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УДК 519.688

А.В. Закиров, Б.А. Корнеев, В.Д. Левченко, А.Ю. Перепёлкина

К вопросу о консервативности метода PonD решения дискретного
уравнения Больцмана

Метод решёточного уравнения Больцмана (LBM) с успехом применяется
при решении задач динамики жидкостей и газов в области малых скоростей
потока и при изотермических условиях. Недавно был предложен альтер-
нативный метод PonD решения дискретного уравнения Больцмана, свобод-
ный от указанных ограничений. В данной работе представлена собственная
реализация данного метода и исследованы возможности решения с его по-
мощью задач с ударными волнами. В вычислительном аспекте, по сравне-
нию со стандартным подходом LBM, шаг столкновений упрощается, но для
выполнения переноса требуется применять неявную схему, вычислительно
сложную и неконсервативную в общем случае. Мы предлагаем вариант ме-
тода PonD, обеспечивающий консервативность и использующий явную схе-
му переноса. Выполнение законов сохранения массы, импульса и энергии
проверено в задаче формирования слабой ударной волны при опрокидыва-
нии акустической волны большой амплитуды. Также представлено решение
1D и 3D проблем Сода. Ключевые слова: метод решёточного уравнения
Больцмана, дискретное уравнение Больцмана, консервативность численных
схем
A. Zakirov, B. Korneev, V. Levchenko, A. Perepelkina

On the conservativity of the Particles-on-Demand method for the solution of
the Discrete Boltzmann Equation

It is well known that the standard Lattice-Boltzmann method (LBM) is appli-
cable in the range of small flow velocities and under the isothermal conditions.
The novel Particle-on-demand method [1] allows to numerically solve the dis-
crete Boltzmann equation for high Mach numbers. We validate its capabilities
with our implementation on the problems with shock waves. In comparison
with the standard Lattice Boltzmann Method, the collision step is simple, but
the streaming step is implicit, non-conservative and excessively computation-
ally heavy. We propose a way that in specific cases improves the method by
making the streaming step explicit and conservative. The results are validated
by examining the total mass, momentum and energy change in the problem of
shock formation due to the sound wave distortion. The scheme also performs
well in both 1D and 3D test Sod problems.

Keywords: Lattice-Boltzmann method, high Mach number, conservation
property of numerical schemes
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1 Introduction

It is well known that the standard Lattice-Boltzmann method (LBM) [2] is
applicable in the range of small flow velocities and under the isothermal condi-
tions. The temperature, and zero flow velocity, are ingrained in the integration
variable of the Gaussian quadrature [3]. If the flow speed is comparatively
large, the Galilean transformation allows to measure flow speed as a deviation
from the reference one, and thus the applicability conditions remain valid.

In view of this, the ability to change the reference frame of the solution with
spatial coordinate seems a tempting idea in the problems with large variations
of speed and temperature. However, it is forbidden in the standard methods
since the Lattice-Boltzmann Equation (LBE) is written is terms of the discrete
distribution functions fi, which correspond to the expansion of the continuous
distribution function around the reference value [3]. Thus, the change of the
reference frame would mean the change of variables [4], and this fact restricts
the change of the reference frame.

The solution was proposed in [1] by construction of the Particles-on-Demand
(PonD) LBM which belongs to the family of semi-Lagrangian methods of
LBM [5, 6]. Indeed, there is an elegant way to change the gauge of the LBM
variables by equating the moments. The change of gauge comes down to the
change of the integration variable.

The results reported in [1] show perfect match with the theoretical predic-
tion up to Mach numbers of 100. It is very interesting to investigate the ability
of this method for modeling discontinuities. In this work we implement the
scheme and test its applicability to the simulation of strong shock waves.

The weak point of the proposed method is the complexity of the stream-
ing step. The streaming step requires off-grid values of the discrete distri-
bution functions. This is often avoided in LBM simulations. The original
LBM streaming is simple for implementation and does not lead to numerical
dispersion. The necessity of the off-grid values arises in the simulations with
non-cartesian grids [7] or with grid refinement [8, 9]. Moreover, the streaming
step in [1] becomes implicit and requires predictor-corrector iterations.

As in other interpolation-supplemented LBMs, the issue is whether or not
the conservation laws hold for the given scheme, and if not, whether it is
possible to complement the simulation in a way that the scheme becomes
conservative.
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2 D1Q5 Particles-on-Demand
Lattice-Boltzmann method

2.1 Velocity space discretization of the distribution
function

The dicrete Boltzmann equation with collision term in the BGK form reads

∂fi
∂t

+ ci
∂fi
∂r

=
fi − f

eq
i

τ
. (1)

Here fi are the Discrete Distribution Functions (DDF). They are used to

compute an approximation to the moments
∫
f(v, r, t)vαx v

β
y v
γ
z dv of the continuous

distribution function f(v, r, t) with numerical integration by Gaussian quadra-
ture rule:

mαβγ ≡
∫
fN (v, r, t)vαx v

β
y v
γ
z dv =

∑
fic

α
ixc

β
iyc

γ
iz , (2)

where fN (v, r, t) is an expansion of the continuous DF into Hermite polynomial
basis, truncated in order N .

When the quadrature with the order of approximation n is taken, that is,
the quadrature is exact for polynomials up to order n, equation (2) is exact
for α + β + γ +N < n and

fi = wif(ci, r, t)(2π)D/2 exp(|ci|2/2), (3)

wi and ci are the weights and abscissa of the Gaussian quadrature.

(2π)D/2 exp(|ci|2/2)

is the inverse of the weight function of the Hermite polynomials, and, at the
same time, of the Maxwell distribution function for temperature T = 1 and
flow velocity u = 0. f

eq
i corresponds to the equilibrium distribution function

and is usually taken in form of a polynomial.
For example, in one-dimensional case (D=1), for the quadrature with the

order of accuracy equal to 5, the lowest number of the required abscissa is
three: (0,±

√
3). With the change of the integration variable the abscissa are

usually scaled to match the grid spacing. In this case, ci are in (0,±1) and the
scaling introduces the ”lattice temperature” T0 = 1/

√
3.

In the PonD method the integration variable is scaled by an arbitrary
temperature T and shifted by an arbitrary reference velocity u. It becomes
ei =

√
T/T0ci + u.

The fi variables are transformed with the use of the requirement that the
moments should be gauge-invariant. To convert a set of

−→
f λi from one gauge
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λ(u, T ) to another gauge λ′(u′, T ′) the following equation is solved:

Mλ′
−→
f λ
′
i = Mλ

−→
f λi , (4)

where the matrices Mλ and Mλ′ are moments calculation operators.
For the node update at rp, all fi should be streamed from the positions

rp − ei(λ), where (λ) is the gauge that is obtained after this streaming update.
The fi at the required coordinates are not known.

In regular LBM, various methods exist for space-time discretization in case
the quadrature points do not correspond with the lattice points, such as vari-
ous kinds of finite-difference or finite-volume methods [10, 9, 11]. As a simple
example, fi may be interpolated from the nearby nodes with Lagrange poly-
nomial interpolation. In [1] 4-point interpolation is used. The 4 points are
found relative to the rp − ei(λ) position, so it may vary for different ei in one
node, and for different points.

Before the interpolation, the fi should be transformed to the gauge, corre-
sponding to (λ) at xp after this streaming update. Thus, in contrast to the
traditional LBM, the streaming step has become implicit, computationally
heavy, and generally not conservative. On the other hand, the collision step
is greatly simplified, since in the defined gauge f

eq
i = wiρ.

2.2 D1Q5 PonD

First, consider D = 1 case, with five
−→
f i.

Matrix Mλ elements are miα = eαi , where ei =
√
T/T0ci + u and 0 ≤ α ≤ 4.

Vectors ci are the base set of discrete velocities (0,±cA,±cB).

Let fλ
′

j = Gijf
λ
i . The elements of the matrix Ĝ = M−1

λ′ Mλ can be found in
the following form:

wijgij . (5)

Here

wij =



T20

T ′2c2Ac
2
B

if c′j = 0;

T20

2T ′2(c4A − c
4
B)

if |c′j | = cA;

T20

2T ′2(c4B − c
4
A)

if |c′j | = cB ;

(6)

gij =

∏
k=0,..4

(
∆u−

√
T ′/T0ck +

√
T/T0ci

)
∆u−

√
T ′/T0cj +

√
T/T0ci

,∆u = u− u′. (7)
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The choice of cA, cB and T0 is generally free. To get finer approximation
for higher moments, it is better to choose them as zeros of the correspondent
Hermite polynomials (i.e. 5th order Hermite polynomials in D1Q5). Here we
take T0 = 1, cA =

√
5−
√

10, cB =
√

5 +
√

10.
The weights Wi of the equilibrium functions can be found from the following

equations:
W0 + 2WA + 2WB = 1;

2c2AWA + 2c2BWB = T0;

2c4AWA + 2c4BWB = 3T20 .

(8)

Solving it we get:

WA =
T0

(
c2B − 3T0

)
2c2A

(
c2B − c

2
A

); WB =
T0

(
c2A − 3T0

)
2c2B

(
c2A − c

2
B

); W0 = 1− 2WA − 2WB . (9)

2.3 Explicit PonD scheme with a fixed interpolation
stencil

An interesting observation can be made if we try to express the first moments
at a point in the specific case of the fixed stencil. By the fixed stencil we mean
the use of the same interpolation points for all ei in every xp node, and for all
xp.

In 1D case, let us take Q discrete velocities so that Q independent moments
can be computed. Let us take Lagrange polynominal interpolation with L

points. The fi at a point xp in space in the (u, T ) gauge comes from the
streaming operation from the point xp − ei(u, T ). At ei, it is obtained by the
interpolation

fi|xp−ei =

L−1∑
n=0

anfi(xn). (10)

xp is one of the points from the interpolation stencil 0 <= p <= L − 1. an are
the coefficients of the interpolation stencil for the value at xn:

an(xp, ei) =

L−1∏
k=0

xp − ei − xk
xn − xk

. (11)

This expression has L factors and thus it is a polynomial in ei of order L. It
may be expressed by a sum

an =

L∑
l=0

Anle
l
i, (12)
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where Anl are readily found after fixing L and xp.
After streaming, the moments at xp are expressed as:

mα =

Q−1∑
i=0

eαi

L−1∑
n=0

L∑
l=0

Anle
l
ifi(xn) =

L−1∑
n=0

L∑
l=0

Anlmα+l. (13)

Provided that the L moments with the order up to mα+L are gauge-invariant,
the moment of the order α may be obtained with an explicit stencil from the
moments in the neighboring points. For example, in D1Q5, let’s manually fix
the nearest 3 points for interpolation of all 5 fi. We will mark these 3 points as
P−, P0 and P+ assuming the nearest left point, current point and the nearest
right point.

Then it can be shown that in D1Q5 the first 3 moments after the LBM pull
step can be expressed in terms of the moments in these 3 points. The new
moments in the point P0 are found in the new gauge λ′:

mα(x0, t+ ∆t) =
∑
i=0..4

fλ
′

i eαi (x0, t+ ∆t).

Also by the construction of the method m0 = ρ, m1 = ρu, m2 = ρu2 + DρT . If
we use Lagrange interpolation by the 3 nearest points, then the new moments
are as follows:

m0
α(t+ ∆t) = m0

α(t) −
1

2

(
m+
α+1(t)−m−α+1(t)

)
(14)

+
1

2

(
m+
α+2(t) +m−α+2(t)− 2m0

α+2(t)
)
, α = 1, 2, 3,

where m0, m− and m+ are the moments in the points P0, P− and P+ accord-
ingly.

In D1Q5 method we can retrieve only the the first 5 moments, then only
the first 3 moments can be expressed explicitly in accordance with eq. (14).
But it is enough to extract all necessary information for the new gauge (i.e. u

and T) and we don’t need to make iterative procedure to find correct gauge.
These method allows to get the new set of ei in the new gauge. The rest of fi
in these new gauge should be interpolated.

With help of this new procedure the original iterative implicit method be-
comes explicit. Note also that the formula (14) also guarantees that this
numerical scheme is fully conservative in mass, momentum and energy.

The consideration is valid if the interpolation stencil for all fi at the node
update stays fixed. It may occur naturally in the simulation, and the chances
are higher if the gauge temperature is low and the sign of u doesn’t change. For
L = 3, if ei length is smaller than the half of the mesh step, the interpolation
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stencil for all fi is same from the start of simulation, but may become different
in the course of the simulation. We may either put restrictions on the gauge
parameters so that it will not happen, or enforce the fixed stencil by eliminating
the dependence of the point choice on xp − ei. In the latter case, xp − ei may
fall outside the interpolation stencil if ei becomes larger than the distance
between grid nodes. This changes over the estimation from the interpolation
to the extrapolation and can lead to solution fluctuation and instabilities.

2.4 D3Q125 PonD

The same approach is also valid in 3D if we make the simple direct product of
all statements. Then there are 125 fi in the single point and the transfer matrix
from one gauge to another consist of the 125×125 elements. The elements are
as like as (5):

wxwywzgxgygz , (15)

where wx and gx are constructed just as wij and gij in (6)-(7) but taking only
x-component of the vectors c and u, and y- or z-component for wy, gy and wz,
gz.

125 fi also allow to construct 125 different moments mαβγ =
124∑
i=0

fiex
α
i ey

β
i ez

γ
i .

If we fix the Lagrange interpolation on the nearest points (27 neighboring
nodes in 3D) then it is also possible to get the explicit expression for the first
moments and to find appropriate gauge.

2.5 Conservativity

As shown in section 2.3, the scheme is conservative if the same 3 points of
the coordinate grid are chosen for the interpolation for each node update. In
general 1D case the conservativity may be demonstrated with the following
consideration. If a moment update in the cell xj may be written in the form

∂mα
∂t

∣∣∣∣
xj

= F |xj−1/2 − F |xj+1/2, (16)

where F is some numerical representation of the flow of mα between nodes and
the integral of 16 over some region x0..xJ is

J∑
j=0

∂mα
∂t

∣∣∣∣∣∣
xj

= F |x0−1/2 − F |xJ+1/2, (17)

where all intermediate F vanish, then the moment mα is conserved.
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In case the stencil is fixed and same for all fi a formula similar to 14 may
be achieved, and the discrete representation of flows is evident. In other cases
the left and right flows may be separated by finding the form of the moment
mα update in terms of fi and its sum over a sufficiently large region (larger,
than the stencil width). The flows inside the summation region vanish.

However, this works only if the update rule is transitionally invariant. In
case the interpolation stencil is changed inside the region, the right flow and
the left flow over the cell boundary do not vanish. This becomes the source
of mass, and other moments. And generally, by construction of the PonD
method in [1], the stencil change of this kind is almost sure to happen during
the simulation.

This shows that the method in its original form is not conservative. The
mass gain will be shown on the simulation examples in later sections.

3 Simulation examples

3.1 Sound wave breaking

Here we present the test problem of sound wave breaking to demonstrate
the conservativity and the differences between interpolation schemes and the
number of discrete velocities.

This problem can not be solved by standard LBM, since it requires com-
pressibility of the fluid. It may be solved in modified LBM by artificially
adjusting the speed of sound [12, 13].

We test both 3D and 1D schemes, but the simulation domain is 1D with
regular mesh and the space step ∆x = 1 and 1024×1×1 cells total with periodic
boundary conditions. The initial conditions are the following:

P (x) = P0 + A sin

(
x

2π

256

)
;

T (x) = T0P (x)
γ−1
γ ;

ρ(x) =
P (x)

T (x)
;

u(x) =
AT0

P0
√
γT0

sin(x
2π

256
).

(18)

Here P (x), T (x), ρ(x) and u(x) are the pressure, temperature, density and ve-
locity. We choose the base pressure P0 = 1, the base temperature T0 = 0.1,
amplitude A = 0.2. Adiabatic exponent γ = (D + 2)/D is 3 in 1D scheme or 5/3

in 3D.
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Figure 1: Sound wave density profiles at the different time moments(t = 0,500∆t

and 1000∆t). The scheme is D1Q5 (left) and D3Q125 (right) with the fixed
interpolation stencil using 3 nearest points.

Fig. 1 demonstrates the sinusoidal wave distortion due to the sound speed
dependency on the temperature. After approximately 500 time steps, the
shock wave is formed and the discontinuity of the parameters arises. The
numerical scheme is non-monotonic and the oscillations begin to develop near
the discontinuity.

We compare three variants of the interpolation scheme:

• 4-point interpolation stencil as in [1];

• 3-point interpolation; the center point of interpolation is found as the
nearest point for every fi: round(xp − ei);

• 3-point interpolation with the fixed stencil, so that the center point of the
interpolation for all fi is xp.

If we compare the shock wave front for different number of discrete speeds
and different interpolation schemes (Fig. 2) it may be found that they are
different not only in the oscillations behaviour but even in the position of the
discontinuity.

Further we calculated the total mass, momentum and energy (first three
moments) at all points of the computational region. All these moments must
be constant in time if we use periodic boundary conditions. But Fig. 3 demon-
strates that the conservativity is achieved only if we use the fixed interpolation
stencil and sufficiently large set of discrete velocities (5 in 1D and more than
125 in 3D).

In all these cases τ = 0.51 and time step ∆t = 1.
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Figure 2: Shock wave profile structure after 1000 time steps for different
schemes

3.2 One-dimensional Riemann problems

We also report the ability to solve some of the Riemann problems with
PonD LBM: Sod shock tube problem [14] and the blast with a temperature
ratio of 105:1 also known as the left part of the Woodward-Colella blast wave
problem [15].

The Sod shock tube task is a common one-dimensional benchmark with the
following initial conditions:

ρ|x<0 = 1, ρ|x≥0 = 0.125;

P |x<0 = 0.01, P |x≥0 = 0.001;

u|x<0 = 0, u|x≥0 = 0.

(19)

We have solved it with two types of LBM PonD D1Q5: with the fixed
interpolation stencil using 3 nearest points for all nodes and the flexible in-
terpolation stencil using 4 points as described originally in [1]. The mesh is
regular with ∆x = ∆t = 1.

The solution after 1000 time steps is plotted in Fig. 4.
The solution is close to exact, except for the oscillations. Moreover the

oscillations are stronger for the interpolation using 3 points with the fixed
stencil.

To demonstrate where the conservative scheme has the advantage we con-
sider another Riemann problem. The second test (blast wave) has the following
initial conditions:

ρ|x<0 = 1, ρ|x≥0 = 1;

P |x<0 = 10−1, P |x≥0 = 10−6;

u|x<0 = 0, u|x≥0 = 0.

(20)

The solution after 100 time steps (Fig. 5) can be found for D1Q5 if we use
the fixed interpolation stencil using 3 nearest points.
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Figure 3: Total mass, momentum and energy dependency on time.
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Figure 4: Sod problem test at 1000∆t, τ = 0.51
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Figure 5: Blast wave problem test at 100∆t
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Figure 6: Blast wave problem test at 500∆t

But for the non-fixed interpolation stencil the solution becomes unstable
and the predictor-corrector iteration procedure doesn’t converge.

We also demonstrate how PonD method handles with one more Riemann
task with the following initial conditions:

ρ|x<0 = 1, ρ|x≥0 = 1;

P |x<0 = 0.1, P |x≥0 = 0.02;

u|x<0 = 0, u|x≥0 = 0.

(21)

The solutions are shown in Fig. 6.
It is evident from the density plot that the non-fixed interpolation stencil

gives incorrect result — the density behind the shock wave is visibly higher
than accurate value. The scheme with the fixed interpolation stencil gives the
proper absolute value.

The analysis of the oscillatory nature of the one-dimensional Riemann tasks
solution invites the suggestion to apply some kind of limiters to the PonD
LBM scheme. Nevertheless, as it was previously shown, it is not possible to
combine easily the variable stencil with conservativity of the PonD numerical
scheme. Perhaps the reformulation of the scheme with fluxes could help to
develop the use of limiters with controlling the conservativity.
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3.3 Spherical Sod problem

We have simulated the 3D spherical Sod problem with the following initial
conditions:

ρ|r<50 = 1, ρ|r≥50 = 0.125;

P |r<50 = 5 · 10−2, P |r≥50 = 5 · 10−3;

u|r<50 = 0, u|r≥50 = 0,

(22)

where r =
√
x2 + y2 + z2.

Relaxation time was set to τ = 0.6. A regular 3D mesh was used for one
eighth part of the whole spherical region. The simulated region is 0 < x <

120, 0 < y < 120, 0 < z < 120 and space steps are ∆x = ∆y = ∆z = ∆r = 1.
The mirror boundary conditions is applied on all boundaries, where unknown
distribution function fi at negative x, y or z-coordinates is reconstructed from
the known function obtained by reflection symmetry.

We also compare the solution with the one obtained by the Godunov-type
solver in spherical coordinates [16]. Space step resolution for the reference
solution was 0.012∆r.

The problem is solved with the PonD D3Q125 method with two types of
interpolation stencils: the fixed interpolation stencil for all cells using nearest-
neighbours points (second-order by use of 3×3×3 = 27 points), and the flexible
third-order interpolation stencil, that may vary for each of 125 distribution
functions (tri-cubical interpolation based on 4× 4× 4 = 64 points).

The density and Mach number cross-sections at different locations and sev-
eral time instants are plotted in Fig. 7.

In Fig. 8, the solution is shown at the time step t = 150 for different directions
from the sphere center. The result for the non-fixed interpolation stencil looks
also satisfactory despite the loss of the conservativity.

All calculations were performed with double precision. Maximum number
of iteration steps was set to 100. Near the shock wave this number has been
achieved, which shows that the convergence did not occur.

4 Conclusion

In this work, we have investigated the new and promising scheme PonD for
fluid dynamic simulation.

We emphasize the two shortcomings of the originally published PonD D1Q3
method: the superfluous complexity of the streaming step, and loss of mass
conservation.

We have found that in case the interpolation stencils for all fi in one stream-
ing operation coincide, the streaming step may be written as an explicit update
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Figure 7: Spherical Sod problem solution. Top: the density cross-sections with
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instants=50, 100 and 150. In the left half the fixed interpolation over 27 points
is used; and in the right part the interpolation stencil is not fixed and uses
4× 4× 4 points.
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Figure 8: Spherical Sod problem solution at 150∆t

of several moments. If these moments include u and T , the gauge after the
streaming step is known and can be explicitly derived from the correspond-
ing ρ,u and T of the nearest points and the predictor-corrector iterations are
unnecessary.

Adjustment of the alternation of the scheme’s stencil allows controlling the
locations of the error sources. For example, the fixed interpolation stencil
for the whole simulation domain makes the scheme conservative if enough
number of the moments can be constructed, such as in the case of D1Q5 for
one-dimensional case and D3Q125 for three-dimensional.

On the other hand, we see the PonD scheme as a valuable development
in fluid dynamics simulation. The main finding of the original paper [1] is
the method of gauge-transformation of the scheme variables. First of all,
by putting the individual reference frame into each node of the computation
grid some restrictions of the LBM is eliminated, because the second moment
and therefore the temperature turn out to be correct in PonD even in non-
isothermal flows. Secondly, by extracting the explicit scheme for R moments
we can view the PonD scheme as a variation of hydrodynamic finite-volume
scheme, in which the information of the higher moments is not lost but retained
in the remaining (Q−R) DDFs. Thirdly, since the unlike LBM we do not require
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ei to be defined by the grid steps, we may choose Gauss-Hermite quadrature
with higher precision.

In any case, we see that the scheme readily solves even the shock-wave
problems with good precision. We see the new scheme as a raw idea that may
be further developed and become a new trend in CFD. However for a complete
success, it is necessary to develop conservative schemes or control the error of
the nondissipative variables (mass, momentum and energy).
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