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YIK 517.91
Alexander Dmitrievich Bruno

Asymptotic solution of some nonlinear problems

We propose algorithms that allow for nonlinear equations to obtain asymptotic
expansions of solutions in the form of: (a) power series with constant coefficients,
(b) power series with coefficients which are power series of logarithm and (c) power
series of exponent of a power series with coefficients which are power series as well.
These algorithms are applicable to nonlinear equations (A) algebraic, (B) ordinary
differential and (C) partial differential, and to systems of such equations as well.
We give the description of the method for one ordinary differential equation and we
enumerate some applications of these algorithms.

Key words: expansions of solutions to ODE, power expansions, complicated expan-
sions, exponential expansions.

Anexkcanap AmurpueBuy bprono

ACHMIOTOTUYECKOE PEIICHUE HEKOTOPBIX HEMMHEHHBIX 3a1a4. [Ipenpunt UHCTH-
TyTa IMpuKiIaaHor marematuku uM. M.B. Kenaeima PAH, Mocksa, 2018.

[IpennaratoTcst anTOPUTMBI, TTO3BOJISIFOIINE MTOTYYaTh JI HEIMHEHHBIX yYpaB-
HEHUW aCUMITOTUYECKHE PA3JIOKCHHS PEIICHHI B BUJE: () CTEMEHHBIX PSJIOB C
MOCTOSTHHBIMH KO3 puimenTamu, (0) CTENEHHBIX PAAOB ¢ KO3 GHUITMEHTAMH, SBIISIO-
IIUMHUCS CTETICHHBIMU PSaMU OT Jiorapru@ma u (B) CTETIEHHBIX PSAIOB SKCITOHEHTHI
CTETIEHHOTO pAJa, KOA((OUIIUEHTHI KOTOPHIX CYyTh CTEIIEHHBIE PSAbl. DTH aITOPUTMBI
MPUMEHUMBI K HEJTMHEHHBIM ypaBHEHUsAM: (A) anreOpandeckum, (B) 0ObIKHOBEHHBIM
muddepenimanbabiM U (C) B 4aCTHBIX MTPOU3BOAHBIX, a TAK)KE K CUCTEMaM TaKUX
ypaBHeHUH. M3noxkenne Bea€rcs st OAHOTO OOBIKHOBEHHOTO U] PepeHITnaTbHOTO
ypaBHenusl. [lepedncieHbl HEKOTOPBIE U3 IPHIIOKEHUH ITHX aJITOPUTMOB.

Kniouegwie cnosa: paznoxenus pemiennii OLY, creneHHble pa3inokKeHus, CI0XK-
HBIC PA3JI0KCHHUS, SKCIIOHEHITUATBHBIC PA3I0KCHHMSI.

© A. 1. bptono, 2018
© Wucruryt npuknaaHoit maremMatuku uM. M. B. Kenaeima, 2018



1. Introduction

Tendency to solve the mathematical problems numerically increases in last time
according to increasing of power of computers. And study of mathematicians is
oriented to that instead of the study Mathematics itself. I.e. Mathematics is substituted
by Arithmetic. That is especially true for problems, which cannot be solved by
methods of Classic Analysis and Functional Analysis. Here I will describe a set of
such problems, which can be solved by methods of Nonlinear Analysis, allowing to
compute asymptotic forms and asymptotic expansions of solution of different classes
of equations: algebraic, ordinary differential and partial differential. And of systems
of such equations as well. One-year course of lectures on Nonlinear Analysis was
given at the Mathematical Department of the Lomonosov Moscow State University.
In the present lecture, I will explain main notions and methods of Nonlinear Analysis
on examples of an ordinary differential equation

f('r7y7y/7"’7y(n)) = 07

where f is a polynomial of its arguments. These methods allow to obtain its solutions
in the form of asymptotic expansions

y(x) =D en(x) (1)

when xr — 0 or x — oo. At the end, I will give a list of its applications.
For simplicity, here we consider the expansions with real power exponents only.

2. Selection of the leading terms
2.1. Order of a function [1]. Let put

)1, ifx — 0,
41, ifz — .

The number

1
polip) = wlim sup 2822
Tw—o0 W log‘gj’

calculated for the fixed arg x € [0, 27), is called as order of the function ¢(z). For
the power function ¢(z) = const - z* the order p(¢) = Re « for any w and arg z.
The expansion (1)) is called as asymptotic, if

wp(gpk) > wp(gokdrl)a k= 07 1727 SR
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2.2. Truncated sums [2,3]. Let x be independent and y be dependent variables,
x,y € C. The differential monomial a(x,y) is a product of an usual monomial cz"y"2,
where ¢ = const € C, (r1, ;) € R?, and a finite number or derivatives d'y /dx’, | € N.
The sum of differential monomials

flwy) =) ai(z,y) 2)

is called as the differential sum. We want to select from it all such monomials a;(x, y),
which have the biggest order after the substitution

y=-const 2, peR (3)
Under the substitution

x9y® = const z? " = const AL ’Q>,

where P = (1,p) = (p1,p2), @ = (41, ¢2), (P, Q) = p1¢1 + p2qq is the scalar product.
For fixed p and w, the biggest order will give those monomial const x% 4%, for which

w (P, Q)

has the maximal value.
Analogously, the differential monomial a(z,y) corresponds to its (vectorial)
power exponent Q(a) = (q1,q2) € R? with the following rules:

Qcx"y™) = (r1, r2);  Q(d'y/da") = (—1,1);

power exponent of a product of monomials is a vectorial sum of their exponents:

Q(araz) = Q(a1) + Q(az).

The set S(f) of vectorial power exponents ()(a;) of all differential monomials
a;(z,y), containing in the differential sum (2)), is called as the support of the sum
f(z,y). Evidently, S(f) € R%. The convex hull I'( f) of the support S(f) as called as
the polygon of the sum f (:1: y). The boundary OI'(f) of the polygon I'( f) consists of

vertices F ) and edges F Y We call them as generalized faces F( ) , where the upper
index shows the dlmenswn of the face, and low index shows its number Each face

F§d> corresponds to the truncated sum

£ x,y) =Y ai(w,y) along Q(a;) € TV N S(f). )

After substitution (3]), all terms in (4)) have the same order, which is (P, @), if the

vector wP = w(1, p) is the exterior normal to the edge or vertex Fﬁ.d). So the biggest

value of w (P, ) achieved on () € F;d)
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Example. Let us consider the third Painlevé equation

f(x,y) dof —zyy” + xy'2 —yy' + ay® + by + cxyt + dx = 0, (5)

assuming that its complex parameters a, b, ¢, d 0. Here the first three differential
monomials have the same power exponent (); = (—1,2), then Q2 = (0,3), Q3 =
(0,1), Q4 = (1,4), Q5 = (1,0). They are shown in Fig.[I]in coordinates ¢, ¢». Their

convex hull ['(f) is a triangle with three vertexes F§0> = @, Féo) = Qu, Féo) = Qs,

and with three edges Fgl), Fél) , Fél). The vertex F§0> = ()1 corresponds to the truncated
sum

~(0 2
O, y) = —zyy” + 2y —yy,

and the edge Fgl) corresponds to the truncated sum

FY ) = f 2 y) + by + de. W

q24 Q4
ry)
Q2
Q1 T Fg)
@3
i)
| Qs .
| >
—1 0 1
q1

Figure 1. Support S(f), polygon I'(f) and its edges Fg-l) for the third Painlevé equa-
tion ([3).

Let the plane R? be such conjugate to the plane R?, that the scalar product

def
(P,Q) = pigy + pogo

be defined for P = (p1, p2) € R? and Q = (q1, ¢2) € R?. Each face F;d) corresponds
(d)

to its own normal cone U, C R2. It consists of the exterior normals P to the face
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Fﬁd). The normal cone U;l) of the edge F(l) is a ray orthogonal to the edge F(l) and

directed outside of the polygon I'(f). The normal cone U( ) of the vertex F( ) is the
open sector (angle) at the plane R? with vertex in the or1g1n P =0and restrlcted by

rays, which are the normal cones of edges, adjoined to the vertex F.g' ), Generally

V={P.(P,Q)=(P,Q") > (P.Q"), P \P'eT\" P"e\I'"}.
(@ (@

Example. For the equation (5]), normal cones U ; of faces I, are shown in
Fig.2\H
P2A
US) Ugo)
Uy
Ugl) b1
U Uy

(d)

) to vertices and edges I';

Figure 2. Normal cones U;

So each face P;d)

truncated sum (4)).

of the polygon of Fig. .

corresponds to the normal cone U§d) in the plane R? and the

2.3. Variations [3,4]. In Classic Analysis, it is known the Taylor formula

fleg+ A) = Zk‘f (xg)A

In the Functional Analysis, there is it analog

1 &
flz,yo+ 2) = Zk'5y

k

SyF
of Frechet or Gateaux). It is taken on the function y = yo(x) and is an operator

2, (6)

Y=Yo

where f(x,y) is a differential sum, — f(x, y) is its k-variation along y (derivative



i

which is applied to the k-power of the small addendum z*. All that is doing in the
infinity-dimensional spaces. If f(x,y) is an usual polynomial (without derivatives),

ok o -y : . : -
then sl = 90k f. But variations are defined for differential polynomials containing
Yy Yy
derivatives.

k k
Example. If f = %, theng—i = % |

Theorem 1. Let p(yo) = po, p (y(()k>> =po—k, k=1,2,..., p(z) = p1, along the

curves y = const aP the order p(f) = p and w(p1 — po) < 0, then expansion (0)) is
asymptotic, where

5l<:
I\ o
Corollary 1. In the situation of the Theorem

wp (%f - Z> < wp (f(y0)) -

Zk) <Wﬁ+kW(p1—p0), k:071727"'
Y=Yo

i.e. the order of the first variation is less than the order of f(yp).

3. Power expansions of solutions [3,5]
3.1. Statement of the problem.
Problem. Let we have the ordinary differential equation
f(z,y) =0, (7)

where f(x,y) is a differential sum. For solutions y = p(x) of the equation () for
x — 0 and xr — oo to find all expansions of the form

y=cx + Z csx®, ¢, cs =const € C, ¢, #0, (8)
where the power exponents r,s € R,
wr >ws. N

Computation of the expansions ([8)) consists of two steps: computation of the
first term

y=cz, ¢ #0

and computation of other terms in (8)).
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Theorem 2. [f the expansion () satisfies equation (7)) and w(1,r) € U§~d), then the

truncation y = c,x" of solution (8)) is a solution of the truncated equation f](d) (x,y) =

0.

So, to find all truncated solutions y = ¢,x" of the equation (7)), we must compute:
the support S(f), polygon I'(f), all its faces ng) and their normal cones Ug.d). Then

for each truncated equation f;d) (x,y) = 0, we must find all such its power solutions
(d)

y = c,x", for which one of two vectors (1, r) is in the normal cone U i
(0
N J
truncated equation f;o) (x,y) = 0 with the point support @ = (q1,¢2). Let put

g(z,y) = x_my_‘”f;())(x, y), then g(z, cz") does not depend from x and ¢ and is a

polynomial of . Hence, the power exponent r of the solution y = ¢,z" to the equation

3.2. Solving a truncated equation. The vertex I’ ) = {Q} corresponds to the

f ](O) (x,y) = 0 1is a root of the characteristic equation

X(r) € g(a, a") = 0, )

and the coefficient ¢, is arbtrary. Among real roots r of the equation (9), we must take

only such, for which the vector w(1, r) is in the normal cone Ugo) of the vertex FE-O) :

Example. In equation (5]), the vertex I‘§°) = @1 = (—1,2) corresponds to the
truncated equation

£0 def 2

A7, y) € —ayy” + 2y — gy =0, (10)
and f\”(z,2") = 22 —r(r — 1) + 12 —r] = 0, i.e. any expression y = ca’ is
a solution of the equation (10). Here w = —1 and we are interested only in such

these solutions, for which the vecor —(1,r) € U§0>. According to Fig. 2} it means

that r € (—1,1). So the vertex Fg)) corresponds to two-parameter family of power
asymptotic forms of solutions

y = ca’, arbitrary c £ 0, re€ (—1,1). R (11)

The edge Fgl) corresponds to the truncated equation f ;1) (x,y) = 0. Its normal

cone Ug-l) is the ray {P = A\/'(1,7"), A > 0}. Inclusion w(l,r) € U§1) means
equalities w = w' ans r = r’. They determine exponent r of the truncated solution
y = c,x" and value w. To find the coefficient c,, we must substitute the expression

y = c¢,.x" into the truncated equation f;l) (x,y) = 0. After cancellation of some power
of x, we obtain the algebraic determining equation for the coefficient c,

f:(cr)

o :U*Sf](l)(:c, ca’) =0,
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Each its root ¢, # 0 corresponds to its asymptotic form y = c¢,x".

(1)

Example. In equation (3], the edge I';’ corresponds to the truncated equation

AP @ y) = —ayy” + 2y — gy’ + by + dz = 0. (12)
As U}’ = {P = —X(1,1), A > 0}, thenw = —1 and r = 1. After substitution
Yy = clx in the truncated equation and cancel by x, we obtain for c¢; equation
bcy +d = 0. Hence, ¢c; = —d/b. So, the edge F(ll) corresponds to unique power

asymptotic form of solution

—(d/b)x, =—0. & (13)

3.3. Critical numbers of the truncated solution. Ifthe truncated solutiony = c,x"
is found, then the change y = ¢,x" + z brings the equation f(z,y) = 0 to the form

f(x,cx" + 2) o f(x, 2) o L(x)z+ h(x,z) =0,

where .Z(z) is a liner differential operator and the support S(.Zz) consists of one
point (7, 1), which is a vertex f§°> of the polygon I'(f), and the support S(h) has

not the point (7, 1). The operator .Z(x) is the first variation § f;d) /dy on the curve
y = c,a”. Let v(k) be the characteristic polynomial of the differential sum .Z(z)z,
1.€.

v(k) =2z """ L (x)"

The real roots k1, . .., k,, of the polynomial v(k), which satisfy the inequality wr >
wk;, are called as crirical numbers of the truncated solution y = c,x".
Example. The first variation for the truncated equation is

sfY e d d
- _ Y —— 4+ 2 — — o —
0y Y iz 2wy dx v iz
At the curve y = c¢,z", that variation gives the operator
5 d? d d
Lx)=ca | —r(r—1) —a2*— +2ra— —r —2—
(x) = ¢z r(r—1) — 2 T3 + Lol il e

The characteristic polynomial of the sum .Z(z)z, i.e. £ (z)z"
v(k)=c[—r(r—1) —k(k—1)+2rk —r — k] = —c.(k — )%

It has one double root k1 = r, which is not a critical number, because it does not
satisfy the inequality wr > wk;. Hence, the truncated solution (11| has not critical
numbers.
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The first variation for the truncated equation (12)) is

sHY _ oh”
0y 0y

+ .

At the curve (13)), i.e. y = ¢y, ¢y = —d/b, the variation gives the operator

22 d 4 b
L) = | -2yt LT
() = e | =a7g s+ 2 i d

and the characteristic polynomial
v(k) = —c1[k* — 2k + 14 b?/d].

Its roots are k1o = 1 £ b/v/—d. If Im (b/+/—d) # 0, then the critical numbers are
absent. If Im (b/v/—d) = 0, then only one root k; = 1 + |b/+/—d| satisfies the
inequality wr > wk;, and it is the unique critical number of the power asymptotic

form (13]). W

3.4. Computation of the power expansion of a solution [3, § 3]. Let F;O) be a
vertex of the polygon ['(f) and vectors M7 and M, are directed from the vertex along

the adjoint edges, and all points of the shifted support S(f) — Fg-o) have the form
[1 My + lo M5 with integers [y, s > 0. Then the set

Kgo)(r) def {s =r+lir1 + lory, nensie l; > 0,1; + I > 0},
where r; = ((1,7), M;), i =1, 2.

Let FE.D be an edge of the polygon I'( f) with vertexes F;CO), FZ(O) and with the

normal w(1,r). Then
KUY KO AK ().

Theorem 3. If the truncated solution y = c,x" corresponds to the vertex Fﬁo) with
w(l,r) C ng) or to the edge F;l) with w(1,7) C Ug-l) and all critical numbers of
the truncated solution does not ly in the set K = K(O)(T) or Kg-l), then the initial

J
(0)

equation has a solution in the form of expansion (8), where s runs the set K (r) or

Kg-l) correspondingly.

Proof is based on the asymptotic expansions

~

d A T S
F@y) = @y + fay) + .y = +oa + ...
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Substituting one into another and using Corollary 1, we obtain the equation

o §f\ @
flz, " +csz®+...) = fj( )(x, ) 6J s+
y y=c,x"
+ flz, ") + ... = 0.
But here f}d)(m, c;x") = 0 and the leading terms are next two. Hence, the equation
5f@ 2
g?y s’ + f(x,cx”) =0,
y=c,x"

must be satisfied. It gives the equation of the form
v(s)cs +bs =0, bs=const e C.

As s € K and according to condition of the Theorem v/(s) # 0, then moving along
s € K with decreasing ws we successfully compute coefficients ¢, of expansion (§]).

Example. The vertex P§0> = (), for the equation (5 corresponds to vectors

My =(1,1), My = (1,-1),s0r; = 14+ r,79 =1 — r, where |r|< 1 and the set
Kgo)(r) ={s=r+4L(1+7r)+ (1l —r), neaste ly,lo > 0,l; + 1, > 0}. (14)

As there are no critical numbers, then according to Theorem [3| each truncated solu-
tion corresponds to the solution (8) with s € K(lo) (r).

The edge Pgl) has two vertices ()1 and )5 = (1,0), » = 1. Here, according
to (T4), Kgo)(l) = {1 + 2[;} for the vertex ;. For the vertex Pgo) = @5, We
have My = (—1,1), My = (0,2). Sor; = 0,7, = 2, and K{”(1) = K"(1) =
{1+ 2ly, integral I; > 0}. If Im (b/+/—d) # 0, then the truncated solution has
no critical numbers and, in the expansion (8] all power exponents s are odd integral
numbers more then 1, and coefficients ¢, are unique constants. If Im (b/+/—d) = 0,
then there is only one critical number k; = 1 + |b/+/—d|. Hence, if the number k; is
not odd, then there is the expansion (). H

4. Complicated expansions of solutions [3, § 5], [7,8]

Truncated equations can have nonpower solutions, which can be continued
into asymptotic expansions. Here we will look for solutions of the full equation
f(x,y) = 0 in the form of the complicated asymptotic expansions

y = oy (logx)x" + Z ps(logx)z®,  ws < wr, (15)

where ¢, (log x) and ¢,(log x) are series on decreasing powers of logarithm.
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Theorem 4. If the series is a solution of the full equation (7)) and w(1,r) C Ugd),

then y = p,x" is a solution of the corresponding truncated equation f;d)(x, y) = 0.

A truncated equation, corresponding to a vertex, has a nonpower solution only
in very degenerate cases [3, § 5]. So, here we will consider only truncated equations,

corresponding to edges Fél).

4.1. Case of the vertical edge Fgl).

1S

If the edge Fél) is vertical, then its normal cone

U = w(1,0), A>0,

and all points QQ = (q1, q2) € Fgl) have the same coordinate ¢;. Let put

g(z,y) =~ f{V(z,y),

then the support S(g) lies at the coordinate axis ¢; = 0. For the truncated equation,
(1)

all power solutions with w(1,7) € U;" are constants y = 3 = const, where 3’ is a

root of the determining equation

i(y) = g(0,y) = 0.

To find nonpower solutions of the equation g(x, y) = 0 we make the logarithmic

transformation

¢ g, (16)

According to Theorem 2.4 from [2, Ch. VI], here the differential sum g(x, y)
comes to the differential sum i (€, y) o g(z,y) and the equation g = 0 takes the form

h(&,y) = 0. (17)

From (16)), we see that ¢ — coas z — 0 and as x — oo, because £ and x are complex,
i.e. for the equation ({17)) we obtain the problem with

p=0.

Applying the described above technique to the equation (17)), we select truncated
equations le(d) (¢&,y) = 0 with w = 1 and find their power solutions y = c,&”. Each of
them corresponds to its characteristic polynomial v*(k*), its own critical numbers k7
and its own set K*. Under conditions of Theorem 3 on £} and K*, we find the power
expansion of solution to equation h(&,y) = 0 in the form

y = c,& + chgf’, ceK', o<p, c¢,c,=constecCC.
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Besides, the solution y = c£” to the truncated equation ﬁl(d) (&,y) = 0 corresponds to
its own complicated characteristic equation () = 0. It is formed by the following

way. We have the variation
ol & d
oy 12:1: d¢
where b; are differential monomials and u; are differential operators with constant
coefficients
d ok
wil—=1= oir—-, oy = const € C.
(ie) =i

Among all monomials b;(&, y), we select such, which give the maximal power of £
after the substitutiony = £°: b, = 5;,6" +...,1=0,..., M, where n is the maximal
power of ¢ in all b; and 3; = 0 or const. Polynomial

M
p(>) = Z Bipi(52),
=0
where d* /d¢* are changed by »", is called as complicated-characteristic for the double

truncated solution y = c,£”.

Theorem 5. If root of polynomials v*(k*) and (<) for a vertical edge does not
ly in sets K* and K correspondingly, then the double truncated solution y = c,§’
corresponds to a solution to the full equation in the form of complicated expansion ((15]).

Proof'is similar to the proof of Theorem

4.2. Inclined edge.
Theorem 6. The power transformation
y=2x%2 (18)

transforms the differential sum f(x,y) into the differential sum g(x,z) = f(x,y).
Here their supports and normal cones are connected by the affine transformations

S(9) =S(N)A, U,=A""Uy,

where matrices are A = L0 . AT = L —a :
a 1 0 1
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)

The case of the inclined edge F;l with the normal vector (1, r) is reduced to the

case of the vertical edge f§1) by means of the power transformation (18)) with av = r.
After computation of Sections 3 and 4.1 for the transformed equation, we obtain a
double truncated solution z = ¢,£” together with characteristic polynomial v*(k*)
and complicated-characteristic polynomial /i(3¢). From Theorems [5)and [6| we obtain

Corollary 2. For an inclined edge with normal (1,r), if roots of polynomials v* (k*)
and () do not belong to sets K* and K — r correspondingly, then the double
truncated solution z = c,& corresponds to a solution to the full equation in the form
of complicated expansion.

Example. In the truncated equation (12), corresponding to the edge Fgl) with
normal —(1, 1), we make the power transformation

A:G 2)

Asy = xz' + 2,y = 22" + 22, then equation after canceling by x and grouping
takes the form

g(z, 2) W 222 422 — 222 + bz +d = 0. (19)

Its support consists of three points Q2 = (0,2), Q4 = (0,1), Q; = 0, lying at the
axis ¢; = 0. Now we make the logarithmic transformation £ = Inx. As 2/ = Z/xz,
"

2" = (3 — 2)/x% where * = d/d¢, then equation (T9) after grouping takes the form

B s 224 bz +d=0. (20)

Its support and polygon are shown in Fig. [3|in the case bd # 0.

Let us consider case b # 0. The edge f(ll) of Fig. 3| corresponds to the truncated
equation
iy ) Q1)
It has power solution z = —b¢?/2. The edge fgl) has 2 vertices (—2,2) and (0, 1).
For the vertex (—2,2), vectors M; = (2,—1) and My = (2,—2). Here r = 2. So
r = 0,7y = =2, K* = {2 — 2[;}. For the vertex (0, 1), vectors M; = (—2,1) and
My = (0,-1). Sor; = 0,7y = =2, K* = {2 — 2[;}, integral [ > 0. The charac-
teristic polynomial of the solution z = —b¢?/2 is v*(k*) = (b/2) (k** — 5k* +4) =
(b/2)(k* — 1)(k* — 4). As here r* = 2, then there is only one critical number
ki =1 < r*. As it does not belong to the set K*, then according to Theorem 3] the
equation has a solution of the form

b oo
p= 8+ ) cal ™ (22)
k=0
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| | >
>

-2 —1 0 q1

Figure 3. Support and polygon of equation (20)).

Indeed solutions to equation have the form

b, d
Z__§(£+C) _%7

where ¢ is arbitrary constant. The solution (22)) corresponds to the case ¢ = 0.
According to (21)), the first variation is

(23)

shi) 2 d
— 3493 4p
5. Z Zd£2 + Zd£ +b
So "
5ht d d
- = )+
52 blul <d£> + bQ,UZ (df) + 033,
d? d
Whereblz—z,bgz%,bg:—é+b,u1:d—€2,u2:d—€,g3:1. Asp:2,then

the leading term is by ;. It gives the characteristic polynomial 11 (2¢) = 5 without
nonzero roots. Hence, there are no complicated critical roots, and we can apply 5.
After the power transformation y = xz and cancel by z, the full equation (5)) takes

the form
g% a2 4+ 2% — w4 br + d + ax’S + et = 0. 24)

The set K consists of all even natural numbers. According to Theorem 3, solution
to has the form

z=00(&) + ) (&)™,
k=1

where ¢ is given by andz — 0. H
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5. Exponential expansions of solutions [9,10]
Let the truncated equation f;l) (x,y) = 0 correspond to the horizontal edge Fgl)
of the polygon I'(f). Hence, at the edge go = m € N. According to [3, § 5], we make

the logarithmic transformation
¢ = dlogy/dz, (25)

and from the truncated equation f W = 0, we obtain the equation

Wz, Oy < fV(x,y) =0

where h(z, () is a differential sum [2, Ch. VI]. Let I'(h) = T be its polygon and
F( ) is its edge with outside normal N = (1, p), lying in the cone of the problem
= {P = (p1,p2) : p1 + P2 > 0, sgn p1 = w}. That determines the sign of w and

(1)

direction of tendency of z (to zero or to infinity). Th edge I';”’ corresponds to the

truncated equation ligl) (a:, ¢) = 0, which is algebraic and has several power solutions
( = v*2”, where v = v* = const 1s one of the roots of the determining equation

lAz(.l)(l, v) = 0. Each power solution { = y*z to the truncated equation h (x ¢)=0

(3
is continued by the unique manner into power expansion

(=72 + 70" € ¢la) (26)

of a solution to the full equation h(z, () = 0. The first variation can be written as

6fj(1) _ .m—1 T C i
5y _y g ) de )
l

l
where g 1s a polynomial of its arguments, if (d—> means i Itsorderin(, (', ..., "D
T x

dl
is less than m. Now in the operator g, we change o by k¢! and ¢ by v*2”. Then
x

we select the leading term A\(v*, k)27 in z. Coefficient A\(v*, k) is the exponential
characteristic polynomial, corresponding to the truncated solution { = y*x”.

If the equation h(x,() = 0 has a solution of form (26]), then the truncated
equation f;l) (x,y) = 0 has the family of solutions

y = cexpp(x), (27)

where c is arbitrary constant and ¢ () is an integral of the power expansion (26)).
Now we come to the full equation f(x,y) = 0. Let the set X be the projection

of the support S(f) on axis ¢, parallel to axis ¢;. Letput X' = ¥ —m, i.e. ¥ isa

shifted on m set 2. Finally, X', is a set of all possible sums of numbers of the set X'.
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Theorem 7. Let f;d)(az, y) = 0 be a truncated equation of f(z,y) = 0, corresponding
to a horizontal edge of height m. If no one of numbers k € ¥ + 1, k # 1 is not
a root of the exponential characteristic polynomial \(~v*, k), then solutions of

the truncated equation f;d>(a:, y) = 0 are continued in the form of the exponential
expansions

y = cexpp(x +Zbk )e¥ exp(ky(x)) noke¥ +1, k#1, (28)

of solutions to the full equation f(x,y) = 0, where by(x) are power expansions.

Let p(x) = ax”’ + - - -, where a and 3 = const € C. Then for 2% — oo

(2) = 0, if Re(az”) < 0,
exp ¢(x
by 0o, if Re(az”) > 0

If Fg-l) is the lower edge, then it corresponds to values of y near 0 and values
of exp ¢(x) near 0 corresponds to solutions of the initial equation, but values of
exp ¢(x) near infinity do not corresponds to solutions of the initial equation. Thus,
expansion gives only parts of solutions for sectors of complex plane x with
Re az? < 0 and it does not give information about solutions outside these sectors.

If Fgl) 1s the upper edge, then expansion gives only parts of solutions in
sectors with Re az” > 0.
Example. Let us consider the fourth Painlevé equation

[z, y) —2yy" 4+ 1/ S 3yt + 8xy® + 4( )y2 +2b=0, (29)

where a and b are complex parameters. If b = 0, its polygon ['(f) has a horizontal
edge Fgl) of height m = 2 (Fig. , which corresponds to the truncated equation

F Y oy + ()2 + 4 (22 — a) y? = 0.

After the logarithmic transformation (23), we obtain y' = Cy, v" =y (¢’ + (?)
and
h(z,¢) = —=2(C + (%) + ¢ + 42* — da.
Support S(h) and polygon I'(h) are shown in Fig.[3]
Polygon I'(h) has the inclined edge F§1) corresponding to w = 1 with the
truncated equation

W (2, Q)% 2+ da® =0,
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1
Figure 4. Support and polygon of the equation (29) ¢ b = 0.

Figure 5. Support and polygon for h(x, ().

Hence, ( = £2z,1i.e. v* = £2 and p = 1. According to Theorem [3] equation
h(z,¢) = 0 has two solutions

o

G = (=1)2z +ae”" + fix™ Z L (), i=1.2,

=2

ai=(-1)a=1, Bi=(-1)""(a"+3)+

If one of these numbers «;, (; is zero, then the corresponding expansion ¢ (z) is finite.
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Let us compute the exponentially characteristic polynomial

2

oyl o ord g2
=y |-2(¢ + )~ 20 + 2 +8(” —a)

2

d

We change e and o by k?¢? and k(¢ correspondingly and ¢ by v*z. Then the
T T

leading term for x — oo is

— 2% — 2k2C% 4 2% 4 8% = —2C3(K* — k).

Hence, the exponentially characteristic polynomial is A(v*, k) = —2(k* — k) for both
values v* = £2. The set 3 consists of numbers 2, 3,4;s0 ¥ = ¥ —2 = {0,1,2} and
the set X', consists of all nonnegative integral numbers, but ¥/, + 1 is all the set of
all natural numbers. Roots of the polynomial A\(7*, k) are k = 0 and k = 1. As the
root k = 0 does not ly in the set X, + 1 and k& = 1 was excluded, then according to
Theorem 7, for z — oo solutions to equation with b = 0 are expanded in series

y=cexppi(z)+ Y bi(x)c exphopi(z), i=12, (30)
k=2

where
i = (—1)'2* +oyInz — Bz /2 — Zci7l$_2l/(2l), i=1,2. (31)
1=2

Here Fgl) is the lower edge and z — oo, 1.e. w = 1. So, expansions describe
families of solutions for (—1)* Re2? < 0, ¢ = 1, 2. In the complex plane z, equality
Re2? = 0 corresponds to two bissectrices Rex = & Im x, dividing the plane into
4 domains %1, Z», 95, P, (Fig.[). So, the expansion (30) with i = 1 represents
two families of solutions in domains &, and %5, and the expansions with i = 2
represents two families of solutions in domains %, and Z,. Series diverge, but
they are summable in some sectors of the complex plane [32]]

More complicated examples of computation of domains of existence of solutions,
described by expansions of type (30), see in [6].

Exponential expansions were proposed in [[11]].

6. Generalizations

1. The technique was used for algebraic equations [1,,2,28,29], for equations in
partial derivations [[1,/2,/18]] and for systems [1,2,/15]].
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Figure 6. Domains, where expansion describe solutions of initial equation (29)
with b = 0.

2.

Solutions in the form of power expansions with complex power exponents were
studied in [3,,13]]. Then we have the new type of expansions: exotic [5,/12].

. We have studied asymptotic expansions of such solutions, for which difference
of orders of two next derivatives is different from one [1,/16,/17,20].

In Theorem 3| one can reject condition that critical numbers do not lie in the
set K. Then there are the power-logarithmic expansions [3]], or Dulac series.
Similarly, in Theorem [5| we obtain expansions with multiple logarithm [8]].

. Comparison with other approaches [31]].

Applications

* Solutions to the Painleve equations [5, 14, 16-20].

* The Beletsky equation [21,22].

* The Euler-Poisson equations [23]].

* The restricted three-body problem [24-26].

* Integrability of an ODE system [27,30].

* The boundary layer on a needle [1,/14,/15,/18].

* Evolution of a turbulent flow [[18]].

* Sets of stability of a multiparameter ODE system [28]].
* Waves on water [2, Ch. V].
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