ + bz + d+ ax2z3 + cx4z4 = 0. (24)

The set K consists of all even natural numbers. According to Theorem 3, solution

to (24) has the form

z = ϕ0(ξ) +
∞∑
k=1

ϕ2k(ξ)x
2k,

where ϕ0 is given by (23) and x → 0. �
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5. Exponential expansions of solutions [9, 10]

Let the truncated equation f̂
(1)
j (x, y) = 0 correspond to the horizontal edge Γ

(1)
j

of the polygon Γ(f). Hence, at the edge q2 = m ∈ N. According to [3, § 5], we make
the logarithmic transformation

ζ = d log y/dx , (25)

and from the truncated equation f̂
(1)
j = 0, we obtain the equation

h(x, ζ)ym
def
= f̂

(1)
j (x, y) = 0

where h(x, ζ) is a differential sum [2, Ch. VI]. Let Γ(h) = Γ̃ be its polygon and

Γ̃
(1)
i is its edge with outside normal Ñ = (1, ρ), lying in the cone of the problem

Kω = {P̃ = (p̃1, p̃2) : p̃1 + p̃2 > 0, sgn p̃1 = ω}. That determines the sign of ω and

direction of tendency of x (to zero or to infinity). Th edge Γ̃
(1)
i corresponds to the

truncated equation ĥ
(1)
i (x, ζ) = 0, which is algebraic and has several power solutions

ζ = γ∗xρ, where γ = γ∗ = const is one of the roots of the determining equation

ĥ
(1)
i (1, γ) = 0. Each power solution ζ = γ∗xρ to the truncated equation ĥ

(1)
i (x, ζ) = 0

is continued by the unique manner into power expansion

ζ = γ∗xρ +
∑

γσx
σ def
= ϕ′(x) (26)

of a solution to the full equation h(x, ζ) = 0. The first variation can be written as

δf̂
(1)
j

δy
= ym−1g

(
x, ζ,

d

dx

)
,

where g is a polynomial of its arguments, if

(
d

dx

)l

means
dl

dxl
. Its order in ζ, ζ ′, . . . , ζ(n−1)

is less than m. Now in the operator g, we change
dl

dxl
by klζ l and ζ by γ∗xρ. Then

we select the leading term λ(γ∗, k)xτ in x. Coefficient λ(γ∗, k) is the exponential
characteristic polynomial, corresponding to the truncated solution ζ = γ∗xρ.

If the equation h(x, ζ) = 0 has a solution of form (26), then the truncated

equation f̂
(1)
j (x, y) = 0 has the family of solutions

y = c expϕ(x) , (27)

where c is arbitrary constant and ϕ(x) is an integral of the power expansion (26).
Now we come to the full equation f(x, y) = 0. Let the set Σ be the projection

of the support S(f) on axis q2 parallel to axis q1. Let put Σ
′ = Σ −m, i.e. Σ′ is a

shifted onm set Σ. Finally, Σ′
+ is a set of all possible sums of numbers of the set Σ′.
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Theorem 7. Let f̂
(d)
j (x, y) = 0 be a truncated equation of f(x, y) = 0, corresponding

to a horizontal edge of height m. If no one of numbers k ∈ Σ′
+ + 1, k 6= 1 is not

a root of the exponential characteristic polynomial λ(γ∗, k), then solutions (27) of

the truncated equation f̂
(d)
j (x, y) = 0 are continued in the form of the exponential

expansions

y = c expϕ(x) +
∑

bk(x)c
k exp(kϕ(x)) по k ∈ Σ′

+ + 1, k 6= 1, (28)

of solutions to the full equation f(x, y) = 0, where bk(x) are power expansions.

Let ϕ(x) = αxβ + · · ·, where α and β = const ∈ C. Then for xβ → ∞

expϕ(x) →

{
0, if Re(αxβ) < 0,

∞, if Re(αxβ) > 0

If Γ
(1)
j is the lower edge, then it corresponds to values of y near 0 and values

of expϕ(x) near 0 corresponds to solutions of the initial equation, but values of
expϕ(x) near infinity do not corresponds to solutions of the initial equation. Thus,
expansion (28) gives only parts of solutions for sectors of complex plane x with

Reαxβ < 0 and it does not give information about solutions outside these sectors.

If Γ
(1)
1 is the upper edge, then expansion (28) gives only parts of solutions in

sectors with Reαxβ > 0.
Example. Let us consider the fourth Painlevé equation

f(x, y)
def
= −2yy′′ + y′

2
+ 3y4 + 8xy3 + 4(x2 − a)y2 + 2b = 0, (29)

where a and b are complex parameters. If b = 0, its polygon Γ(f) has a horizontal

edge Γ
(1)
1 of heightm = 2 (Fig. 4), which corresponds to the truncated equation

f̂
(1)
1

def
= −2yy′′ + (y′)2 + 4

(
x2 − a

)
y2 = 0.

After the logarithmic transformation (25), we obtain y′ = ζy, y′′ = y
(
ζ ′ + ζ2

)
and

h(x, ζ) = −2(ζ ′ + ζ2) + ζ2 + 4x2 − 4a.

Support S(h) and polygon Γ(h) are shown in Fig. 5.

Polygon Γ(h) has the inclined edge Γ̃
(1)
1 corresponding to ω = 1 with the

truncated equation

ĥ
(1)
1 (x, ζ)

def
= −ζ2 + 4x2 = 0.
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1

2

3

4

q2

−2 −1 0 1 2

q1

Γ
(1)
1

Figure 4. Support and polygon of the equation (29) с b = 0.

1

2

−1 0 1 2

˜
Γ
(1)
1

q̃1

q̃2

Figure 5. Support and polygon for h(x, ζ).

Hence, ζ = ±2x, i. e. γ∗ = ±2 and ρ = 1. According to Theorem 3, equation

h(x, ζ) = 0 has two solutions

ζi = (−1)i2x+ αix
−1 + βix

−3 + x−1
∞∑
l=2

ci,lx
−2l def

= ϕ′
i(x), i = 1, 2,

αi = (−1)ia− 1, βi = (−1)i+1(a2 + 3) + 4a.

If one of these numbers αi, βi is zero, then the corresponding expansion ϕ
′
i(x) is finite.
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Let us compute the exponentially characteristic polynomial

δf̂
(1)
1

δy
= −2y′′ − 2y

d2

dx2
+ 2y′

d

dx
+ 8(x2 − a)y =

= y

[
−2(ζ ′ + ζ2)− 2

d2

dx2
+ 2ζ

d

dx
+ 8(x2 − a)

]
.

We change
d2

dx2
and

d

dx
by k2ζ2 and kζ correspondingly and ζ by γ∗x. Then the

leading term for x → ∞ is

− 2ζ2 − 2k2ζ2 + 2kζ2 + 8x2 = −2ζ2(k2 − k).

Hence, the exponentially characteristic polynomial is λ(γ∗, k) = −2(k2 − k) for both
values γ∗ = ±2. The set Σ consists of numbers 2, 3, 4; so Σ′ = Σ− 2 = {0, 1, 2} and
the set Σ′

+ consists of all nonnegative integral numbers, but Σ′
+ + 1 is all the set of

all natural numbers. Roots of the polynomial λ(γ∗, k) are k = 0 and k = 1. As the
root k = 0 does not ly in the set Σ′

+ + 1 and k = 1 was excluded, then according to
Theorem 7, for x → ∞ solutions to equation (29) with b = 0 are expanded in series

y = c expϕi(x) +
∞∑
k=2

bik(x)c
k exp kϕi(x), i = 1, 2, (30)

where

ϕi = (−1)ix2 + αi lnx− βix
−2/2−

∞∑
l=2

ci,lx
−2l/(2l), i = 1, 2. (31)

Here Γ
(1)
1 is the lower edge and x → ∞, i. e. ω = 1. So, expansions (30) describe

families of solutions for (−1)iRex2 < 0, i = 1, 2. In the complex plane x, equality
Rex2 = 0 corresponds to two bissectrices Rex = ± Imx, dividing the plane into
4 domains D1, D2, D3, D4 (Fig. 6). So, the expansion (30) with i = 1 represents
two families of solutions in domains D1 and D3, and the expansions (30) with i = 2
represents two families of solutions in domains D2 and D4. Series (31) diverge, but

they are summable in some sectors of the complex plane [32]

More complicated examples of computation of domains of existence of solutions,

described by expansions of type (30), see in [6].

Exponential expansions were proposed in [11].

6. Generalizations

1. The technique was used for algebraic equations [1, 2, 28,29], for equations in

partial derivations [1, 2, 18] and for systems [1, 2, 15].



– 20 –

Imx

Re x

D1

D2

D3

D4

Figure 6. Domains, where expansion (30) describe solutions of initial equation (29)

with b = 0.

2. Solutions in the form of power expansions with complex power exponents were

studied in [3, 13]. Then we have the new type of expansions: exotic [5, 12].

3. We have studied asymptotic expansions of such solutions, for which difference

of orders of two next derivatives is different from one [1, 16, 17, 20].

4. In Theorem 3 one can reject condition that critical numbers do not lie in the

set K. Then there are the power-logarithmic expansions [3], or Dulac series.

Similarly, in Theorem 5 we obtain expansions with multiple logarithm [8].

5. Comparison with other approaches [31].

7. Applications

• Solutions to the Painleve equations [5, 14, 16–20].

• The Beletsky equation [21, 22].

• The Euler-Poisson equations [23].

• The restricted three-body problem [24–26].

• Integrability of an ODE system [27,30].

• The boundary layer on a needle [1, 14, 15, 18].

• Evolution of a turbulent flow [18].

• Sets of stability of a multiparameter ODE system [28].

• Waves on water [2, Ch. V].
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