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YK 517.9
A.A. Nabun

HaTepniongmmoHHble HEpaBeHCTBAa Ha cdepe aad PYHKOUNR C
HYJIEBBIM CP€IHIM

Jl0Ka3bIBAIOTCSI MYJIBTUILIMKATHBHBIE MHTEPIIOJSIIINOHHBIE HEPABEHCTBA JIJIsI
BJIOKeHUiT 11pocTpancTBa CobosieBa Ha cdepe B KPUTUUECKOM CJIydae JiJIsd
GyHKIMIT ¢ HyJIeBBIM CPEJIHUM, a TaKyKe aHaJOIMYHble HepaBeHCTBa JJIsI Ka-
caTebHBIX BeKTOp-pyHKIiT. CoOTBeTCTBYIONINE KOHCTAHTDI 1101y YeHbI B B~
HOM BHJI€ ¥ C TOYHBIM POCTOM II0 ¢. AHAJOINYIHbIE HEPABEHCTBA, JI0KA3aHbI B
OJIHOMEPHOM IIEPUOINIECKOM CJIydae.

Karoueswvie caosa: MHTEPTOSAINOHHBIE HEpaBEHCTBRA, HepaBeHcTBa JInba—
Tuppunra.

A.A.Ilyin

Zero-mean interpolation inequality on the sphere
We prove multiplicative interpolation inequalities for the imbeddings of the
Sobolev space on the sphere in the critical case for zero-mean functions
and similar inequalities for tangent vector functions. The corresponding
constants are explicitly found with sharp rate of growth with respect to q.
Similar inequalities are proved in the one-dimensional periodic case.

Key words: interpolation inequalities, Lieb—Thirring inequalities.
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1 Introduction

The following interpolation inequality holds on the sphere S¢:

q— 2 5 5 ¢ 2/q
[ Veldp | el dp > pl%dp ) (1.1)
Sd Sd Sd

Here dy is the normalized Lebesgue measure on S%:

as

2d+l

P(%)

so that u(S?) = 1. Next, ¢ € [2,00) for d = 1,2, and ¢ € [2,2d/(d — 2)]
for d > 3. The remarkable fact about (1.1) is that the constant (¢ — 2)/d
is sharp and the extremal functions are constants, see [2], [3], |4] and the
references therein.

However, in applications (for instance, for the Navier—Stokes equations
on the 2D sphere) the functions ¢ usually play the role of stream function
of a divergence free vector function u, v = V+¢, and therefore without loss
of generality ¢ can be chosen to be orthogonal to constants. In addition,
inequalities in multiplicative form on a manifold are not equivalent to inter-
polation inequalities in the additive form due to the lack of scaling.

The goal of this work is to prove the following multiplicative interpolation
inequality for functions on the sphere S?

dp =

1 (a—2)/2q

floger < (55) @ PUPIOIP qelzoo. (12

Here f € H'(S*) N { e f(s)dS = 0}. (Note that the first factor on the
right-hand side is bounded by 1 uniformly in q.)

Our approach based on the Lieb-Thirring inequalities makes it possible

to prove similar inequalities in the vector case. Namely, we show that for

u € HY(TS?) with divu = 0 it holds

1 (¢—2)/2q
- (2_> 2 ot a2,
T

Finally, we observe that in the one-dimensional periodic case the rate
of growth of the constant in (1.1) is only due to the presence of constants
and therefore in the zero-mean case it is natural to consider interpolation
inequalities for the critical imbedding H2(S!) < L,(S"). This is done in
Section 3.



2 Estimates of Lieb—Thirring constants on S?

The scalar case

Let A be the (scalar) Laplace—Beltrami operator on the 2D sphere. Then
—AYF=AYF k=1,....2n4+1, n=1,....

The eigenvalues A,, = n(n+ 1) have multiplicity 2n+ 1 and the orthonormal
spherical harmonics Y*(s), k = 1,...,2n + 1, corresponding to the same
eigenvalue n(n + 1), satisfy the important identity

2n+1
2 1
Y vk = (2.1)
47
k=1
We shall also use the following notation
where
{901' il - {{Yf}zi—il_l 20217 {Al}fil = {Am R An}gozl' (2'3)

2n+1 pa3z

Let II be the orthogonal projection onto the subspace of functions or-
thogonal to constants

1
Mp=¢—1 5 p(s)dS.

We consider the Schrodinger operator
II(—A+ f)II (2.4)

with
fe Lp(S2), p>1.

Since the sphere is compact the whole spectrum of the operator (2.4) is
discrete and we denote by p; = p;(f) its eigenvalues.



Theorem 2.1. The following Lieb—Thirring estimate holds for the negative
etgenvalues pj < 0:

S Il <L) [ fGs)as: 2.5)
<0 S
Here v > 0, f- := —min(f,0) and the Lieb-Thirring constant L.(S?) sat-
isfies
Lg2 < in Fg(v, k),
2(7) < min Fe(y, k)
Foou k) — L (36— 1) EIB(y 1k k4 1) (2.6)
SR =\ Tk (k—1)F(y + 1 — k)pri-k
In particular,
1
Ls2(1) < 3 (Ls2(1)) < 0.444 .. .). (2.7)

Proof. We set

Then -
S lil = [N 2.

;<0
Next we use the Birman—Schwinger kernel

N_.(f) < Tr<(f + (1= t)r) A=A + ) N F + (1 — t)r)l_/2> ,

and the convexity inequality of Lieb and Thirring [9], [1]:
Tr(BY2CBY?)* < Tr B¥2C*B*?, B=B*>0, C=C* > 0.
We obtain that
k/2 —k k/2
N_(f) S Te(f + (L= 6)r) 2" (I(=A 4+ ¢r)ID) " (f + (1 = t)r)="
The above inequalities hold for

r>0, k>1, andte€l0,1].



We now show that for k > 1

N_.(f) < 3%(%{1)) (k—1)_1(t7“)1_k/82(f+(1—t)r)]de. (2.9)

In fact, setting ¢ = (f + (1 — t)r)_ and using the eigenfunctions in the
notation (2.2), (2.3) we obtain

Tr g"/2(TI(—A + tr)IT) F %2 = Te(II(—A + tr)I) * gk =

/SQ Z(Aﬂ' +tr)Fg(s)re;(s)dS =

1 2n + 1 / "
— g(s)"dS,
Ar e~ (n(n+1) +tr)* Je (5)

(2.10)

0 2n+1 - we

where in the last equality we used (2.1). To estimate > ", T T

use the elementary inequality
2n + 1 o 2n siving 2n+1 o 2n
n(n+1)+tr = n? 4 tr (n(n+1)+tr)k = (n2 + 2tr)k
We set

T 2

Pz, p) = ma p = gtf

The function ®(z, p) has a global maximum ( in x) at

1/2 1Vk—1/2
P 1/2—k (2k — 1)
= @ =
Zo (2]43— 1)1/2 u (l'(),p) P (Qk)k

Since ®(x, p) is decreasing for z > x, it follows that

Z (n2+p Z(I) n, p) < o®(zo, p) +/OO<I>(;c,p)dx:

n= Zo

1
e (2 = 1)k N (2k— 1)t R 2k —1\"
(2k)F ok —1) (2k)F1 k—1\ 2k )

Therefore

(0.9]

1 2n+1
— D
A~ (n(n+1) + tr)* 27‘(’2 )

1, 1 (2k—1\" 1 (k. L 32k —1)\"
o’ k—1\2k ) T k-1 3r\ 4k |




which proves (2.9).
Using this in (2.8), we obtain for k € (1,7 + 1)

Z\W <(2Z ) tlk/ /SQW’“ +(1—t)r)*dSdr =

37T< (2/:1—1> ~ytlk /SQ/ PR (F(s) 4 (1= ) drdS =

(2k — 1)\ "~t'- ’f( OBy +1 -k, k+1)
37T< Ak ) (k—1)

s las =
SQ
Po(y.k) | f-(s)"dS,

where we have chosen the optimal ¢ = (k—1)/~. In the integral with respect
to r we set for almost every s

If f<Oand f-=—f, then (f+(1—¢t)r)- = f_(p—1)- and

oo

/0°° PR CE(s) + (1= O)r)kdr = (1 — t)’“‘”‘lf_(:v)”“/0 P —1)Edp =

<r%ﬁﬂ*ﬂ@WH/;ﬂw o)dp =

0
(1=t 7 1 B(y+1—k, 1+k) f_(s)7"L.

If f(s) >0, then (f(s)+ (1 —t)r)- =0, f_(s) = 0 and the above equality
formally also holds.

The minimisation with respect to k& € (1,7 4+ 1) completes the proof
of (2.6). For the proof of (2.7) we observe that

Ls:(v) < min Fge(1,k) =0.444 ..., Fg(1,3/2) = -
1<k<?2

The proof is complete. ]

The dual formulation of this estimate is as follows, see [9].



Theorem 2.2. Let the family {¢;(s)})_, € H'(S?) be orthonormal and

Jo2 0j(5)dS = 0. Then the following inequality holds

p—1 N
([otsre2as) <t S 1961 2.11)
j=1

where
N
p(s) = jls)’.
j=1
Here p satisfies 1 < p < 2, and the constant ksz2(p) satisfies

(p —pi)p—lLSQ(p - 1. (2.12)

Furthermore, for p = 2 inequality (2.11) and estimate (2.5) are equivalent
and

kg2 (p) <

ke2(2) = 4Lg2(1). (2.13)

Proof. Let
V(s) = ap(s)/PY), (2.14)

where v > 0 is a parameter. We denote by A the Schrédinger operator:
A:=TI(-A - V)II (2.15)

with eigenvalues p; = p;(V). Let further

H = Ly(SH) N / ©(s)dS = 0.
SQ

We denote by /\N H the N-th exterior product of H. This a Hilbert space
with elements that are linear combinations of products v; A --- A vy. The
scalar product of v1 A -+ Avy and wy A - -+ Awy is defined as follows:

(U)l/\"'/\wNavl/\'”/\vN) :det{(wz',vj)}y 1<27J<N

and is extended to the whole /\NH by linearity. We define the operator
Ay NV H - \Y H:

Av(i A~ Aoy) = (Avp A Aoy + -+ v A= A Auy).



Corresponding to Ay is the quadratic form
an(vi A Aoy, v A Aoy) = (An(vr A= Aoy), v A= Aoy).
If ©1,...,@nN is an orthonormal system, then

an(@1 A ANen, 1 A A pn) =

N N
S Iel = a X [ o)l s)as -
j=1 j=1"75

(2.16)
N
S 16l —a [ pop/oas,
j=1 s
Let
E = infa(AN).
Then in view of (2.5) with (2.14)
N
E=Y V)= > mV)=>
=1 115(V)<0
" 217
() ([ visrtias) = 2.7
SQ
1/~
_LSQ(W)l/WOép/W (/ p(S)p/(p—l)dS> :
SQ
where v = p — 1 < 1 and where we used the elementary inequality
1/
> sl < (Z \Mj\”)
On the other hand, from the variational principle and (2.16)
N
E <ax(pr A Ao, ot A Aon) =Y [[Vgs|)? - a/ p(s)P/P=0dS.
j=1 s
(2.18)

Combining (2.17) and (2.18) we obtain

1/5 N
a/ p(s)"P=VdS — Lea(y)" /70?1 (/ p(S)p/<p‘1)dS> <D IIVel*.
S2 S2

J=1
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Substituting the optimal

Y

(1=7)/(v=p)
@:4MwWWﬂ%%wam</p@yMAué>
g?

and taking into account that v = p — 1, we obtain (2.11) with (2.12).
Finally, the equivalence of spectral and integral inequalities with v = 1

and p = 2 with equality (2.13) for the constants is well known. The proof is

complete. ]

We are now in position to prove inequality (1.2).

Corollary 2.1. Let f € H'(S?) and let [, f(s)dS = 0. Then

1

(9—2)/2q s ) s
e < (52) WPV gelzon. (219

Proof. We have to estimate the rate of growth of the constant kg:(p) in (2.12)
as p— 1l and set N = 1in (2.11). In view of (2.6), and taking into account
that y=p—1,1 < k < p and that

Blp—kk+1)<Blp—Fk2)=@p-—k) (p—k+1)"!

we obtain

ke:(p) < pP(p — 1)' " Lex(p 1)

pp(p—l) ) 32k—1 B(p—k,k+1)
— 111111
3T 1<k<p 1)k(p — /ﬂ)p_k

(
Plp—1) (3%-1) 1

37 1<kep 1)k(p R (p — k + 1)
pp(p _ 1) [ ] | _ l 2]9 3p—1pp+123—p 1/2 _
3 =t T \p—1 (p+ 1)p+3 h

1 2p \?
2r \p—1/ "’

where we used that

(2.20)

3p—1pp+123—p 1
pella) (p+ 1P 4
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We now set N =1 in (2.11) and ¢1 = f/||f||. Then (2.11) goes over to

IF1lz 2, ) < ke (p)'/27 || £ VR AP,

which is precisely (2.19), if we set ¢ = 2p/(p — 1) € [4,00). In the interval
q € [2,4] inequality (2.19) follows from Holder’s inequality. O

Remark 2.1. The exponent 1/2 of ¢ in (2.19) is sharp as ¢ — oc.

Remark 2.2. The results described here are certain technical improvements

of the corresponding estimates in [6], which, in turn, follow those in [9], see
also [13].

Remark 2.3. The series in (2.10) can be estimated without loss of a con-
stant. This was done in |7] where it was shown that for all 4 > 0 and

k=23/2
Qn —|— 1 1
122
< .
Z T S Ed
This gives that
3 3
LSQ(l) < g and kg2(2) = 4LSQ(1) < 5
Finally, using the method of [11], [12] the following improvement was recently

obtained in [8|:

9 9
Lg(1) < — d ke (2) =4Lg(1) < —,
s:(1) S 75— and ke (2) s2(1) < o
so that in the important particular case ¢ = 4 (called the Ladyzhenskaya

inequality in the context of the Navier—Stokes equations) we obtain

9

1/4
Il < (=) I12I0H12.

The rate of growth of the constant Lg2(y) as v — 0 was not studied in [7],
while the results of [8] are essentially restricted to the case v = 1.
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The vector case

In the vector case we have the identity for the gradients of spherical harmonics
that substitutes (2.1) (see [6]): for any s € S?

2n+1
2 1
S VYA = n(n+ 1) ”4* | (2.21)
T
k=1

This identity is essential for inequalities for vector functions on S2.

In the vector case we first define the Laplace operator acting on (tangent)
vector fields on S? as the Laplace-de Rham operator —dd — dd identifying
1-forms and vectors. Then for a two-dimensional manifold (not necessarily
S?) we have [5]

Ay = Vdivu — rot rot u, (2.22)

where the operators V = grad and div have the conventional meaning. The
operator rot of a vector u is a scalar and for a scalar 1, rot ¢y is a vector:

rotu := div ut, rot ¢ 1= V>,

and in the local frame ut = (ug, —uy).
Integrating by parts we obtain

(—Au, ) p,7s2) = || rotul® + || div ). (2.23)

The vector Laplacian has a complete in Lo(T'S?) orthonormal basis of
vector eigenfunctions. Using notation (2.3) we have

—ij = )\jw]', —AUj = >\jUj, (224)
where
w; = )\;1/2VLyj’ divw; = 0, v = )\;1/2vyj, rotv; = 0.

Hence, on S?, corresponding to the eigenvalue A, = n(n + 1), where
n = 1,2,..., there are two families of 2n 4+ 1 orthonormal vector-valued
eigenfunctions w”(s) and v*(s), where k = 1,...,2n+1 and (2.21) gives the
following important identities: for any s € S?

2n+1 2n+1

2n+1 2n+1
Sl =0 S e =T (229)
k=1 k=1
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We finally observe that since the sphere is simply connected, —A is strictly
positive —A > A1 = 21.
Let us consider the vector Schrodinger operator on S?

—A+f (2.26)
and let us denote by p; = p;(f) its eigenvalues.
Theorem 2.3. The negative eigenvalues p1; < 0 of operator (2.26) satisfy

S bl < 2Le) [ 1), 2.27

;<0
where v > 0 and Lg2(y) is as in (2.5).

Proof. Once we know from (2.24) that each eigenvalue of the vector Lapla-
cian \; is repeated twice and the corresponding vector-valued eigenfunctions
satisfy identities (2.25), the proof of the theorem is word for word repetition
of that of Theorem 2.1. N

The dual formulation is immediate.

Theorem 2.4. Let {u;}}", € H'(TS?) be an orthonormal family of vector
fields in L*(T'S?). Then for

pls) = 3" lus(s)F

it holds
N

p—1
( /S 2 p(s)p/@—”d5> <k (p) D (vt uy|* + | div )

7j=1
where 1 < p < 2,

P’
(p— 1)t
If, in addition, divu; = 0 (or rotu; = 0), then
(N
- Z | rotu||®,  divu; =0,
([otoro-vas) <o 4 (229

Z | divuy||?,  rtotu; = 0.
(/=1

$°(p) <2 Le:(p — 1). (2.28)
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Setting N = 1 and using the rate of growth of kg2(p) as p — 1 estimated
in (2.20) we obtain the interpolation inequality in the vector case.

Corollary 2.2. Let u € HY(TS?). Then

1 (a—2)/2q )
lullz, s < (;) g2l /7 (|| ot ull? + | div2)* "

If, in addition, divu = 0, then

1 =2)/2 1/2 2 1-2
HUHLq(ng) < (%> q / H’U,H /q” I‘Ot’U/H o /q.

Remark 2.4. In the case of the Ladyzhenskaya inequality (that is, when
q = 4) the constant can be substantially improved:

g\ /4
HUHL4(TSQ) < <E> Hu‘|1/2” rOtqu/Q.

3 Inequalities for periodic functions

In the similar way we can obtain interpolation inequalities of the type L, —
Ly — Ly for periodic functions on S* = [0, 27) with mean value zero

/Sl o(x)dr = /O27T o(z)dxr =0

lying in the Sobolev space H'/2(S') with norm

I(=A)iel? = el = > nla; +b7).

n=1

where

0
E (an sinnx + b, cosnx).
n=1

()=
r) = ——
» V7L
For this purpose we consider the Schrodinger-type operator
I((=A)2 + f)I, (3.1)

WhereA:%and
1
[y =p — — dx.
p=9 o S190(93)33
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Theorem 3.1. The negative eigenvalues ji; < 0 of the operator (3.1) satisfy
>l < Loy) [ @) e (3.2
1 <0

Here v > 0 and the Lieb-Thirring constant L (S') satisfies
Ls:(v) € min Fgi(v, k),

1<k<y+1
P (k) L BO A Lk ) (3.3)
SV = e — DRy + 1 — k)
In particular, ;
Lsi(1) < Fs1(1,3/2) = 5" (3.4)

Proof. The proof goes as that of Theorem 2.1 up to (2.9) instead of which

we have
1 1

N_.(f) < —(tr)l_k/ (f + (1 = t)r)* da. (3.5)
mk—1 St
To prove this, setting as before g = (f + (1 —¢)r)_ we obtain for k > 1
Tr g"/2(TI((=A)Y? + tr)IT) Fg*/2 = Tr(TL((—=A) Y2 + tr)I) F gk =

/. >0+ tn) e = Gy s g

1 st
L[~ dy K 11 1—k/ k
- dr = = t d
7T/0 (y+t7")k /Slg(SE) o 7T]€ — 1( T) Slg(:z:) e
where the eigenvalues and eigenfunctions of (—A)Y/? are

Dl = (a2, {on(@)}22 = ——{sinn, cos )2,
\/E

We can now complete the proof as in Theorem 2.1:

1t1k
Sl < s [ ] @)+ 0= o dads -

pi <0
1yt =F(1 — )’f "IB(y 41—k, /<;+1) S
- dr =

Faa(y,k) | f-(a) " da,
St
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where the optimal ¢ is as before t = (k — 1) /7.
The dual formulation is the same as in Theorem 2.2.

Theorem 3.2. Let the family {¢;(s)}}, € H2(SY) be orthonormal and let
Joi wj(x)dx = 0. Then for

N
p(x) =) pj(x).
j=1
the following inequality holds

p—1 N
([oarohas) <emdl-otel. 60
st =
where 1 < p < 2, and the constant ks1(p) satisfies

i

kg (p) < W

LSI (p — 1)
Furthermore, for p =2
ksi(2) = 4Lgi1(1).
The following result is similar to Corollary 2.1.
Corollary 3.1. Let f € H2(S') and let Joi f(@)dx = 0. Then

(9—2)/2q
2 1 _
o< (2) @HUPAICARTI gelzoa). (9

Proof. We again estimate the rate of growth of kg:(p) in (2.28) as p — 1.
Setting v = p — 1 so that 1 < k < p we obtain

ksi(p) <pPP(p— 1) PLei(p—1) =

Pe-1 . | Bo—kk+1) ]
T 1<k<p | (k — 1)*(p — k)r~=*

ppi(p —1) min _ L ] <
T 1<k<p | (k— DE(p — k)P~ *(p—k+1)|

pp(p_l)[ ” :g 2 2p p<i 2p P
m k=t tp+1\p—1) “2r\p—-1/) "

Setting N = 1, o1 = f/[[f|| in 3.7) and ¢ = 2p/(p — 1) € [4,00)
completes the proof. ]
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Remark 3.1. The exponent 1/2 of ¢ in (3.8) is sharp as ¢ — 0.

Remark 3.2. Arguing as in [8] the value of the constant kgi(2) can be
significantly improved:

3
ket (2) < 2.
T

so that for ¢ = 4 we obtain

3 1/4 L
Il < (2) 1A

while (3.4) gives

1|z < 6LAIMI(=2)TFI12.
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