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УДК 517.958

Веденяпин В.В., Першин И.С.
Уравнение Власова-Максвелла-Эйнштейна и лямбда Эйнштейна
Выводятся уравненияВласова-Максвелла-Эйнштейна из классического дей-

ствияЛоренца-Шваршильда-Гильберта-Эйнштейна. При этом требуется и уда-
ётся синхронизовать собственные времена различных частиц. На основе полу-
ченных выражений для действия анализируется лямбда Эйнштейна и вклад её
в тёмную энергию.
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Vlasov-Maxwell-Einstein Equation and Einstein Lambda
Vlasov-Maxwell-Einstein equations are derived from classical action of Lorentz-

Schwarzschild-Hilbert-Einstein. We need and get synchronization of times of dif-
ferent particles. On the basis of obtained results we analyze Einstein’s lambda and
its connection with dark energy.
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Introduction
Einstein Lambda is now widely used to explain dark energy. [1–4, 14, 15, 42,

43]. Einstein himself considered the introduction of the Lambda the biggest mistake
of his life. In this paper we show that in the classical action the contribution of
other components is difficult to be distinguished from the Lambda’s contribution, so
Einsteins’ suspicions can be justified. To compare these contributions, we need to
rewrite some of them through the distribution functions, as is done in the derivation
of the Vlasov equations. We derive the Vlasov-Maxwell-Einstein equation [40, 41]
via classical actions andMaxwell Lagrangian and Poincaré-Einstein-Schwarzschild-
Hilbert-Pauli Lagrangian.

Vlasov-like equations live an amazing life now. Not only the area of their applica-
tions expands all the time, but also new names emerge constantly. There already are
the Vlasov-Poisson equations for gravity, plasma and electrons, the Vlasov-Maxwell
equations for electrodynamics and the Vlasov-Einstein equations for strongly rela-
tivistic gravity. In this paper, we present the Vlasov-Maxwell-Einstein equations.
The name choice is natural because it originates from the classical Lagrangians of
the general theory of relativity (GTR) and electrodynamics [1–5]. When deriving
Vlasov-like equations from the classical Lagrangians [1–5] according to [1–13], the
Liouville equations are first derived. In the case of the Vlasov-Maxwell-Einstein
equations, new difficulties arise. We need to synchronize times of different particles
and compare different forms of Lagrangians for their geodesics. The interval integral
appears, which is usually assumed to be unity [1–5]. It is impossible to synchronize
the times without this integral, and therefore write down the Vlasov-Einstein equa-
tion for many particles. To obtain the self-consistent field equations, it’s required to
transform the classical actions from Lagrangian coordinates to Eulerian coordinates
using distribution functions.

The work plan is as follows. Firstly, we consider the theory of geodesics with an
electromagnetic field for classical Lagrangians. In the second section a multiparticle
problem leads to time synchronization. We write out the Hamiltonian formulation
and write down a Liouville equation. The third part is about the application of the
Hamiltonian formalism for time-independent fields. The next section is about the
integration of the geodesic equations in fields that depend only on time using the
Hamiltonian formalism. In the last section we finally derive the Vlasov-Maxwell-
Einstein equations.
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1 The Equivalence of Two Actions in the GTR and in
the Theory of Geodesics

Let’s consider the GTR action in the presence of an electromagnetic field [1–5],
describing the movement of particles of m mass and e electric charge.

S1 = −mc
∫ √

gab
dxa

dq
dxb

dq
−

e
c

∫
Aa

dxa

dq
dq (1)

Here gab(x) is a metric in 4-dimensional space-time x ∈ R4, and Aa(x) is the potential
of an electromagnetic field (a, b = 0, 1, 2, 3). Repeating superscripts and subscripts are
summed up here and thereafter. Such an action is inconvenient for the Hamiltonian
formalism, since its Hamiltonian is zero by the Euler’s homogeneous function the-
orem. Indeed, the Lagrangian is a linear expression in velocities. The transition to
a more convenient action is more or less known in the literature [1–4], but wasn’t
strictly justified, so we will give the proof for it. Take a look at this action

S = −
mc

2
√

I

∫
gab(x)

dxa

dq
dxb

dq
dq −

e
c

∫
Aa

dxa

dq
dq (2)

The value of I = gab
dxa
dq

dxb
dq in constant, as we will see later. The connection of (1)

and (2) is justified by the following general lemma.
Consider an action

k
∫

L(x,
dx
dq
)dq +

∫
L1(x,

dx
dq
)dq (3)

and another action ∫
h(L)(x,

dx
dq
)dq +

∫
L1(x,

dx
dq
)dq, (4)

where h(L) is a some function of L Lagrangian. Let’s compare their Euler-Lagrange
equations.

The Lemma is as follows: If these conditions are true

1. L Lagrangian is an integral of motion for (3) action.

2. k from (3) must be equal to the derivative of h(L) from (4), that is k = dh(L)
dL .

Then (3) and (4) are equivalent, which means that their Euler-Lagrange equations
are the same.

The proof is to compare the Euler-Lagrange equation for (4) action

d2h

dL2
dL
dq

∂L
∂v
+

dh
dL

d
dq

∂L
∂v
+

d
dq

∂L1
∂v
=

dh
dL

∂L
∂x
+
∂L1
∂x

,
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with the same for (3) action

k
d

dq
∂L
∂v
+

d
dq

∂L1
∂v
= k

∂L
∂x
+
∂L1
∂x

.

The corollary: the (1) action and the (2) action are equivalent. To see this, we
need to set

h(L) = −mc
√

L, L = gab
dxa

dq
dxb

dq
, L1 = −

e
c

Aa
dxa

dq
(5)

The first condition is satisfied by the same Euler’s homogeneous function theorem,
because the Hamiltonian for (2) action is proportional to the Lagrangian from (5),
since L is quadratic in velocities, and L1 is linear in velocities. The second condition:
k from (3) is exactly equal to the derivative of h(L): k = dh

dL = −
mc
2
√

L
. This coefficient

stands before the first term in the (2) action. I denotes a persistent value of L from
(5), that is the interval squared. Usually [1–4] a natural parameter s is taken instead
of arbitrary q. They are connected by a simple formula ds =

√
Idq, which follows

from the comparison of ds and I.
Let’s write down the Euler-Lagrange equations for (1) and (2) actions. In contrast

to the usual derivations [1–4], we assume the value of the interval is not a unity, but
√

I.
mc
√

I

d
dq
(gab

dxb

dq
) +

e
c

d
dq

Aa =
mc

2
√

I

∂gbc
∂xa

dxb

dq
dxc

dq
+

e
c
∂Ab
∂xa

dxb

dq
(6)

From the (6) system, it can be seen that without electromagnetic fields, mc√
I
factors

are reduced, and the equations do not depend on which parameter is taken, the inter-
val s or the initial q parameter. But if electromagnetic field is present, there will be
different equations. A transition to the natural parameter s is possible, which follows
from (6). However, this possibility is absent in multiparticle problems, as we will
see below.

2 Multiparticle Problem, Time Synchronization,
Hamiltonian Formulation and Liouville Equation

Let’s consider a multiparticle problem of motion in a gravitational and electro-
magnetic field. Consider an action similar to (1) for an ensemble of particles.

S1 = −
∑

r
mr c

∫ √
gab

dxa
r

dq
dxb

r
dq

dq −
∑

r

er
c

∫
Aa

dxa
r

dq
dq (7)

We can again come to (2)-type Lagrangian and get an equivalent action

S = −
∑

r

mr c
2
√

Ir

∫
gab(x)

dxa
r

dq
dxb

r
dq

dq −
∑

r

er
c

∫
Aa

dxa
r

dq
dq (8)
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It should be noted that here an r index appears which numbers the particles. Values
of Ir integral denoting the particles’ interval sizes are not necessarily the same. Here
we have synchronized the proper time of the particles dsr =

√
Ir dq in the following

sense: 1) we have showed that the impossibility of synchronizing the dsr intervals
themselves is come from the different values of Ir ; 2) we have showed how different
proper times are related: the q parameter for all particles is the same. It’s important
that the Ir integrals depend on parameterization, but their ratio does not, so it’s
convenient to rewrite the action (8) via the ds interval of some particle (observer).

S = −
∑

r

mr c
√

I
2
√

Ir

∫
gab(x)

dxa
r

ds
dxb

r
ds

ds −
∑

r

er
c

∫
Aa

dxa
r

ds
ds.

Using the usual momentum formulae, from (2) or (7) or (8) we get

Qra =
∂L
∂va

r
= −

mr c
√

Ir
gab(xr )

dxb
r

dq
−

er
c

Aa(xr ) (9)

These Qra are the canonical «long» momenta [1–4]. Then the velocities expressed
through the long momenta are

dxb
r

dq
= −

√
Ir

mr c
gab(xr )(Qra +

er
c

Aa) (10)

dQra
dq
=
∑

r

√
Ir

mr c
(Qrd +

er
c

Ad(xr ))
∂gdb

∂xa (xr )(Qrb +
er
c

Ab(xr ))+

er
√

Ir
mr c2

(Qrd +
er
c

Ad(xr ))g
db∂Ad
∂xa

r

(11)

There is a Hamiltonian for which the equations (10) and (11) are canonical:

H =
∑

r

√
Ir

mr c
(Qra +

er
c

Aa(xr ))g
ab(xr )(Qrb +

er
c

Ab(xr ))

The integrals √Ir do the time synchronization here, leading to differentiation by
the same parameter q. Now we write the corresponding Liouville equation for the
distribution function fr (x, p, q).

∂ fr
∂q
−

√
Ir

mr c
gab(x)(Qa +

er
c

Aa)
∂ fr
∂xb
+

(

√
Ir

mr c
(Qd +

er
c

Ad(x))
∂gdb

∂xa (Qb +
er
c

Ab(x))+

er
√

Ir
mr c2

(Qd +
er
c

Ad(x))g
db∂Ad
∂xa )

∂ fr
∂Qa

= 0

(12)

Here indices r have moved from the momenta and the coordinates to the distribution
function fr (x, p, q) as usual [5–13], and the equations depend on the indices only
through mass, charges and intervals squared, i.e. Ir .
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Let’s write out the stationary form of this equation, where fr (x, p, q) does not de-
pend on q, this is how the Vlasov-Einstein equation is usually written [5, 10, 11].

−gab(x)(Qrb +
er
c

Ab)
∂ fr
∂xa+

(
∂gbd

∂xa (Qrd +
er
c

Ad)(Qrb +
er
c

Ab)+

er
c

Fab(x)g
db(Qrd +

er
c

Ad))
∂ fr
∂pa
= 0

(13)

The integrals Ir and the masses mr have disappeared, but the electric charges er have
not. Compare now the resulting equations with those when using «short» momenta
in (7) without the electromagnetic field.

pra = −
mr c
√

Ir
gab(xr )v

b
r , vb

r =
dxb

r
dq

(14)

We have obtained the first-order equations for the (7) (or (8)). They are not Hamilto-
nian, but divergence-free. For the sake of clarity, we will use the proper time of some
particle (observer) s, ds =

√
Idq when synchronizing, instead of the affine parameter

q.
dxb

r
ds
= −

√
Ir

mr c
√

I
gab(xr )pra,

d
ds
(pra) = −

√
Ir

mr c
√

I

∂gbd

∂xa prbprd +
er
c

√
Ir

mr c
√

I
Fab(xr )g

db(xr )prd

(15)

Let’s write the Liouville equation for the distribution function fr (x, p, s) of particles
with masses mr and electric charges er over the 4-space x, 4-momentum p with s as
a parameter.

∂ fr
∂s
−

√
Ir

mr c
√

I
gab(x)pa

∂ fr
∂xb
+

(−

√
Ir

mr c
√

I

∂gbd

∂xa pbpd +
er
c

√
Ir

mr c
√

I
Fab(x)g

dbpd)
∂ fr
∂pa
= 0

(16)

The stationary form of this equation, i.e. fr (x, p, s) does not depend on s:

−gab(x)pa
∂ fr
∂xb
+ (−

∂gbd

∂xa pbpd +
er
c

Fab(x)g
dbpd)

∂ fr
∂pa
= 0 (17)

So, we have obtained the stationary ((13) or (17)) Liouville equations, also non-
stationary ((12) or (16)) ones. We can see that when transforming (12) to (13) or
(16) to (17) the integrals √Ir and the masses mr are being reduced, but the charges
er are not.
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3 Stationary Solution Analysis
It can be seen from (6) that in the stationary case, when the metric gab and vector

potentials Aa do not depend on the time coordinate x0 = ct, the right-hand side in (6)
disappears when a = 0, and we can integrate the left side

mc
√

I
(g0b

dxb

dq
) +

e
c

A0 = −Q0 (18)

3.1 Landau Metric
To understand what the integral (18) is, let’s take the non-relativistic metric [3,

Eq. (87.13)]:
gab = (1 +

2U

c2
,−1,−1,−1)

Then the integral (18) becomes
mc
√

I
(1 +

2U

c2
)(

dx0

dq
) +

e
c

A0 = −Q0 (19)

The remaining equations (6) take the following form
mc
√

I

d
dq
(
dx j

dq
) +

e
c

d
dq

A j =
mc

c2
√

I

∂U

∂x j (
dx0

dq
)2 +

e
c
∂Ab
∂x j

dxb

dq
, j = 1, 2, 3. (20)

We can exclude q differentiation, replacing it with x0 or t differentiation, and the
equations will acquire a familiar form of dynamics in the electromagnetic field with
Lorentz force and electrostatics and gravitational potential U, but the effective mass
expression is quite interesting.

d
dt
(M

dx j

dt
) = −M

∂U

∂x j +
e
c

Fbj
dxb

dt
(21)

Here Fab are common field expressions by potentials [1–13], and the expression for
effective mass M is

M = −

Q0
c +

e
c2

A0

1 + 2U
c2

(22)

We can see how the effective mass (22) depends on gravitational and electric fields,
therefore Q0 can be considered as zero component of the momentum or energy out-
side the fields. It should be noted that all calculations are accurate when using the
Lagrangian (2). Let’s write out the expression for Q0, replacing q differentiation
with t one in (18), also get the final expression for the effective mass.

Q0 = −
mc(1 + 2U

c2
)√

1 − v2
c2
+ 2U

c2

−
e
c

A0, M =
m√

1 − v2
c2
+ 2U

c2
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3.2 Fock Metric
Let’s consider now the Fock metric [2]

gab = (1 +
2U

c2
,−(1 −

2U

c2
),−(1 −

2U

c2
),−(1 −

2U

c2
))

The equation of motion takes a more complex form than (21)

d
dt
(M

dx j

dt
) = −M

1 + v2

c2

1 − 2U
c2

∂U

∂x j +
e
c

Fbj
dxb

dt

The Q0 and M expressions are as follows

Q0 = −
mc(1 + 2U

c2
)√

1 − v2
c2
+ 2U

c2
+ 2Uv2

c4

−
e
c

A0, M = −
(
Q0
c +

e
c2

A0)(1 − 2U
c2
)

1 + 2U
c2

Finally, for the effective mass we get

M =
m(1 − 2U

c2
)√

1 − v2
c2
+ 2U

c2
+ 2Uv2

c4

4 Uniform Universe: Solutions that Depend Only on
Time

Let the metric and the gravitational and electromagnetic fields depend only on
time, which means that the universe in completely uniform. In this case, the (6)
equations can be integrated via Hamiltonian mechanics, but it is interesting to look
at specific aspects. We have three motion integrals

mc
√

I
(gdb

dxb

dq
) +

e
c

Ad = Qd, d = 1, 2, 3 (23)

We use the integral of «energy» instead of the equation for the zero component, that
is the interval squared.

I = gab
dxa

dq
dxb

dq

Now we get that all small momenta are determined as time functions from (14) and
(23):

pd =
e
c

Ad −Qd, d = 1, 2, 3 (24)
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The last zero component is determined as a time function from the analogue of the
«energy» integral, that is the square of the interval for the momenta.

gabpapb = m2c2 (25)

Here we come to a well-known relation that leads to the Hamilton-Jacobi method
[1–12]. The equations for determining all coordinates are

dxa

dq
= −

√
I

mc
gda(x0)pd (26)

We can exclude q via dividing the three equations (23) for d = 1, 2, 3 by the equation
for d = 0.

dxa

dx0
=

gda(x0)pd(x
0)

g0d(x0)pd(x0)
=

gda(x0)(ec Ad(x
0) −Qd)

g0d(x0)(ec Ad(x0) −Qd)
, a = 1, 2, 3 (27)

We have obtained equations where terms depend only on time, and these equa-
tions can be easy integrated. The solutions are significant generalizations of de Sitter
space [12]. Such equations would be appropriate to be applied to the question of dark
energy and dark matter [13, 14].

5 Vlasov-Maxwell-Einstein Equations
When deriving the Vlasov-Maxwell-Einstein equations according to [6–9, 13],

we use the classical action [1–5]:

S = −
∑
r,λ

mr c
∫ √√

gab
dxa

r,λ
dq

dxb
r,λ

dq
dq −

∑
r,λ

er
c

∫
Aa

dxa
r,λ

dq
dq

−
1

16πc

∫
FabFab√−gd4x + k

∫
(R + Λ)

√
−gd4x

(28)

Here k = −c3
16πγ , and Λ is the cosmological constant [1–4]. The particles are divided

into classes indexed by r with different masses and electric charges, also individual
particles are indexed by λ inside each class.

In order to obtain field equations and relate the fieldswith the distribution function
fr (x, p, q), we need to rewrite the first two terms of (25) via this distribution function,
then do the variation by fields. Let’s rewrite (28), replacing q with t.

S = −
∑
r,λ

mr c
∫ √

gab
dxa

r,λ
dt

dxb
r,λ

dt
dt −

∑
r,λ

er
c

∫
Aa

dxa
r,λ

dt
dt

−
1

16πc

∫
FabFab√−gd4x + k

∫
(R + Λ)

√
−gd4x

(29)
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We can express the velocities through the momenta, excluding q by dividing all
the equations from (15) by the equation for zero component.

dxa

dt
= c

gda(x)pd
g0d(x)pd

, a = 1, 2, 3, 4 (30)

Indices r, λ are omitted here, and we took into account that t = x0
c . Substituting (30)

instead of velocities in (29), we get the action expressed through momenta.

S = −
∑
r,λ

mr c2
∫ √

prλ
a gda(xrλ)prλ

d

gd0(xrλ)prλ
d

dt −
∑
r,λ

er

∫ Aagda(xrλ)prλ
d

gd0(xrλ)prλ
d

dt

−
1

16πc

∫
FabFab√−gd4x + k

∫
(R + Λ)

√
−gd4x

(31)

Next, we replace summation over λ by integration over momenta and space with
distribution function fr (x, p), x ∈ R4, p ∈ R4:

S = −
∑

r
mr c2

∫ √
pag

da(x)pd

gd0(x)pd
fr (x, p)d4xd4p

−
∑

r
er

∫ Aagda(x)pd
gd0(x)pd

fr (x, p)d4xd4p

−
1

16πc

∫
FabFab√−gd4x + k

∫
(R + Λ)

√
−gd4x

(32)

It is impossible to find out experimentally which terms in (32) we deal with. At
present, experiments show that the Lambda depends on time. This fact can be in-
stantly obtained from (32), as well as dependence on space.

Reverse transition from the action (32) to the action (31) can be done by substitu-
tion fr (x, p) =

∑
λ δ(x − xrλ(t))δ(p − prλ(t)), which can be considered as a verification.

So, we got the derivation scheme of the Vlasov-Maxwell-Einstein equations. Let’s
consider the expression (32), taking into account that the cosmological constant is
now used for dark energy modeling [14, 15]. The first three terms of (28) action can
play the role of Λ-term in (32), therefore the dark energy can be composed of these
three terms with some coefficients.

ΛDE (x) = −
λ f

16πck
FabFab − λp

∑
r

mr c2
√
−gk

∫ √
pag

da(x)pd

gd0(x)pd
fr (x, p)d4p

− λp f
∑

r

er
√
−gk

∫ Aagda(x)pd
gd0(x)pd

fr (x, p)d4p
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ΛM (x) = −
(1 − λ f )

16πck
FabFab − (1 − λp)

∑
r

mr c2
√
−gk

∫ √
pag

da(x)pd

gd0(x)pd
fr (x, p)d4p

− (1 − λp f )
∑

r

er
√
−gk

∫ Aagda(x)pd
gd0(x)pd

fr (x, p)d4p

Here DE (Dark Energy) and M (Matter) stand for dark energy and matter, respec-
tively. One can take into account the contributions of any other fields in the same
way. In fact we got the opportunity not to introduce Einstein’s Λ a priori, but to get
its counterpart from the way how classical Lagrangians influence on matter. The
signs of electrostatic energy and Λ match here, so, apparently, the repulsion of dark
energy is an electrostatic repulsion, and most of the matter which is seen as dark
energy, coincides with the cosmic plasma. There is no need to consider any other
candidates for dark energy, since we know that there are only two types of long-range
actions (gravity and electromagnetism), and any others would have revealed them-
selves already. This can be well seen from the non-relativistic counterparts of the
action, that will be described in the other place. The trace of dark energy was found
too: its mathematical contribution to the action is the same as that of Einstein’s Λ.

The Vlasov-Einstein-Maxwell equations for the metric and the electric fields are
obtained by varying the action (32) by them. First we will vary by metric and get

k(Rab −
1
2

R −
Λ

2
)
√
−g =

∑
r

mr c2
∫
(

1

2p0
√

pd pd

−

√
pd pd

(p0)2p0
δb
0) fr (x, p)papbd4p+

∑
r

er

∫
(
(Aapb + Abpa)

2p0
−

Ad pd

(p0)2p0
papbδ

b
0) fr (x, p)d4p

+
1

16πc
FdcFdc(−

1
2
√
−g)gab

(33)

Now we will vary the electromagnetic potentials. We obtain the Maxwell equation
in the gravitational field.

2
16πc

∂(
√
−gFab)

∂xb
=
∑

r
er

∫ gda(x)pd
gd0(x)pd

fr (x, p)d4p (34)

Finally, we got the Vlasov-Maxwell-Einstein equation system (17), (33), (34).

6 Conclusion
So, we have derived the Vlasov-Maxwell-Einstein equation. There was necessary

to synchronize the proper times of different particles. We did this in two ways, first
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via the proper time of a single particle, second via an arbitrary parameter. Such pa-
rameters in various sources are called differently: sometimes affine [12, 35], some-
times canonical [36].

We have derived equations and obtained expressions for effective mass in sta-
tionary gravitational and electromagnetic fields for the two metrics. Conversely, we
have got solutions that depend only on time. It’s interesting to compare the obtained
form of the Vlasov-Maxwell-Einstein equations with other versions and to classify
them. Usually they are written out only for the Vlasov-Einstein equations and with
Christoffel symbols, and therefore not for momenta but for velocities [10, 11, 16,
17]. They can also be derived according to our scheme. When these equations are
not derived, but written immediately as given ones, inaccuracies may occur. When
it comes to Vlasov-Einstein equations, the deriving seems necessary for the both
Liouville equation and field equation. When deriving the Liouville equation, the
time synchronization arise. The energy-momentum tensor in the field equations has
to be taken arbitrarily, if there is no deriving.

In the transition from (31) to (32) we have obtained the expressions which for-
mally have the same effect as the Einstein’s lambda. It seems promising to research
all classical substitutions for this equation that are well-known for the Vlasov equa-
tion: energy and hydrodynamic ones [6–9]. It’s also interesting to investigate the
stationary solutions [18–25]. The problem of classifying all time-dependent (spa-
tially homogeneous) solutions is relevant and interesting too, because it leads to cos-
mological solutions, which are now being actively studied. The Hamilton-Jacobi
equation methods [26–31] would be useful here. A very important task is to ob-
tain for the Vlasov-like equations a statement like «Time averages coincide with the
Boltzmann extremals» [32–34]. The authors thank N.N. Fimin, V.M. Chechetkin,
A.D. Chernin, K.A. Bronnikov, S.O. Alekseev for useful discussions.
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