
Keldysh Institute • Publication search

Keldysh Institute preprints • Preprint No. 11, 2019

ISSN 2071-2898 (Print)
ISSN 2071-2901 (Online)

Bragin M.D., Rogov B.V.

Bicompact schemes for
multidimensional hyperbolic

equations on Cartesian
meshes with solution-based

AMR

Recommended form of bibliographic references: Bragin M.D., Rogov B.V. Bicompact schemes
for multidimensional hyperbolic equations on Cartesian meshes with solution-based AMR // Keldysh
Institute Preprints. 2019. No. 11. 26 p. doi:10.20948/prepr-2019-11-e
URL: http://library.keldysh.ru/preprint.asp?id=2019-11&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2019-11&lg=e
http://library.keldysh.ru/author_page.asp?aid=8226&lg=e
http://library.keldysh.ru/author_page.asp?aid=4066&lg=e
http://doi.org/10.20948/prepr-2019-11-e
http://library.keldysh.ru/preprint.asp?id=2019-11&lg=e

KELDYSH INSTITUTE OF APPLIED MATHEMATICS

R u s s i a n A c a d e m y o f S c i e n c e s

M.D. Bragin, B.V. Rogov

Bicompact schemes for multidimensional
hyperbolic equations on Cartesian meshes

with solution-based AMR

Moscow — 2019

Michael Dmitrievich Bragin, Boris Vadimovich Rogov
Bicompact schemes for multidimensional hyperbolic equations on Carte-

sian meshes with solution-based AMR

High-order bicompact schemes for hyperbolic equations on Cartesian
meshes with solution-based adaptive mesh refinement are constructed. The al-
gorithm for implementation of these schemes on such meshes is described in
detail. A new solution-based criteria of mesh refinement is proposed. Bicom-
pact schemes with this refinement criteria are tested on the two-dimensional
problem of compactly supported pulse advection and the two-dimensional Se-
dov blast wave problem. It is shown, that the design of bicompact schemes
allows them to be implemented on meshes of such class with good accuracy
of the computed solution ensured.

Keywords: bicompact schemes, high-order schemes, hyperbolic equa-
tions, adaptive mesh refinement.

Брагин М.Д., Рогов Б.В.
Бикомпактные схемы для многомерных уравнений гиперболического

типа на декартовых сетках с адаптацией к решению

Для уравнений гиперболического типа построены высокоточные би-
компактные схемы на декартовых сетках с адаптацией к решению. По-
дробно описан алгоритм реализации бикомпактных схем на таких сетках.
Предложен новый критерий адаптации сетки к решению. Бикомпактные
схемы с этим критерием адаптации проверены на двумерной задаче о пе-
реносе финитного импульса и двумерной задаче Седова о сильном взрыве в
идеальном газе. Показано, что конструкция бикомпактных схем допускает
счет на сетках данного класса, обеспечивая при этом хорошую точность
вычисляемого решения.

Ключевые слова: бикомпактные схемы, высокоточные схемы, гипер-
болические уравнения, сетки с адаптивным измельчением.

This research was supported by the Russian Foundation for Basic Re-
search, project no. 18-31-00045.

Introduction

The development of high-order accurate schemes for the numerical so-
lution of partial differential equations, including hyperbolic ones, remains
an important area of computational mathematics. The high order of accu-
racy (three and higher) makes it possible to achieve a prescribed error on
coarser meshes, which is especially important for solving multidimensional
problems [1]. In some applications, for example, in aeroacoustics [1, 2], elas-
ticity theory [3, 4], and electrodynamics [5], the evolution of wave perturba-
tions has to be accurately computed at long distances and times, so high-order
accurate schemes are highly preferable to low order ones.

A new class of high-order accurate schemes for systems of nonsta-
tionary multidimensional quasilinear hyperbolic equations was developed
in [6–9]. These schemes involve a compact approximation of spatial deriva-
tives. Since their spatial stencil includes only two integer nodes, the
schemes [6–9] are called bicompact.

Bicompact schemes combine several positive properties. They have the
fourth order of accuracy in space, which can be increased to the sixth, eighth,
and so on (see [10]). At the same time, the difference order of the bicompact
schemes’ equations in the independent space variables coincides with the order
of the partial differential equations to be solved. As a result, the number of
boundary conditions in the difference problem coincides with that in the exact
formulation of the problem. Bicompact schemes are conservative and make it
possible to choose a time stepping method, since they are derived using the
finite-volume method and the method of lines. Moreover, bicompact schemes
preserve their high order of accuracy in space on highly nonuniform meshes,
since the spatial stencil of the schemes occupies a single mesh cell. In the
dispersion and dissipation properties, bicompact schemes are superior to many
well-known finite-difference and compact schemes [10,11]. Finally, bicompact
schemes can be efficiently implemented by applying space marching computa-
tion, including its parallel version [12]. This combination of properties makes
bicompact schemes advantageous over other high-order accurate schemes.

However, the applicability of bicompact schemes has been limited to com-
putational domains of simple geometry (such as rectangles and parallelepipeds)
and to Cartesian meshes. This limitation can be overcome in two ways,
namely, by constructing bicompact schemes on unstructured meshes or by
applying the well-known well-elaborated approach of Cartesian meshes with
adaptive mesh refinement (AMR) [13,14], which has become highly popular in
recent time [15–21]. The latter method is more attractive, since, in fact, it is

4

reduced to a more sophisticated implementation of previously known schemes
and does not require the construction of new ones.

The generalization of bicompact schemes to Cartesian meshes with AMR
(which will also be referred to hereafter as adaptive Cartesian meshes or
Cartesian meshes with adaptation) splits into two sequential subproblems:
generalization to Cartesian meshes with solution-based AMR and generaliza-
tion to Cartesian meshes with adaptation to the geometry of the computational
domain. The goal of this work is to solve the former subproblem in principle
in the case of a simple computational domain. We consider only bicompact
schemes of fourth-order accuracy in space, although all arguments and con-
structions presented below can be carried over to bicompact schemes of higher
orders.

This preprint is organized as follows. Bicompact schemes and their im-
plementation on Cartesian meshes without AMR are described in Section 1.
In Section 2, we present a numerical algorithm using bicompact schemes on
Cartesian meshes with solution-based AMR and propose a new mesh refine-
ment criterion. In Section 3, bicompact schemes on Cartesian meshes with
solution-based AMR are tested as applied to the two-dimensional advection
of a compactly supported pulse and the two-dimensional Sedov blast wave
problem.

1. Bicompact schemes on standard Cartesian meshes

Consider a system of two-dimensional homogeneous quasilinear hyper-
bolic equations in the simplest computational domain D:

L2(Q) ≡ ∂tQ + ∂xF(Q) + ∂yG(Q) = 0,

(x, y) ∈ D = (0, xmax)× (0, ymax), t ∈ (0, tmax),
(1)

where Q = (Q1, . . . ,Qm) = Q(x, y, t) is the sought vector of conservative
variables, F(Q) and G(Q) are the vectors of physical fluxes in the Ox and Oy
directions, respectively, and ∂x ≡ ∂/∂x. Assume that, at t = 0 and on the
boundary ∂D of D, system (1) is supplemented with initial and boundary
conditions under which it has a unique solution in D × [0, tmax], D = D ∪ ∂D.

Before continuing our narration, we explain why two-dimensional equa-
tions, rather than one- or three-dimensional ones were chosen for considera-
tion. The two-dimensional case is of interest for two reasons.

1. It is more complicated than the one-dimensional case to a degree suffi-
cient to study all important features and issues concerning the implemen-
tation of bicompact schemes on adaptive Cartesian meshes.

5

2. It is simpler than the three-dimensional case, i. e., free of tedious three-di-
mensional finite-difference mathematics.

For system (1), we consider the following unsplit (in x, y) baseline bicom-
pact scheme of fourth-order accuracy in x, y [7]:

Ay
0A

x
0

(
Qn+1

C −Qn
C

)
+ τAy

0Λ
x
1F

n+1
C + τΛy

1A
x
0G

n+1
C = 0,

Ay
0Λ

x
1

(
Qn+1

C −Qn
C

)
+ τAy

0Λ
x
2F

n+1
C + τΛy

1Λ
x
1G

n+1
C = 0,

Λ
y
1A

x
0

(
Qn+1

C −Qn
C

)
+ τΛy

1Λ
x
1F

n+1
C + τΛy

2A
x
0G

n+1
C = 0,

Λ
y
1Λ

x
1

(
Qn+1

C −Qn
C

)
+ τΛy

1Λ
x
2F

n+1
C + τΛy

2Λ
x
1G

n+1
C = 0.

(2)

The notation in scheme (2) is explained as follows. In the closed domain D,
we introduce a standard Cartesian mesh Ω = Ωx × Ωy without AMR, where

Ωx = {x0, x1/2, x1, x3/2, x2, . . . , xNx}, x0 = 0, xNx = xmax,

hx, j+1/2 = xj+1 − xj ≡ hx — is the step size in x, xj+1/2 =
xj + xj+1

2
;

Ωy = {y0, y1/2, y1, y3/2, y2, . . . , yNy}, y0 = 0, yNy = ymax,

hy, k+1/2 = yk+1 − yk ≡ hy — is the step size in y, yk+1/2 =
yk + yk+1

2
.

The time interval t ∈ [0, tmax] is divided into a set of levels:

{t0, t1, . . . , tNt}, t0 = 0, tNt = tmax,

τn+1/2 = tn+1 − tn ≡ τ — is the step size in t.

The letter C denotes the multi-index (j + 1/2, k + 1/2), j = 0,Nx − 1, k =
0,Ny − 1, n = 0,Nt − 1. The mesh vector function Qn approximates the exact
solution of system (1) at nodes of the mesh Ω at the time t = tn. For an
arbitrary mesh function U , the difference operators Ad

0,Λ
d
1,Λ

d
2, d ∈ {x, y} are

defined by the formulas

Ax
0Uj+1/2, k′ =

Uj, k′ + 4Uj+1/2, k′ +Uj+1, k′

6
, Λx

1Uj+1/2, k′ =
Uj+1, k′ −Uj, k′

hx
,

Λx
2Uj+1/2, k′ =

4(Uj, k′ − 2Uj+1/2, k′ +Uj+1, k′)
h2

x
,

Ay
0Uj′, k+1/2 =

Uj′, k + 4Uj′, k+1/2 +Uj′, k+1

6
, Λ

y
1Uj′, k+1/2 =

Uj′, k+1 −Uj′, k

hy
,

Λ
y
2Uj′, k+1/2 =

4(Uj′, k − 2Uj′, k+1/2 +Uj′, k+1)
h2

y
,

where j′ ∈ {j, j + 1/2, j + 1} and k′ ∈ {k, k + 1/2, k + 1}. The flux vectors in
scheme (2) are computed as F n+1

j′, k′ = F(Qn+1
j′, k′), G n+1

j′, k′ = G(Qn+1
j′, k′).

6

In addition to the unsplit scheme (2), we are interested in its more
computationally efficient version with locally one-dimensional (LOD) splitting
in [22–24], see also [25]:

Ax
0

(
Q[x]

j+1/2, k′ −Q[x∗]
j+1/2, k′

)
+ τΛx

1F
[x]
j+1/2, k′ = 0,

Λx
1

(
Q[x]

j+1/2, k′ −Q[x∗]
j+1/2, k′

)
+ τΛx

2F
[x]
j+1/2, k′ = 0;

Ay
0

(
Q[y]

j′, k+1/2 −Q[y∗]
j′, k+1/2

)
+ τΛy

1G
[y]
j′, k+1/2 = 0,

Λ
y
1

(
Q[y]

j′, k+1/2 −Q[y∗]
j′, k+1/2

)
+ τΛy

2G
[y]
j′, k+1/2 = 0.

(3)

Here, Q[d] and Q[d∗], d ∈ {x, y}, are auxiliary mesh functions related by the
formulas

Q[x∗] = Qn, Q[y∗] = Q[x], Qn+1 = Q[y]. (4)

The flux vectors in scheme (3) are computed as in scheme (2). The indices j′, k′

in (3) can take not only strictly internal, but also boundary values, depending
on the boundary conditions specified for system (1).

LOD splitting can be used variously. Namely, the one-dimensional equa-
tions can be solved first in x and then in y, as indicated in (4); on the contrary,
they can be solved in y and, then, in x (the letters x and y in the superscripts
in (4) are then interchanged); or the resulting solution Qn+1 can be found as
the half-sum of the solutions obtained using the first two unsymmetrized ver-
sions of splitting. The last symmetrized version of the splitting scheme with
a half-sum makes it possible to increase the order of accuracy in t up to the
second.

The fully discrete bicompact schemes (2) and (3) are derived from corre-
sponding semi-discrete schemes by approximating the time derivatives using
an implicit Euler method. Integration of these semi-discrete schemes with
the help of higher order DIRK methods yields bicompact schemes of higher
order accuracy in t. If the chosen DIRK method has an order p > 2, then
the truncation error of the unsplit bicompact scheme is O(τp, h4), while the
error of the bicompact LOD scheme is O(τ, h4) for unsymmetrized splitting
and O(τ2, h4) for symmetrized splitting, where h = max{hx, hy}.

It is well known that high-order multistage DIRK methods are imple-
mented by combining implicit Euler methods with suitable stage time steps
and input data. In the same manner, bicompact schemes of higher order accu-
racy in t are implemented by combining baseline bicompact schemes. There-
fore, to study the implementation of all bicompact schemes, it is sufficient to
analyze schemes (2) and (3).

7

If the Jacobian matrices A(Q) = ∂QF(Q) and B(Q) = ∂QG(Q) are neither
positive nor negative definite for any Q allowed by system (1), then the imple-
mentation of schemes(2), (3) requires the Lax–Friedrichs global flux splitting.
This procedure makes use of the vectors

F±(Q) =
1
2
F(Q)± Cx

2 Q, G±(Q) =
1
2
G(Q)± Cy

2Q,

where the flux splitting parameters Cd
2 , d ∈ {x, y} are chosen so that the

Jacobian matrices satisfy the inequalities

∂QF+(Q), ∂QG+(Q) > 0, ∂QF−(Q), ∂QG−(Q) < 0

for all values of the exact solution of system (1) occurring in D in a neigh-
borhood of the considered instant of time. In the transition from the level tn

to tn+1, the flux splitting parameters are computed explicitly using the esti-
mates

Cx
2 =

1 + 2δ
2

V x
max, V x

max = max
s=1,m

(x,y)∈Ω

|λs(Qn(x, y);A)|,

Cy
2 =

1 + 2δ
2

V y
max, V y

max = max
s=1,m

(x,y)∈Ω

|λs(Qn(x, y);B)|,
(5)

where λs(Q;X) is the sth eigenvalue of the matrix X(Q) and δ > 0 is a
“reserve factor of positive/negative definiteness” of the matrices ∂QF±, ∂QG±.

Finally, the implementation of schemes (2), (3) can be described as fol-
lows. The transition from the level tn to tn+1 is performed in several stages:

1. The parameters Cd
2 , d ∈ {x, y} are computed using formula (5).

2. The vectors F and G in (2), (3) are replaced by the corresponding split
fluxes F±, G± with some choice of signs. To be definite, let F = F+

and G = G+; the other choices are considered in a similar manner.
3. The cells [xj, xj+1] × [yk, yk+1] of the mesh Ω are double looped through

with respect to j, k, j = 0,Nx − 1, k = 0,Ny − 1. In each cell, the
equations of the chosen scheme are solved for the unknown quantities Q
at the nodes (xj+1/2, yk+1/2), (xj+1/2, yk+1), (xj+1, yk+1/2), and (xj+1, yk+1).
In scheme (2), for example, Newton’s method or iterated approximate
factorization [26] is used for this purpose. Newton’s method is applied in
scheme (3). Note that a single loop over the cells involves the computa-
tion of only Q[x] (or only Q[y], which depends on the splitting version).
The remaining Q[y] (or Q[x]) is computed in the other loop.

4. The signs of flux splitting are reversed, so that now F = F− and G = G−.
The solution obtained at stages 2 and 3 is used as an initial condition
(i. e., instead of Qn).

8

5. The cells of the mesh Ω are traversed in a double loop with respect
to j, k in an opposite direction, j = Nx − 1, 0, k = Ny − 1, 0. By analogy
with stage 3, in each cell, the equations of the chosen scheme are solved
for the unknowns Q at the nodes (xj+1/2, yk+1/2), (xj+1/2, yk), (xj, yk+1/2),
and (xj, yk).

6. The desired solution Qn+1 is set equal to the one found at stages 4 and 5,
the index n is increased by one, and the process returns to stage 1.

If a high-order DIRK method is used for computations in t, then all its
stages are executed at stages 3 and 5. Moreover, in the case of LOD splitting,
all stages are first executed for Q[x] (or Q[y]) and, then, for Q[y] (or Q[x]).
In other words, switching between DIRK stages is embedded in switching
between the directions of LOD splitting (if any), which is itself embedded in
switching between the signs of split fluxes.

The above description shows that the implementation of schemes (2)
and (3) is reduced to sequential loops over cells, with the desired solution
computed locally in each cell. Beginning the computation of a current cell, we
always know the desired solution on two of its faces sharing a vertex, which is
guaranteed by the flux splitting procedure and the traversal order of the cells.

Thus, the fact that the spatial stencil of bicompact schemes occupies a
single cell, together with their local solvability, makes them very convenient
for computations on Cartesian meshes with AMR.

2. Bicompact schemes on Cartesian meshes
with solution-based AMR

In what follows, we consider Cartesian meshes with solution-based AMR
in a closed domain D of simplest geometry. Nevertheless, the constructions
and arguments used in this section can be carried over in part to Cartesian
meshes with geometry-based AMR (e. g., data structures and cell traversal
algorithms).

First, we describe the design of adaptive Cartesian meshes and related
data structures. Our consideration will almost completely follow [27].

Assume that a rather coarse standard Cartesian mesh Ω is introduced
in D (see Section 1). The mesh is made adaptive as follows. Initially or in
the course of the computation, each mesh cell can be split (refined) into four
new ones by bisecting it in each direction. Each of the four new cells can be
split into another four in a similar manner, and so on. The cell to be split
is called a parent, while four new cells appearing from it are called children.
The number of recursive mesh refinements required for obtaining a cell is

9

called its rank and is denoted by R > 0. For example, the original coarse cells
have the rank R = 0; applying a single mesh refinement to them yields cells of
rank R = 1, which are split into cells of rank R = 2, and so on. Cell ranks are
bounded above: R 6 Rmax. The side lengths of a cell of rank R are expressed
in terms of those of the zero-rank cell generating it by the obvious formulas

hx(R) = 2−Rhx(0), hy(R) = 2−Rhy(0).

In the course of computations, the children of a parent cell may merge back in
this cell, but zero-rank cells are not allowed to merge. An example of adaptive
mesh refinement of a zero-rank cell is shown in Fig. 1 on the left.

To represent two-dimensional adaptive Cartesian meshes, it is useful
to use forests of quadtrees (referred to hereinafter as trees for the sake of
brevity). Each tree has a zero-rank cell as a root; its children, children of its
children, and so on make up the other nodes of this tree. An example of a tree
of cells is given in Fig. 1 (right). The edges of the tree are colored in red.

If a cell has no children, it is called computational. Computational cells
are leafs in a tree, and it is to them that the numerical scheme is applied.
Trees of cells describe the complete history of mesh refinement: they contain
not only computational cells, but also all their parents up to the zero rank.

R = 0

R = 1

R = 2

R = 3

Fig. 1. Adaptive refinement of a zero-rank cell and a tree of cells

An important remark specific to the spatial stencil of bicompact schemes
has to be made: the storage of all nine values of the solution Q in a cell that
is itself stored in a tree is inefficient, since the data are repeatedly duplicated
in this case. For example, even for Rmax = 0, this approach leads to an almost
quadruple increase in the storage requirements for cell vertices and to a double
increase for centers of their faces. For Rmax > 0, the situation is worsened

10

by the fact that all vertices of children cells also belong to their parent cell.
A more efficient approach to data storage is as follows.

1. Each cell stores not the solution, but rather the integer coordinates of its
nodes (in addition to children pointers and cell parameters, such as the
rank, etc.). By the integer coordinates of a point, we mean its coordi-
nates (x, y) measured in terms of the units hx(Rmax)/2 and hy(Rmax)/2,
respectively.

2. The solution is stored in an associative array, each element of which rep-
resents a key-value pair, where the key is the pair of integer coordinates
of a mesh node and the value is the solution value at this node. This array
is shared by the entire forest of trees. In performing some computations
in a cell, the solution values at its nodes are obtained by accessing this
array through the integer coordinates of a node. New elements are added
to the array in the case of mesh refinement, while some elements are
deleted from the array in the case of merging cells.

For this data structure, there are no duplicated solution values, since the
number of elements in the associative array is equal precisely to the number of
nodes of the mesh Ω. Note that the C++ language involves the standard map
container, which is well suited for implementing the array described above.

Following [27], as before, we describe the solution-based AMR proce-
dure. Consider the transition from the level tn to tn+1. Before executing the
scheme-based computations, the mesh is adaptively refined using the known
solution Qn. The AMR procedure consists of two stages. At the first, all
node cells (not only computational ones) of all trees are flagged in some way.
At the second stage, the mesh is reformed according to the cell labels.

At the flagging stage, the roots of all trees, i. e., zero-rank cells are
traversed in an arbitrary order (for example, in a double loop) and each tree is
traversed in postorder. Note that the order of children traversal in recursion
is of no importance. In each computational cell, we compute the adaptation
criterion

ds, i = |∇Qs(xi, yi, tn)|
(
hx, i hy, i

)ω0+1
2ω0 , (6)

wheres = 1,m is the index of a component of the vector Q, i = 1,Nc is the
index of a computational cell, Nc is the total number of computational cells,
|a| is the Euclidean norm of the vector a, ∇ = (∂x, ∂y) is the gradient with
respect to the space variables, (xi, yi) are the coordinates of a cell center, hx, i

and hy, i are the cell side lengths in the x and y directions, respectively, ω0 is
a tuned parameter of the AMR algorithm. In the case of bicompact schemes,

11

|∇Qs(xi, yi, tn)| in formula (6) is approximated by the expression

|∇Qs(xi, yi, tn)| ≈
√[

Ay
0Λ

x
1Qn

s (xi, yi)
]2

+
[
Λ

y
1A

x
0Qn

s (xi, yi)
]2

.

The mean square values of ds, i over all computational cells are also obtained
in mesh traversal:

σs =

√√√√ 1
Nc

Nc∑
i=1

d2
s, i.

After all ds, i and their mean square values σs were computed, the forest of
trees is traversed once again in the same order. Each tree node and its cell
are assigned one of the following three possible flags.

1. If a cell is computational (without children), its rank is Ri < Rmax, and
there exists an index s = 1,m such that ds, i > ω1σs, then this cell is
flagged for refinement.

2. If a cell is computational (without children), its rank is Ri > 0, and the
inequality ds, i 6 ω2σs holds for all s = 1,m, then this cell is flagged for
coarsening.

3. In the other cases, the cell is flagged for “nothing to do”.

Here, ω1 and ω2 are also tuned parameters of the AMR algorithm. The pa-
rameters ω0,ω1,ω2 have the following ranges of variation:

ω0 > 0, ω1 ∈ [1.0, 1.5], ω2 ∈ [0.1, 0.5].

In [27], they were specified as

ω0 = 2, ω1 = 1.0, ω2 = 0.1.

These parameters can be interpreted as follows: ω0 is the weight with which
the cell’s length scale

√
hx, i hy, i is involved in adaptation criterion (6), ω1 de-

termines how “easily” cells are refined (refinement is more likely for smaller
values of ω1), and ω2, on the contrary, determines how “easily” cells are
coarsened (coarsening is more likely for larger values of ω2).

Note that criterion (6) differs substantially from those that were used
in [27] and more recent works based on [27]. The criterion of [27] and similar
ones available in the literature are intended for fluid mechanics and are not
suitable for other applications, while criterion (6) is formulated for a general
hyperbolic system. Moreover, the need for adaptive refinement in available
criteria is estimated in terms of either the density gradient, or pressure gradi-
ent, or velocity divergence, or velocity curl, or a combination of the last two
quantities. The shortcomings of these variants were discussed in [27], and

12

a combination of the divergence and the curl of velocity was chosen as the
most successful one, though incapable of recognizing plane contact disconti-
nuities. Another shortcoming of the combined criterion is that it ignores any
perturbations against the background of zero or constant velocity. The new
criterion (6) proposed in this work takes into account the variations in all so-
lution components and yields close-to-zero values of ds, i for all s = 1,m only
in a cell where the solution is nearly identically constant in all components.

At the remeshing stage, the roots of all trees are traversed as before in an
arbitrary order, each tree is traversed in preorder, while the order of children
traversal in recursion is of no importance. The tree nodes and their cells are
transformed according to flags given before.

1. If a cell is flagged for refinement, then it is divided into four new cells
by bisecting it in each direction. These four new cells are added to the
tree as children of the divided cell. The mesh is supplemented with eight
to sixteen new nodes depending on the degree to which the neighbors of
the divided cell are refined (some candidates for new nodes may already
exist), and the same number of new elements are added to the associative
array storing the solution. The solution at the new nodes is computed
using biquadratic interpolation [28, Eq. (9)] constructed for the divided
cell. Each of the four new cells is flagged for “nothing to do”.

2. If each of the four children of a parent cell is flagged for coarsening, then
they are merged back into their parent and are deleted from the tree.
The nodes of the merged cells are deleted from the mesh only if they do
not belong to other cells (the centers of merged cells are always deleted).
The same number of elements corresponding to deleted nodes are deleted
from the associative array.

3. In the other cases, nothing happens to a cell.

At the zero time level t0, the solution-based AMR procedure is run Rmax

times, so that the mesh is maximally adapted to the initial condition before
the beginning of the scheme computations. If the initial condition is specified
by a given function of coordinates x, y, rather than by tabulated values, then,
in the case of mesh refinement, it is reasonable to compute the solution at
new nodes by projecting the initial condition onto the mesh, rather than by
applying interpolation.

After the mesh was adapted, the solution Qn+1 at the next time level is
computed using the chosen scheme. Note that the next mesh refinement is
performed after finding Qn+1, i. e., the mesh remains unchanged in advancing
one time step.

13

Except for several details, the algorithm implementing bicompact schemes
on Cartesian meshes with solution-based AMR is nearly the same as in the
case of standard Cartesian meshes (see the description of the latter at the end
of Section 1).

One difference from standard Cartesian meshes is that computational cells
of adaptive Cartesian meshes are rather difficult to index and traverse in a
“standard” nonrecursive loop in proper order. It is much simpler to traverse
computational cells via the forest of trees. Let an arbitrary cell/tree node be
denoted by P and its children cells (if any) be denoted by LL, LR, RL, and RR
(see Fig. 2, where P is depicted by a dashed line). The roots of all trees, i. e.,
zero-rank cells are traversed in a double loop in the direction corresponding
to the signs of the split flux vectors by analogy with cells of a standard
Cartesian mesh. Each of the trees is traversed in preorder: if the cell P is
not computational, then its children are traversed; if P is computational, then
the bicompact scheme is implemented there. Clearly, the order of children
traversal depends on the signs of the split flux vectors. The possible variants
are

F+,G+ ⇒ LL, LR, RL, RR; F−,G− ⇒ RR, RL, LR, LL;

F+,G− ⇒ LR, LL, RR, RL; F−,G+ ⇒ RL, RR, LL, LR.
(7)

LL

LR

RL

RR

P

FL FR

FB

FT

12

3

4

5 6

7

8

Fig. 2. Notation for an adaptive Cartesian mesh

Another difference is that the following situation can happen: in a certain
computational cell, the sought solution required at some nodes of the cell faces
is still unknown, although all preceding computational cells (in the order of
traversal) have been processed. This occurs in marching in space when the
bicompact scheme proceeds from large to small computational cells. For the
fluxes F+,G+, this situation is illustrated in Fig. 3. In computing cells 1–3,
the desired solution is found at the nodes marked with open green boxes in
Fig. 3. Next, the traversal algorithm processes the large cell in the upper
right corner, which is split into computational cells 4–7. Trying to compute

14

cells 4–6, we see that the desired solution at the nodes marked with red
boxes is still unknown (without this solution, cells 4–6 cannot be computed).
However, this difficulty can easily be overcome if we compute the unknown
solution values in terms of known ones by applying one-dimensional quadratic
interpolation similar to [28, Eq. (3)] on the left and lower faces of the large
cell made up of cells 4–7.

1

2

3

4

5

6

7

Fig. 3. Shortage of data in passing from large to small cells

In the general form, the extra procedure for computing the desired solu-
tion by interpolation on faces can be described as follows. Let the faces of an
arbitrary node cell P be denoted by FB, FL, FT, and FR (see Fig. 2, where
potentially problematic nodes are shown by open markers indexed by 1 to 8).
The extra computation procedure is built in the traversal over the forest of
trees in which the bicompact scheme is implemented.

1. If the cell P is computational, then compute it according to the scheme.
2. If the cell P is not computational, then, before passing to its children LL,

LR, RL, RR, check the following nodes:

1, 2, 3, 4 for fluxes F+,G+; 5, 6, 7, 8 for fluxes F−,G−;
3, 4, 5, 6 for fluxes F+,G−; 7, 8, 1, 2 for fluxes F−,G+.

If the desired solution is still unknown at nodes

1, 2 ⇒ compute using 1D interpolation on the face FB;

3, 4 ⇒ compute using 1D interpolation on the face FL;

5, 6 ⇒ compute using 1D interpolation on the face FT;

7, 8 ⇒ compute using 1D interpolation on the face FR.

Next, the children of P are traversed in the order described in (7).

Since one-dimensional quadratic interpolation on any cell face coincides
with two-dimensional biquadratic interpolation over the entire cell taken on
this face, the extra computation of the desired solution on it does not violate
the bicompact approximation.

15

Thus, we have completely described the implementation of bicompact
schemes on Cartesian meshes with solution-based AMR in the simplest com-
putational domains.

3. Numerical experiments

Let us test bicompact schemes on Cartesian meshes with solution-based
AMR on a pair of two-dimensional benchmark problems. In all the computa-
tions, the AMR parameters are specified as ω0 = 2, ω1 = 1.0, and ω2 = 0.1.

Advection of a compactly supported pulse. This problem is stated
as follows. We solve the simplest version of system (1), namely, the linear
advection equation

L2(u) ≡ ∂tu + a ∂xu + b ∂yu = 0, a = const > 0, b = const > 0,

where u = u(x, y, t) is the sought function. The advection velocities a, b are
set equal to 1. The computational domain is D = (0, 1)×(0, 1) (xmax = ymax =
1), and the maximum time is tmax = 0.5. The initial condition is specified as

u(x, y, 0) = P f
7

[
4
√

(x − 1/4)2 + (y − 1/4)2
]
, (x, y) ∈ D,

where P f
q (x) ∈ Cq−1(R), q ∈ N, is a compactly supported polynomial of ad-

justable smoothness:

P f
q (x) =

{
(1− x2)q if |x| < 1,

0 if |x| > 1.

The boundary values are constant (zero), and they are set on the bound-
aries x = 0 and y = 0 for all t ∈ (0, tmax].

The problem was computed using two bicompact schemes of fourth-order
accuracy in x, y, namely, T2B4 and SDIRK3B4. Time stepping in the former
scheme was based on the second-order trapezoidal rule. In the latter scheme,
we applied the L-stable stiffly accurate three-stage SDIRK method of third
order [29, Eq. (17)]. No flux splitting was used in this problem, since the
advection velocities were always positive.

We begin with quality verification. To determine whether the advection
of the pulse and the mesh adaption are correctly reproduced, we consider the
results generated by T2B4 in a single run. The mesh and scheme parameters
were specified as

hx(0) = hy(0) = 0.1, Rmax = 3, hx(Rmax) = hy(Rmax) = 0.0125,

τ = 0.005, κx(0) = κy(0) = 0.05, κx(Rmax) = κy(Rmax) = 0.4,

16

where κx = aτ/hx and κy = bτ/hy are the Courant numbers in x, y, respec-
tively.

Figs. 4–6 present two-dimensional plots of the solution (in color) and
computational cells of the corresponding mesh at the times t = 0, 0.25, 0.5.
It can be seen that T2B4 correctly reproduces the advection of the pulse
(without amplitude loss). The mesh is adapted adequately, its refinement
follows the pulse, and, in constant-solution areas, the cells merge into ones of
zero rank.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Fig. 4. Solution and mesh at t = 0

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Fig. 5. Solution and mesh at t = 0.25

Fig. 7 shows the square root of the number of computational cells as a
function of time. The curve

√
Nc(t) quickly reaches a constant level, which

agrees with the fact that the pulse is compactly supported. This plot suggests
that, in terms of the number of computational cells, the computational com-

17

plexity of the scheme on an adaptive mesh with the above-indicated parameters
and identical τ is equivalent to that on a uniform 27× 27 mesh.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Fig. 6. Solution and mesh at t = 0.5

21

22

23

24

25

26

27

28

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

√
Nc

t

Fig. 7. Square root of the number of computational cells as a function of time

Let us analyze the mesh convergence of SDIRK3B4 for the exact solution
of the problem under consideration. The mesh is refined as follows:

hx(0) = hy(0) = h = 0.1, 0.05, 0.025, 0.0125, Rmax = const,

κx(Rmax) = κy(Rmax) = κ = const, τ =
h

2Rmaxκ
.

The refinement is performed for four values Rmax = 0, 1, 2, 3 and three val-
ues κ = 1.0, 0.5, 0.2 (altogether 48 runs). We are interested in E∞ — the

18

absolute error of the scheme in the L∞ norm computed at t = 0.5 over all
mesh nodes. Since the number of computational cells varies with time, it is
reasonable to show E∞ as a function of the total number Nsum of cells over all
levels:

Nsum =
Nt∑

n=0

Nc(tn).

Another advantage of Nsum is that its values can be used to compare the
computational complexity of the scheme on different meshes, both uniform
and adaptive.

Fig. 8 shows the plots of E∞ against Nsum for various Rmax and κ.
These results suggest that SDIRK3B4 on an adaptive mesh with Rmax = 1, 2
and not too small κ = 1.0, 0.5 has an a posteriori order of convergence close
to the theoretical one. For Rmax = 3, the order of convergence is some-
what lower than the theoretical one, which is quite noticeable for κ = 0.2.
Note that, for κ = 1.0, 0.5, due to the AMR, the prescribed error in the
solution is achieved with a smaller Nsum, i. e., at a lower computational com-
plexity. For small Courant numbers, however, the solution-based AMR hardly
contributes to the speed-up of the computation.

−4

−3

−2

−1

0

2 3 4 5 6 7 8

lg
E
∞

lgNsum

κ = 1.0

−4

−3

−2

−1

0

2 3 4 5 6 7 8

lg
E
∞

lgNsum

κ = 0.5

−4

−3

−2

−1

0

2 3 4 5 6 7 8

lg
E
∞

lgNsum

κ = 0.2

Rmax=0
Rmax=1
Rmax=2
Rmax=3
O(τ3)

Rmax=0
Rmax=1
Rmax=2
Rmax=3
O(τ3)

Rmax=0
Rmax=1
Rmax=2
Rmax=3
O(τ3)

Fig. 8. Absolute errors in the L∞ norm against the total number of computa-
tional cells for various Rmax and κ

Sedov blast wave problem. The solution of this well-known gasdynamic
problem [30] consists of a strong shock wave, a nearly constant flow field
in a neighborhood of the blast point behind the shock wave, and a constant
background in the outer region. This solution structure is well suitable for
testing schemes on meshes with solution-based AMR.

19

The system of two-dimensional gasdynamic Euler equations has the form
of (1), where

Q =

ρ

ρvx

ρvy

E

, F(Q) =

ρvx

ρv2
x + p
ρvxvy

vx(E + p)

, G(Q) =

ρvy

ρvxvy

ρv2
y + p

vy(E + p)

,

E =
p

γ− 1
+
ρ|v|2

2
.

Here, ρ, v = (vx, vy), p, and E denote the density, velocity, pressure, and
specific total energy (per unit volume), respectively, and γ = 1.4 is the ratio
of specific heats (the gas is diatomic). The computational domain is D =
(0, 2)× (0, 2) (xmax = ymax = 2), and the maximum time is tmax = 0.01.

The initial and boundary conditions are set as follows. The blast occurs
at the time t = 0 at the point (x0, y0) with x0 = y0 = 1. The blast energy E0

is specified so that the radius of the cylindrical shock wave is 0.8 at the
time t = tmax = 0.01; namely, E0 = 4030.78. The initial conditions are as
follow: for (x, y) ∈ Ω,

ρ(x, y, 0) = 1, vx(x, y, 0) = vy(x, y, 0) = 0,

E(x, y, 0) =

{
E0/[hx(Rmax)hy(Rmax)] if (x, y) = (x0, y0),

10−2/(γ− 1) otherwise.

(8)

The steps hx(0) and hy(0) are chosen so that (x0, y0) ∈ Ω. Before starting the
run in t, the mesh is adapted to initial conditions (8) Rmax times, after which
the values of Q 0 at half-integer nodes are updated using its values at integer
nodes by applying bilinear interpolation (i. e., by averaging). The boundary
conditions remain unchanged, and they are set on the entire ∂D.

This problem was computed using the bicompact scheme SDIRK3B4 with
symmetrized LOD splitting and a conservative limiting method [28]. Follow-
ing the approach of [28], SDIRK3B4 is scheme B; as a scheme A, we used a
baseline bicompact scheme with unsymmetrized LOD splitting.

The parameters of the scheme were C1 = 0.5, σ = 0.1 ([28]); Cx
2 and Cy

2
were automatically determined by formulas (5) with δ = 0.2. The time step τ
was variable and was computed using the formula

τ = 2κmin
{

hx(Rmax)
V x

max + 2Cx
2
,

hy(Rmax)
V y

max + 2Cy
2

}
,

where κ is the Courant number in cells of maximum rank. We specified κ =
0.8. The nonlinear equations of schemes A and B were solved using Newton’s

20

method with relative error rtol = 10−7. The computations were performed on
a mesh with hx(0) = hy(0) = 2/160 and Rmax = 1.

Fig. 9 shows the two-dimensional plots of density (in color) and the ranks
of cells at a finite time. These results suggest that the bicompact LOD scheme
SDIRK3B4 with a conservative limiting method yields the correct symmetry of
the solution and the shock front is free of carbuncles or any other nonphysical
features. Moreover, the bicompact scheme demonstrates stable performance
without any special correction procedures of negative densities and pressures.
The AMR algorithm performs well: the cells refine in areas where the solution
gradient is high and merge in areas where the solution varies little.

Fig. 9. Density field and ranks of cells at t = tmax = 0.01

Figs. 10–12 present the one-dimensional density, velocity, and pressure
profiles, respectively, on the interval x = 1, y ∈ [1, 2] at the final time.
The numerical solution at integer nodes is shown by color markers, while the
exact solution is depicted by the solid curve. An analysis of these profiles
suggests that the numerical solution agrees well with the exact one and the
computed shock wave spreads only over three cells of zero rank. Moreover,
the sharp peaks of density and pressure immediately behind the shock wave
are fairly well resolved by the tested scheme.

Fig. 13 shows the square root of the number of computational cells as a
function of time. The plot suggests that, in the case of AMR, the number of
computational cells in this problem for Rmax = 1 is halved as compared with a
uniform mesh with steps hx(Rmax), hy(Rmax).

21

0

1

2

3

4

5

6

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

ρ
(1
,y
,0
.0
1)

y

Numerical
Exact

Fig. 10. Density profiles on the interval x = 1, y ∈ [1, 2] at t = tmax = 0.01

0

5

10

15

20

25

30

35

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

|v
(1
,y
,0
.0
1)
|

y

Numerical
Exact

Fig. 11. Velocity profiles on the interval x = 1, y ∈ [1, 2] at t = tmax = 0.01

Conclusions

A numerical algorithm based on bicompact schemes of fourth order accu-
racy in space on Cartesian meshes with solution-based AMR was described.
Practical recommendations were given concerning the implementation of data
structures for storing the mesh and the mesh function that take into ac-
count the specific features of the spatial stencil of bicompact schemes. A new
solution-based AMR criterion suitable for general hyperbolic systems of equa-
tions was proposed.

22

0

200

400

600

800

1000

1200

1400

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

p
(1
,y
,0
.0
1)

y

Numerical
Exact

Fig. 12. Pressure profiles on the interval x = 1, y ∈ [1, 2] at t = tmax = 0.01

160

170

180

190

200

210

220

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

√
Nc

t

Fig. 13. Square root of the number of computational cells as a function of
time

Bicompact schemes on Cartesian meshes with solution-based AMR were
used to compute the two-dimensional advection of a compactly supported pulse
and the two-dimensional Sedov blast wave problem. An analysis of the results
obtained for the first problem showed that bicompact schemes preserve the
high order of accuracy on adaptive Cartesian meshes. These schemes demon-
strated good accuracy in both problems. Moreover, in the Sedov problem,
a bicompact scheme with a conservative limiting method does not require
special techniques for correcting negative density and pressure and yields a

23

symmetric solution free of nonphysical features, such as carbuncles. The re-
sults of this work lay the foundations for implementing bicompact schemes
on Cartesian meshes with geometry-based AMR in computational domains of
complex geometry.

Bibliography list

1. Ekaterinaris J. A. High-order accurate, low numerical diffusion methods
for aerodynamics // Prog. Aerosp. Sci. –– 2005. –– Vol. 41. –– P. 192–300.

2. Kurbatskii K. A., Mankbadi R. R. Review of computational aeroacoustics
algorithms // Int. J. Comput. Fluid Dyn. –– 2004. –– Vol. 18, no. 6. ––
P. 533–546.

3. Dumbser M., Käser M., de la Puente J. Arbitrary high-order finite volume
schemes for seismic wave propagation on unstructured meshes in 2D and
3D // Geophys. J. Int. –– 2007. –– Vol. 171. –– P. 665–694.

4. A high-order discontinuous Galerkin method for wave propagation through
coupled elastic-acoustic media / Lucas C. Wilcox, Georg Stadler,
Carsten Burstedde, Omar Ghattas // J. Comput. Phys. –– 2010. –– Vol.
229. –– P. 9373–9396.

5. Hesthaven J. S. High-order accurate methods in time-domain computa-
tional electromagnetics: a review // Adv. Imag. Elect. Phys. –– 2003. ––
Vol. 127. –– P. 59–123.

6. Mikhailovskaya M. N., Rogov B. V. Monotone compact running schemes
for systems of hyperbolic equations // Comput. Math. Math. Phys. ––
2012. –– Vol. 52, no. 4. –– P. 578–600.

7. Rogov B. V. High-order accurate monotone compact running scheme for
multidimensional hyperbolic equations // Comput. Math. Math. Phys. ––
2013. –– Vol. 53, no. 2. –– P. 205–214.

8. Chikitkin A. V., Rogov B. V., Utyuzhnikov S. V. High-order accurate
monotone compact running scheme for multidimensional hyperbolic equa-
tions // Appl. Numer. Math. –– 2015. –– Vol. 93. –– P. 150–163.

9. Bragin M. D., Rogov B. V. Minimal dissipation hybrid bicompact schemes
for hyperbolic equations // Comput. Math. Math. Phys. –– 2016. –– Vol. 56,
no. 6. –– P. 947–961.

24

10. Chikitkin A. V., Rogov B. V. Family of central bicompact schemes with
spectral resolution property for hyperbolic equations // Appl. Numer.
Math. –– 2019. –– Vol. 142. –– P. 151–170.

11. Rogov B. V. Dispersive and dissipative properties of the fully discrete
bicompact schemes of the fourth order of spatial approximation for hyper-
bolic equations // Appl. Numer. Math. –– 2019. –– Vol. 139. –– P. 136–155.

12. Chikitkin A. V., Rogov B. V., Aristova E. N. High-order accurate bi-
compact schemes for solving the multidimensional inhomogeneous trans-
port equation and their efficient parallel implementation // Dokl. Math. ––
2016. –– Vol. 94, no. 2. –– P. 517–522.

13. Berger M., Colella P. Local adaptive mesh refinement for shock hydrody-
namics // J. Comput. Phys. –– 1989. –– Vol. 82. –– P. 64–84.

14. De Zeeuw D., Powell K. An adaptively refined Cartesian mesh solver for
the Euler equations // J. Comput. Phys. –– 1993. –– Vol. 104. –– P. 56–68.

15. Hartmann D., Meinke M., Schröder W. An adaptive multilevel multigrid
formulation for Cartesian hierarchical grid methods // Comput. Fluids. ––
2008. –– Vol. 37. –– P. 1103–1125.

16. Ji H., Lien F.-S., Yee E. A robust and efficient hybrid cut-cell/ghost-cell
method with adaptive mesh refinement for moving boundaries on irregular
domains // Comput. Methods Appl. Mech. Engrg. –– 2008. –– Vol. 198. ––
P. 432–448.

17. Park S., Shin H. Efficient generation of adaptive Cartesian mesh for com-
putational fluid dynamics using GPU // Int. J. Numer. Meth. Fluids. ––
2012. –– Vol. 70, no. 11. –– P. 1393–1404.

18. A Cartesian grid embedded boundary method for the compressible Navier–
Stokes equations / Daniel T. Graves, Phillip Colella, David Modiano
et al. // Comm. App. Math. and Comp. Sci. –– 2013. –– Vol. 8, no. 1. ––
P. 99–122.

19. Positivity-preserving Runge-Kutta discontinuous Galerkin method on
adaptive Cartesian grid for strong moving shock / Jianming Liu, Jianx-
ian Qiu, Mikhail Goman et al. // Numer. Math. Theor. Meth. Appl. ––
2016. –– Vol. 9, no. 1. –– P. 87–110.

25

20. Buchmüller P., Dreher J., Helzel C. Finite volume WENO methods for
hyperbolic conservation laws on Cartesian grids with adaptive mesh re-
finement // Appl. Math. Comput. –– 2016. –– Vol. 272, no. 2. –– P. 460–478.

21. Adaptive wavelet algorithms for solving problems of hydro- and gas dy-
namics on Cartesian grids / A. L. Afendikov, A. A. Davydov, A. E. Lut-
sky et al. –– Moscow : Keldysh Institute of Applied Mathematics, 2016. ––
232 p. –– (In Russian).

22. Marchuk G. I. Splitting methods. –– Moscow : Nauka, 1988. –– 263 p. ––
(In Russian).

23. Samarskii A. A. The theory of difference schemes. –– New York : Marcel
Dekker, 2001. –– 762 p.

24. Yanenko N. N. The method of fractional steps: the solution of problems
of mathematical physics in several variables. –– Berlin : Springer-Verlag,
1971. –– 160 p.

25. Bragin M. D., Rogov B. V. On exact dimensional splitting for a multidi-
mensional scalar quasilinear hyperbolic conservation law // Dokl. Math. ––
2016. –– Vol. 94, no. 1. –– P. 382–386.

26. Bragin M. D., Rogov B. V. Iterative approximate factorization of difference
operators of high-order accurate bicompact schemes for multidimensional
nonhomogeneous quasilinear hyperbolic systems // Comput. Math. Math.
Phys. –– 2018. –– Vol. 58, no. 3. –– P. 295–306.

27. De Zeeuw D. A quadtree-based adaptively-refined Cartesian-grid algo-
rithm for solution of the Euler equations. PhD Thesis. –– Ann Arbor : The
University of Michigan, 1993. –– 149 p.

28. Bragin M. D., Rogov B. V. A conservative limiting method for bicompact
schemes // Keldysh Institute Preprints. –– 2019. –– no. 8. — 25 p.

29. Skvortsov L. M. Diagonally implicit Runge–Kutta FSAL methods for
stiff and differential-algebraic systems // Mat. Model. –– 2002. –– Vol. 14,
no. 2. –– P. 3–17.

30. Sedov L. I. Similarity and dimensional methods in mechanics. –– 10th edi-
tion. –– Boca Raton, Florida : CRC Press, 1993.

26

Contents

Introduction . 3
1. Bicompact schemes on standard Cartesian meshes 4
2. Bicompact schemes on Cartesian meshes with solution-based AMR . 8
3. Numerical experiments . 15
Conclusions . 20
Bibliography list . 23

	Introduction
	1. Bicompact schemes on standard Cartesian meshes
	2. Bicompact schemes on Cartesian meshes with solution-based AMR
	3. Numerical experiments
	Conclusions
	Bibliography list

