ПРОЕКТ МИССИИ «MIPTUNE – Magnetosphere, IR, Plasma, Triton and UV Neptune Explorer»

ИТОГОВЫЙ ОТЧЁТ КОМАНДЫ 2

Капитан команды Корнеев К.Р.

Куратор команды Целоусова А.А.

Москва, 2021

Аннотация

Предлагаемая двадцатилетняя миссия к Нептуну с гравитационным манёвром у Юпитера позволяет исследовать кольца Адамса и Леверье, картографировать планету и её спутник Тритон с близких расстояний. В рамках миссии будут решены вопросы о составе атмосферы Нептуна, происхождение его колец, определены причины тепловых аномалий. Также планируется исследование магнитопаузы и хвоста магнитосферы и измерения магнитного поля Нептуна на близких расстояниях. Предлагаются пролётные наблюдения спутников Юпитера: Европы и Каллисто.

В рамках проектирования миссии проведено широкое исследование проблематики межпланетных перелётов и навигации. Разработаны полуавтоматические средства для расчёта влияния радиации и оценок картографируемых областей, реализованы модели движения возмущённой задачи двух тел. Кроме прочего, проведено детальное исследование возможных режимов ориентации и приведены соответствующие численные оценки. Сделаны расчёты в области терморегулирования представляемого космического аппарата.

В особенности миссии входит использование как отработанных технологий, таких как известная ракета-носитель Ангара-А5, одноплатные компьютеры с радиационной защитой, проверенные в других миссиях камеры различного назначения, так и применение новых. В их число входит двигательная установка LEROS-4 с высоким уровнем тяги, предназначенная специально для маневрирования у планет. Смоделирован не только облик аппарата, но и его отдельные составные части, а также оценён его тензор инерции.

Состав команды

Корнеев Кирилл Романович (капитан)	аспирант ИПМ		
Пыряев Евгений Викторович	ФАКТ-З		
Загребин Иван Вячеславович	ЛФИ-4		
Фаттахов Эльдар Маратович	ФАКТ-5		
Моргунов Николай Витальевич	ФАКТ-2		
Хуртина Юлия Олеговна	ФАКТ-4		
Зинец Анастасия Николаевна	ФПМИ-2		
Лунин Данила Сергеевич	ФАКТ-З		
Якушева Диана Евгеньевна	ФАКТ-2		
Васюрин Кирилл Сергеевич	ФАКТ-4		
Куратор команды Целоусова Анастасия Александровна, аспирант МФТИ			

Общее описание миссии

Дата старта	08.02.2031
Дата входа в систему Нептуна (r = 80 R _N)	26.3.2050
Дата завершения миссии (r = 1 R _N)	20.10.2051
Ракета-носитель	Ангара-А5
Разгонный блок/верхняя ступень (при наличии)	-
Полная начальная масса КА, кг	4773
Сухая масса КА, кг	544
в том числе масса полезной нагрузки, кг	121
Количество этапов тура	3
Общий объём переданных научных данных, Гбит	4460
Накопленная доза ионизирующего излучения, крад	1.4

Исследованные небесные тела (в клеточках поставьте Х там, где нужно):

X	Нептун	картографировано	95 %
		пролётов через магнитопаузу	24
		пролётов через хвост магнитосферы	12
X	Кольца	картографировано кольца Адамса	100 %
		картографировано кольца Леверье	100 %
X	Тритон	картографировано	77 %
		в т.ч. картографировано впервые	30 %
	Другие луны	картографировано	%
		картографировано	%
X	Планета(ы)	Юпитер (Каллисто, Европа) (укажите через запятую другие планеты, у которых запланированы научны	е эксперименты)
	Астероид(ы)		омиссии)

Облик космического аппарата

Бортовая вычислительная машина (БВМ)

RAD750® 6U CompactPCI

- Габариты: 233 мм х 160 мм
- Bec: 1.22 кг
- Memory SRAM: 48 MB
- EEPROM: 4 MB
- Radiation-hardness Total dose: >100 Krad (Si)
- SEU: 1.9 E-4 errors/card-day (90 percent W. C. GEO) varies with orbit
- Производительность: 260 Dhrystone 2.1 MIPS at 132 MHz
- Напряжение и потребление мощности: 5 В и 3.3 В, 14 Вт
- Диапазон температур: -28°C to +70°C

Фото БВМ

- Топливо: МОN-3/МОН
- Тяга: 1000 Н
- Удельный импульс: 321 с
- Macca: 8.4 кг
- Срок работы: 23 года
- Максимальное время однократной работы: 3800сек
- Суммарное время работы: 12364 сек
- Потребление мощности: 27 Вт

Топливные баки

Топливо: Монометилгидразин (ММН)

- Два круглых бака по 1.5 м3
- 2633 кг

Окислитель: Смешанные оксиды нитрогена-3 (MON-3)

- Два круглых бака по 0.58 м3
- 1595 кг

Предполагается наличие насосов между баками попарно. Это нужно не только для балансировки тензора инерции, но и для поддержания давления.

Маховики

ДМ10-25, 6 штук

- Диапазон изменения кин. момента 10 м2 кг/с
- Управляющий момент 25 мН м
- Потребление мощности 31 Вт, 4 Вт в установившемся
- Масса 4 кг каждый

Звёздный датчик

AA-STR

- Потребление мощности 7 Вт
- Поле зрения 20 град
- Macca 1.5 кг

LEROS 4 Design

Фото ДМ10-25

Датчик угловой скорости

SX-AVS-01

- Потребление мощности 0,6 Вт
- Масса 70 г

Хранилище на 20гбит

• Потребляемая мощность 5 Вт

Остронаправленная антенна

- Macca 15 кг
- Размер тарелки 4 м
- Потребляемая мощность 80 Вт

Усилитель

При передаче в Х-диапазоне усилитель

• Потребляемая мощность 15 Вт.

Всенаправленные антенны, 3 штуки

- Macca 0.5 кг
- Потребление такой антенны по большей части определяется усилителем

Конструкция аппарата

Основой конструкции являются листы металла, соединённые крестнакрест в середине КА. В отдельных ячейках располагаются топливные баки. Для жёсткости и защиты от радиации конструкция сверху и снизу закрывается дополнительными листами. Для визуального удобства, многие элементы скрыты.

- Macca 216 кг
- Площадь листов 21.6 м2

Фото SX-AVS-01

Радиоизотопный термоэлектрический генератор (РТГ), 2 штуки

- Macca 50 кг
- Форма цилиндр высотой 1 м и диаметром 40 см.
- При распаде плутония (Pu-238) генерирует 300 Вт электрической мощности.

Радиоизотопный нагревательный блок (РНБ), 80 штук

- Macca 40 г
- Размеры цилиндра: высота 3.2 см, диаметр 2.6 см.
- При распаде плутония (Ри-238) генерирует 1 Вт тепловой мощности.

Терморегуляция

Оценки выводились в предположении КА серым телом. Также было установлено требование теплового баланса. То есть детали КА излучают

$$j = \varepsilon \sigma T^4, \varepsilon = 0.2 \tag{1.1}$$

из каждой точки поверхности. Пользуясь это формулой и знанием светового потока от Солнца у Нептуна найдём необходимое число РНБ из теплового баланса при 300К.

Oferrure	Раб. темп.,	Macca,	Теплоем-	Площадь пов-	Отвод	Солнечное излу-
Осорудование	°C	КГ	кость, Дж/К	ти прибора, м^2	тепла (при 27°С), Вт	вт
Цветная узкоуголь-						
ная камера		4	3680	0,67	62	1,02
УФ-спектограф		10	9200	0,62	57	0,94
Спектрометр в види-						
мом и ближнем ИК		27	24040	2.00	265	4.20
диапазоне		31	34040	2,88	205	4,38
Магнитометр		3	2760	0,015	1	0,02
Детектор радиоволн			0700	0.045	4	0.00
И ВОЛН В ПЛАЗМЕ	-10+30	3	2760	0,015		0,02
цветная широко- угольная камера		5	4600	0.008	1	0.01
Ллазма-спектрометр		13	11960	0,28	26	0,43
Лазерный альтиметр		8	7360	0.42	39	0.64
Масс-спектрометр						- , -
для рег. ионов		9	8280	0,64	59	0,97
Детектор высоко-						
энергетических ча-		10	44700	0.50	40	0.70
Стиц		16	14720	0,52	48	0,79
антенна	-10+35	15	13800	25	2296	38
Радиозитропный ге-						
нератор	-5+15	50	46000	1,5	138	2,28
Баки (два с гидрази-	Подходят					
ном и один с MON)	под диапа-	-	-	16	1470	24,32
Штанга	30H	-	-	0,39	36	0,59
Конструкция	-	-	-	21,6	1984	32,83
Всего				70,558	6481	107,25

На дату прибытия к Нептуну два РИТЭГа будут производить

$$P_{RTG} = 2 \times 3153BT = 6306BT \tag{1.2}$$

За счёт нагрева от Солнца будем получать

$$P_s = S \times F_s = 21.6 \times 1.52 = 107.25 \text{Br}$$
(1.3)

При этом КА излучает при температуре 300К около

$$P_{KA} = S \times \varepsilon \sigma T^4 = 21.6 \times 0.2 \times 5.67 \times 10^{(-8)} \times 300^4 = 6481 \text{Br}$$
(1.4)

Также стоит учитывать коэффициент производительности

 $\alpha_{\rm RNB} = 0.85$

Учитывая все коэффициенты, оценим число РНБ из задачи теплового баланса.

$$\left(P_1 - P_S - P_{RTG}\right) / \alpha_{RNB} \approx 80 \tag{1.5}$$

Таким образом можно обеспечить режим в 300К или 27°С за счёт 80 РНБ

Радиационная защита

Предполагается обеспечить слой радиационной защиты для всех приборов. При этом часть этой функции берёт на себя несущая конструкция.

- Суммарная площадь внешних приборов 6,07 м2
- Площадь корпуса 21,6 м2

Это означает, что для обеспечения защиты 1г/см2 требуется ещё 60 кг рад защиты для приборов. Отдельно стоит заметить, что БВМ сам защищён.

Для моделирования уровня радиации подготовили несколько моделей.

Космическая радиация

Галактические космические лучи моделируются константой 50 мрад/сут, что даёт нам оценку 365 рад за 20 лет.

Модель для радиации у Юпитера

$$L = \frac{r}{\cos^2 \alpha},\tag{1.6}$$

где *α* – широта в СО диполя Юпитера. Поэтому при расчётах доз радиации нам потребуется пересчёт положения относительно Юпитера в эту СО.

Модель для радиации у Нептуна

Для модели Нептуна используется The JPL Neptune Radiation Model (NMOD). В ней таким же образом вводится координата L

Научные приборы

Основной инструмент: цветная узкоугольная камера

LORRI (New Horizons)

- Macca 8.6 кг
- Потребляемая мощность 5.75 Вт
- Разрешение 5 мкрад/пиксель
- FOV 0.29x0.29 градусов
- Поток данных 12288 кбит/сек

Основной инструмент: УФ-спектрограф

- масса 10 кг
- размеры 50х30х20 см
- мощность 9 Вт,
- поток данных 20 кбит/с,
- точность знания ориентации 0.2 градуса,
- точность управления ориентацией 0.4 градуса,
- точность стабилизации 0.6 град/с.

Основной инструмент: спектрометр в видимом и ближнем ИК диапазоне

- Macca 37 кг
- размеры 80х80х50 см
- мощность 22 Вт
- поток данных 90 кбит/с
- точность знания ориентации 0.4 градуса

Фото LORRI

- точность управления ориентацией 0.8 градуса
- точность стабилизации 12 угл. сек/с.

Основной инструмент: магнитометр

- Масса (включая штангу) 5 кг,
- мощность 6 Вт,
- поток данных 2 кбит/с.

Основной инструмент: детектор радиоволн и волн в плазме

- Масса (включая антенны) 15 кг
- мощность 10 Вт
- поток данных 2 кбит/с.

Дополнительный инструмент: широкоугольная цветная камера CIVA (Rosetta)

- Macca 0,8 кг
- Потребляемая мощность 2,3 Вт
- Разрешение 1000 мкрад/пиксель
- Поток данных 9830 кбит/сек
- FOV 60 x 60 градусов

Дополнительный инструмент: плазма-спектрометр

- Macca 13 кг
- размеры 20х20х25 см
- мощность 15 Вт
- поток данных 8 кбит/с.

Дополнительный инструмент: лазерный альтиметр

- Масса 8 кг
- размеры 30х30х20 см
- мощность 28 Вт
- поток данных 1 кбит/с
- точность знания ориентации 20 угл. Сек
- точность управления ориентацией 27 угл. Сек
- точность стабилизации 40 угл. сек.

 Φ ото CIVA

Дополнительный инструмент: масс-спектрометр для регистрации ионов и нейтральных частиц

- Macca 9 кг
- размеры 20х40х40 см
- мощность 27 Вт
- поток данных 2 кбит/с.

Дополнительный инструмент: детектор высокоэнергетических частиц

- Масса 16 кг
- размеры 20х30х40 см
- мощность 20 Вт
- поток данных 3 кбит/с.

Сводная таблица

Составная часть	Масса, кг	Энергопотребление, Вт
пн	122,4	145,05
цветная узкоугольная камера	8,6	5,75
УФ-спектрограф	10	9
спектрометр в видимом и ближнем ИК диапазоне	37	22
магнитометр	5	6
детектор радиоволн и волн в плазме	15	10
цветная широкоугольная камера	0,8	2,3
плазма-спектрометр	13	15
лазерный альтиметр	8	28
масс-спектрометр	9	27
детектор высокоэнергетических частиц	16	20
Система ориентации и стабилизации	24,3	
Маховики	22,8	186
Звёздный датчик	1,5	7
Телеметрия и связь	16,5	
остронаправленная антенна	15	80
3 всенаправленных	1,5	
Усилитель		15
РИТЭГ	100	

РНБ	0,8	
Бортовой компьютер	1	14
Маршевая ДУ	8,41	22,5
Топливо	4229	
Рад защита	60,7	
Конструкция	210	
Итого (сухая)	544,11	
Итого	4773,11	469,55
Доступно максимальной мощности		-430

Как, видно из таблицы, невозможно одновременно поддерживать весь КА, однако стоит помнить, что 93 ватта потребляются резервными маховиками. В большинстве ситуаций они будут работать в режиме потребления 4 Вт на каждый, либо вовсе будут выключенными. В таком случае потребляемая мощность постоянно будет около 389 Вт.

Для выбора оптический камер мы рассматривали несколько вариантов камер, уже использовавшихся на космических аппаратах и успешно показавших себя. Основной альтернативой узкоугольной камеры LORRI с аппарата New Horizons была узкоугольная камера HiRise с аппарата Mars Reconaissance Orbiter. Последняя имеет в несколько раз более высокое разрешение, однако выбор был сделан в пользу LORRI в связи со слишком большой массой HiRise, составляющей 65 кг. Альтернативой широкоугольной камеры CIVA с аппарата Rosetta была камера OSIRIS Wide Angle Camera также с Rosetta. Выбор был сделан в пользу CIVA из-за большего в 25 раз поля зрения данной камеры.

Связь

Был написан программный код на Python для моделирования энергетики линии связи в течение межпланетного перелёта для нескольких частотных диапазонов. Сначала производится перерасчёт видимого угла места с учётом преломления радиолуча в тропосфере:

$$\tau = -\int_{h}^{\infty} \frac{n'(x)}{n(x)\tan\phi} dx,$$
(2.1)

τ - угол отклонения луча в тропосфере (к горизонту), *φ* - текущий угол атаки луча, n(x) - показатель преломления атмосферы на высоте x, h -- высота станции связи над уровнем моря.

$$\cos\phi = \frac{c}{(r+x)n(x)} \tag{2.2}$$

$$c = (r+h)n(h)\cos\theta \tag{2.3}$$

$$n(x) = 1 + \alpha e^{-bx} \tag{2.4}$$

a = 0.000315

b = 0.1361

Видимого станцией угол места равен:

$$\theta - \tau(h,\theta) = \theta_0 \tag{2.5}$$

Учтено удлинение радиотрассы в тропосфере:

$$\Delta L = \int_{A}^{B} (n-1)ds \tag{2.6}$$

Здесь А и В - точки начала и конца радиотрассы. За А берём координаты станции связи, за В --точку пересечения радиотрассы с границей тропосферы.

Положительный вклад в мощность сигнала вносят усилитель, усиление антенны КА и приёмной антенны наземной станции:

$$G_{ampl} = 10\log_{10}(P_{ampl}), dBi$$
(2.7)

Здесь *Р*_{*ampl*} - мощность на выходе усилителя антенны

$$G = \frac{4\pi S_A}{\lambda^2}, S_A = \frac{\pi d_A^2}{4}$$
(2.8)

*S*_A - эффективная площадь антенны, d - диаметр антенны (задан условиями конкурсной задачи), λ - длина волны.

$$G(\theta) = G_0 - G_1 (\theta - \gamma)^2 - \frac{A_{zen}}{\sin \theta}, dBi$$
(2.9)

Здесь θ – угол подъёма антенны, $6 \le \theta \le 90$, G_0, G_1, γ – табличные параметры. A_{zen} – аттенуация атмосферы в зените

	Parameters†				
Configuration and Stations	G ₀ * (Transmit)	G ₀ * (Receive)	G ₁	γ	
S-band, All Stations (Figure 2)	55.40 ‡	56.07	0.000006	42.0	
X-band, All Stations (Figures 3—5)	67.05	68.41	0.00008	42.0	

Table A-1. Vacuum Component of Gain Parameters

Отрицательный вклад в мощность сигнала вносят потери от дифракции, от атмосферы (рассеяние на атмосферных газах, гидрометеорах, а так же потери на поляризацию):

$$LOSS_{fsl} = 20\log_{10}\left(\frac{4\pi f_0 D_{\max}}{c}\right)$$
(2.10)

где $LOSS_{fsl}$ - потери в свободном пространстве, дБ, а f_0 - несущая частота СВЧ колебания, Гц, с – скорость света в вакууме. D_{max} - максимальная наклонная дальность линии связи КА – НС, м

Потери из-за дождя

Потери в тумане и облаках

$$LOSS_{pol} = -10\log_{10}\left(0.5(1 + \frac{(1 - SA)^2(1 + GA)^2\cos(\pi/2 + \phi) + 4SA \cdot RA}{(1 + SA)^2(1 + GA)^2})\right)$$
(2.11)

*LOSS*_{pol} - поляризационные потери, дБ, *ф* - поворот плоскости поляризации, рад. SA – коэффициент эллиптичности АФС КА, GA – коэффициент эллиптичности НС

Моделирование потерь для S, X и Ка-диапазонов дало следующие результаты:

Исходя из оценок по мощностям аппаратуры связи для разных диапазонов, Х-диапазон представился наиболее подходящим под наши задачи как оптимальный по коэффициенту усиления антенны и потерям на радиотрассе.

Далее был произведён расчёт скорости передачи данных на радиолинии Xдиапазона:

$$BitRate = CoodeRate \cdot 10^{0.1 \left(P_{RX} - N_0 - \frac{E_B}{N_{0MIN}} - \frac{E_b}{N_{0MARGIN}}\right)}$$
(2.12)

Перебор различных методов кодирования информации дал следующий результат:

По итогам моделирования была выбрана кодировка LDPC(2/3). Оценка максимальной скорости передачи для данного метода составила 179 кбит/с. С такой скоростью передача 20 гбит из хранилища данных КА занимает 32.5 часа. В дальнейшем будем придерживаться этой оценки.

Для достижения такой скорости нужно иметь точность наведения

$$\theta = \frac{\lambda}{d} = 9 \, \text{мраd} \tag{2.13}$$

Перелёт в систему Нептуна

Маршрут Земля-Юпитер-Нептун

Манёвр у Юпитера бесплатен

Затраты характеристической скорости, км/с

0

Затраты рабочего тела (топлива), кг

0

Накопленная доза ионизирующего излучения, крад 0.365

Выбор траектории

Для определения траектории был использован метод виртуальной траектории. Рассматривались 7 разных маршрутов, таких как, Земля-Нептун, Земля-Сатурн-Нептун, Земля-Венера-Юпитер-Нептун и пр. Однако, был выбран с нулевыми затратами характеристической скорости. Это позволяет сэкономить топливо на гравитационные манёвры.

Моделирование навигационной неопределённости

Для моделирования навигационной неопределённости был выбран фильтр Калмана, как один из методов последовательной обработки. Также были получены уравнения в разности близких траекторий. Запишем их. Начнём с уравнений движения.

$$\begin{cases} \dot{\mathbf{r}} = \mathbf{V}, \\ \dot{\mathbf{V}} = -\frac{\mu}{r^3} \mathbf{r}. \end{cases}$$
(3.1)

Запишем их в компактном виде

$$\dot{\mathbf{X}} = \mathbf{F}(\mathbf{X}, t), \tag{3.2}$$

где

$$\mathbf{X} = \left[\mathbf{r}, \mathbf{V}\right]^T. \tag{3.3}$$

Теперь перейдём к разности траекторий

$$\mathbf{x}(t) = \mathbf{X}(t) - \mathbf{X}^{*}(t).$$
(3.4)

В таком случае дифференциальное уравнение запишется в следующем виде

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x},\tag{3.5}$$

где матрица А определяется как

$$\mathbf{A}(t) = \left[\frac{\partial \mathbf{F}(\mathbf{X}(t))}{\partial \mathbf{X}(t)}\right],\tag{3.6}$$

Стоит обратить внимание, что в данном случае матрица **A** не зависит явно от времени

$$\mathbf{A} = \begin{bmatrix} \mathbf{O}_{3x3} & \mathbf{I}_{3x3} \\ \frac{\mu}{r^5} \mathbf{B} & \mathbf{O}_{3x3} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2x^2 - y^2 - z^2 & xy & xz \\ xy & 2y^2 - x^2 - z^2 & yz \\ xz & yz & 2z^2 - y^2 - x^2 \end{bmatrix}.$$
 (3.7)

Обобщённо обозначим "идеальный" вектор измерений **Y**^{*c*}, а полученный фактически как

$$\mathbf{Y}_i^o = \mathbf{Y}_i^c + \boldsymbol{\varepsilon}_i. \tag{3.8}$$

Тогда невязки измерений запишутся по формуле

$$\mathbf{y}_{i} = \mathbf{Y}_{i}^{o} - \mathbf{Y}_{i}^{c} = \tilde{\mathbf{H}}(t)\mathbf{x}_{i} + \boldsymbol{\varepsilon}_{i}, \quad \tilde{\mathbf{H}}(t) = \left[\frac{\partial \mathbf{Y}_{i}^{c}}{\partial \mathbf{X}}\right].$$
(3.9)

Последняя матрица и представляет здесь основное различие между измерениями.

Теперь можно записать фильтр Калмана. На каждом шаге выполняется два этапа.

- 1. Прогноз текущего состояния и его ковариационной матрицы
- 2. Уточнение нового состояния и новой ковариационной матрицы

То есть, на первом этапе мы записываем предыдущий вектор состояния $\hat{\mathbf{x}}_{k-1}$ и предсказываем новый вектор $\overline{\mathbf{x}}_k$, аналогично поступаем с ковариационной матрицей $\hat{\mathbf{K}}_{k-1}$ и её предсказанием $\overline{\mathbf{K}}_k$. Записываем

$$\overline{\mathbf{x}}_{k} = \mathbf{\Phi}(t_{k}, t_{k-1}) \hat{\mathbf{x}}_{k-1},$$

$$\overline{\mathbf{K}}_{k} = \mathbf{\Phi}(t_{k}, t_{k-1}) \hat{\mathbf{K}}_{k-1} \mathbf{\Phi}^{T}(t_{k}, t_{k-1}).$$
(3.10)

Здесь матрица $\Phi(t_k, t_{k-1})$ - переходная матрица и вычисляется по формуле

$$\Phi(t_k, t_{k-1}) = \exp(\mathbf{A}(t_{k-1}) \times (t_k - t_{k-1})) \approx \mathbf{I} + \mathbf{A}(t_{k-1}) \times (t_k - t_{k-1})$$
(3.11)

На втором этапе будем уточнять предыдущие оценки

$$\hat{\mathbf{x}}_{k} = \overline{\mathbf{x}}_{k} + \boldsymbol{\alpha}_{k} (\mathbf{y}_{k} - \widetilde{\mathbf{H}}_{k} \overline{\mathbf{x}}_{k}),$$

$$\hat{\mathbf{K}}_{k} = (I - \boldsymbol{\alpha}_{k} \widetilde{\mathbf{H}}_{k}) \overline{\mathbf{K}}_{k}.$$
(3.12)

Здесь векторный коэффициент усиления равен

$$\boldsymbol{\alpha}_{k} = \overline{\mathbf{K}}_{k} \widetilde{\mathbf{H}}_{k}^{T} (\widetilde{\mathbf{H}}_{k} \overline{\mathbf{K}}_{k} \widetilde{\mathbf{H}}_{k}^{T} + \mathbf{R}_{k})^{-1}, \qquad (3.13)$$

а **R**_{*k*} – это ковариационная матрица ошибок измерения

Теперь явно выпишем матрицы $\tilde{\mathbf{H}}_k$ для двух способов измерения

В качестве первого способа измерения была выбрана радиальная скорость для оценок скорости, а точнее измерение частот принятого и переданного сигналов.

$$\dot{D} = \frac{D(t_3) - D(t_3 - \Delta T)}{\Delta T} \approx \frac{1}{2} \left[\frac{\mathbf{V}_{12} \cdot \mathbf{r}_{12}}{r_{12}} + \frac{\mathbf{V}_{32} \cdot \mathbf{r}_{32}}{r_{32}} \right].$$
 (3.14)

Здесь матрица $\tilde{\mathbf{H}}_k$ запишется как

$$\tilde{\mathbf{H}}_{k} = \left[\frac{\partial \dot{D}}{\partial \mathbf{r}}, \frac{\partial \dot{D}}{\partial \mathbf{V}}\right]^{T}.$$
(3.15)

Частные производные имеют вид

$$\frac{\partial \dot{D}}{\partial \mathbf{r}} \approx \frac{1}{2} \left[\frac{\mathbf{V}_{12}}{r_{12}} + \frac{\mathbf{V}_{32}}{r_{32}} - \dot{D} \left[\frac{\mathbf{r}_{12}}{r_{12}^2} + \frac{\mathbf{r}_{32}}{r_{32}^2} \right] \right]^T, \qquad (3.16)$$

$$\frac{\partial \dot{D}}{\partial \mathbf{V}} \approx \frac{1}{2} \left[\frac{\mathbf{r}_{12}}{r_{12}} + \frac{\mathbf{r}_{32}}{r_{32}} \right]^T.$$
(3.17)

Здесь индекс 12 относится к положениям и скоростям КА относительно первой станции (передачи), а 23 – станции принятия сигнала и КА.

Теперь запишем то же самое для наклонной дальности

$$D = \frac{c}{2} [r_{12} + r_{23}]. \tag{3.18}$$

Частные производные примут следующий вид

$$\frac{\partial \dot{D}}{\partial \mathbf{r}} \approx \frac{1}{2} \left[\frac{\mathbf{r}_{12}}{D} + \frac{\mathbf{r}_{32}}{D} \right]^T, \qquad (3.19)$$

$$\frac{\partial \dot{D}}{\partial \mathbf{V}} \approx 0. \tag{3.20}$$

Ниже приведены графики невязки для частоты измерений раз в месяц. Для положения была задействована наклонная дальность. Как мы видим, в идеальных условиях фильтр Калмана позволяет значительно снизить ошибки измерений. Полученные графики согласуются с действительностью, это 25 км ошибки по положению.

Ковариационная матрица для положения возле Нептуна

0.0051	-0.009	0.0127
-0.0090	0.0275	-0.0512
0.0127	-0.0512	0.1036

0 0 0 0 0 4

Ракета-носитель

Ангара-А5

- Характеристическая скорость 12.918 км/с из формулы Циолковского
- Гравитационные потери 1.554 км/с
- Три ступени, без разгонного блока
- Размеры КГЧ **17,8 м х 5,2 м**
- Стартовая масса 774 т
- Космодром Плесецк / Восточный

Расчёты скорости были сделаны по формуле Мещерского для массы нашего КА в качестве нагрузки. Оценка из графиков не требуется.

Отдельно напомним размеры КА: 4.09м х 5.09м х 4.00м. Как можно видеть, он помещается в КГЧ практически в любом направлении.

Первая ступень

- 4×УРМ-1
- РД-191

Вторая ступень

- **УРМ-1**
- РД-191

Третья ступень

- 1xYPM-2
- РД-0124А

Дата старта	8.2.2031
v_∞ при отлёте от Земли, км/с	9.8357
v_∞ при подлёте к Нептуну, км/с	5.6632
Пролёт Юпитера 22.1.2033	
v_∞ при подлёте к планете, км/с	7.8602
Пролётное расстояние, км (радиусов планеты)	20 RJ
Импульс в перицентре гиперболы, км/с	0

При пролёте Юпитера есть возможность наблюдать Каллисто и Европу с расстояний 600 тыс. км и 900 тыс. км. Это соответствует разрешениям камеры 3 и 4,5 км/пиксель. С научной точки зрения эти наблюдения будут представлять малый интерес, но позволят проверить работу камер и отработать передачу данных на Землю.

На рисунке показаны моменты максимального сближения со спутниками.

Было решено взять стандартные значения для коррекций и гравитационных манёвров, то есть 50 м/с и 10 м/с соответственно.

Затраты характеристической скорости на ТСМ, км/с 0,06

Пролёт мимо Юпитера.

Тур в системе Нептуна

Под моментом входа КА в систему Нептуна в конкурсной задаче понимается момент первого сближения на расстояние 80 радиусов от центра Нептуна.

Дата входа в систему Нептуна (r = 80 R _N)	26.3.2050
---	-----------

Величина относительной скорости КА в момент входа в систему отличается от гиперболического избытка скорости при подлёте к Нептуну.

Планетоцентрическая	скорость КА	при входе в	систему, км/	′c 5.6632
---------------------	-------------	-------------	--------------	------------------

Тормозящий импульс в перицентре пролётной гиперболы, км/с 0.959

1254

Затраты рабочего тела (топлива), кг

Рассматривается несколько основных режимов ориентации

- Наблюдение Нептуна. Всегда повёрнуты камерой в надир.
- Наблюдение колец
- Наблюдение Тритона
- Передача данных
- «Плюсовые» и «минусовые» наблюдения Нептуна
- Поворот пид-регулятором в нужное положение

На манёвры суммарно будет потрачено **5.9395 км/**с характеристической скорости. Это соответствует затратам 4048.1 кг топлива. Остаётся 121.9 кг на дополнительные манёвры или 0.580 км/с.

Выпишем общую статистику по затратам характеристической скорости

Манёвр	$\Delta V, \kappa M / c$
Коррекция после вывода	0,06
Первое торможение	0.959
Второе торможение	0,308
Первое поднятие перигея к хвосту магнитосферы	1.568
Второе поднятие перигея к хвосту магнитосферы	1.434
Коррекция наклонения	0.052
Спуск к орбите Тритона	0.02632
Ускорение для рандеву	0.02456
Первый резонанс 4:1	0.08275
Второй резонанс 4:1	0.234
Пролёт в ночной зоне	0.004
Вход в плотные слои атмосферы Нептуна	0.95

Режимы наблюдения Нептуна

Наиболее проработанными являются режимы наблюдения Нептуна. В режиме «в надир» мы наблюдаем только центральную часть, при этом вращаясь вокруг оси оZ (вокруг штанги), что требует минимальных затрат маховиков величиной

$$\omega_{ref} = \frac{\sqrt{\mu p}}{r^2} \tag{4.1}$$

«Плюсовые» и «минусовые» наблюдения подразумевают отклонение оси оZ на фиксированный малый угол α таким образом, чтобы в апоцентре камера смотрела в северную или южную часть лимба Нептуна. Название, очевидно, происходит от знака этого угла. В течение всего режима это требует больших затрат, а именно

$$\omega_{ref} = \frac{\sqrt{\mu p}}{r^2 \cos \alpha}.$$
(4.2)

Управление с помощью функции Ляпунова

Наша основная цель в задаче ориентирования КА совместить ОСК (опорную) и ССК (связную). Мы оперируем двумя основными понятиями в нашей задаче: угловая скорость ω и кватернион **Q**.

Введем

$$\boldsymbol{\omega}_{rel} = \boldsymbol{\omega}_{abs} - \mathbf{A}\boldsymbol{\omega}_{ref} = \boldsymbol{\omega}_{abs} - \mathbf{Q} \circ \boldsymbol{\omega}_{ref} \circ \mathbf{\bar{Q}}$$
(4.3)

Для этой новой переменной будет записано уравнение Пуассона:

$$\dot{\mathbf{Q}} = \frac{1}{2} \mathbf{Q} \circ \boldsymbol{\omega}_{rel} \tag{4.4}$$

Для задачи управления будем использовать функцию Ляпунова, удовлетворяющую теореме Барбашина-Красовского. Для матрицы поворота используется следующая функция:

$$V_a = \frac{1}{2}\boldsymbol{\omega}_{rel} \cdot \mathbf{J}\boldsymbol{\omega}_{rel} + k_a(3 - Tr(\mathbf{A})), k_a > 0$$
(4.5)

Помимо управления на основе функции Ляпунова (на основе матрицы поворота) на практике также часто применяется его модификация, когда позиционное слагаемое описывается при помощи кватерниона относительной ориентации **Q** (соответствует матрице поворота **A**), то есть кандидатфункция Ляпунова ищется в виде:

$$V_a = \frac{1}{2}\boldsymbol{\omega}_{rel} \cdot \mathbf{J}\boldsymbol{\omega}_{rel} + k_q (1 - q_0), k_q > 0$$
(4.6)

Производная кандидат-функции Ляпунова в силу уравнений движения:

$$\dot{V}_{q} = \boldsymbol{\omega}_{rel} \cdot \mathbf{J} \dot{\boldsymbol{\omega}}_{rel} + k_{q} \boldsymbol{\omega}_{rel} \cdot \mathbf{q} = \boldsymbol{\omega}_{rel} \cdot (\mathbf{J} \dot{\boldsymbol{\omega}}_{rel} + k_{q} \mathbf{q})$$
(4.7)

Также потребуем неположительности этой производной, то есть:

$$\mathbf{J}\dot{\boldsymbol{\omega}}_{rel} + k_q \mathbf{q} = -k_\omega \boldsymbol{\omega}_{rel} > 0 \tag{4.8}$$

В итоге закон управления записывается в виде:

$$\mathbf{M}_{ctrl} = -\mathbf{M}_{ext} + \boldsymbol{\omega}_{abs} \times \mathbf{J}\boldsymbol{\omega}_{abs} - J(\boldsymbol{\omega}_{ref} \times \mathbf{J}\boldsymbol{\omega}_{ref}) + \mathbf{J}\mathbf{A}\dot{\boldsymbol{\omega}}_{ref} - k_{\omega}\boldsymbol{\omega}_{rel} - k_{q}\mathbf{q}$$
(4.9)

Дополнительно запишем уравнение на кин. момент маховиков

$$\dot{\mathbf{H}} = -\mathbf{M}_{ctrl} - \boldsymbol{\omega}_{abs} \times \mathbf{H}$$
(4.10)

И приведём полученные графики для ориентации строго в надир с коэффициентами k w=3, k q = 0.04.

ПИД-регулятор

ПИД-регулятор предназначен в нашей задаче ориентации для поворота на определенный угол и стабилизации в конечном положении.

Принцип его работы таков: зная начальный кватернион Q_1 и конечный кватернион Q_2 мы находим угол и направление между ними. Умножение угла на единичный вектор поворота и будет являться нашей начальной ошибкой e(t). В ходе эволюции системы e(t) должна прийти к нулевому вектору. Управляющим фактором в нашей системе является M_{curl} . Мы его определяем формулой:

$$\mathbf{M}_{ctrl} = K_p \boldsymbol{e}(t) + K_i \int_{t_0}^t \boldsymbol{e}(\tau) d\tau + K_d \, \frac{d\boldsymbol{e}(t)}{dt}$$
(4.11)

То есть решая уравнение Эйлера вращения вокруг собственного центра масс:

$$\mathbf{J}\dot{\mathbf{\omega}}_{abs} + \mathbf{\omega}_{abs} \times \mathbf{J}\mathbf{\omega}_{abs} = \mathbf{M}_{ctrl} + \mathbf{M}_{ext}$$
(4.12)

и кинематическое уравнение Пуассона

$$\mathbf{\Lambda} = \frac{1}{2} \mathbf{\Lambda} \circ \boldsymbol{\omega}_{abs} \tag{4.13}$$

каждый шаг итерации находим новую e(t), подставляем в нашу формулу для **M**_{ctrl}, определяем его с учетом ограничения на работу маховиков. Уже

подходящая **M**_{ctrl} подставляется в уравнение Эйлера для вращения. И так делаем итеративно. Отсюда получаем в каждый момент времени нужную нам для ориентации (для поворота из точки А в точку В) управляющий момент.

Для пид-регулятора используем k_prop=600, k_dif = -900, k_integral=0.

Приведём графики поворота на угол 5°, на такое значение нам нужно повернуть антенну. Как можно видеть, мы укладываемся в ограничения маховиков по максимальному кинетическому (10 м2 *кг/с) и управляющему (25 мН*м) моментам

Приведём общий вид траектория тура в системе Нептун. Стоит отметить, что эта траектория не просто сшита, но является непрерывной. Интегрирование идёт от момента входа в сферу влияния Нептуна на 87 млн. км и непрерывно продолжается до входа в плотные слои атмосферы. При интегрировании учитывается вторая зональная гармоника Нептуна, притяжение Солнца и Тритона. Более того, три рандеву с Тритоном тщательно промоделированы и получены точные затраты на коррекцию с гравманёвром.

Основные эллипсы для наблюдений построены таким образом, чтобы апоцентр и перицентр находились на линии Нептун-Солнце. Следует помнить, что эта линия сдвигается примерно на 2° в год, что с учётом малой длительности миссии несущественно. Нормаль орбиты ортогональна этой линии и скорости относительно Нептуна практически всегда.

Опишем основные эллипсы для этапов тура.

Этап	Апоцентр, RN	Перицентр, RN	Период, дни	Витки
Кольца Нептуна и карто- графирование	25	1.25	5.1	10
Исследование магнито- сферы	65	25	32.5	10
Рандеву с Тритоном	57-58	14.4	23	2

Также приведём сведения об объёме поступающих данных

Сводная таблица по данным

Инструмент	Поток данных, кбит/сек	Этапы
Цветная узкоугольная камера	12288	1,2,3
УФ-спектрограф	20	1,2,3
Спектрометр в видимом и ближнем ИК диапазоне	90	1,2,3
Магнитометр	2	1,2,3
Детектор радиоволн и волн в плазме	2	1,2,3
Цветная широкоугольная камера	9830	1,3
Плазма-спектрометр	8	1,2,3
Лазерный альтиметр	1	1,2,3
Масс-спектрометр	2	3
Детектор высокоэнергетических частиц	3	1,2,3

Типичный генерируемый объём данных составляет 126 кбит/сек, не считая камер и масс-спектрографа. Будем называть этот набор инструментов основным. Основной набор генерирует 0.4326 гбит/час.

Время передачи 20 Гбит на землю около 32.5 часов. К этому времени прибавляются 2.5 часа на переориентацию на Землю и обратно на Нептун.

Этап 1. Кольца Нептуна и картографирование

Основной задачей является картографирование Нептуна и колец с близких расстояний, помимо этого планируется задействовать основной набор инструментов. Основной рабочей орбитой является пятидневная высокоэллиптическая орбита. Будем считать, что требуется три раза переориентироваться на Землю и обратно за виток. Все три в дальней части орбиты. Это оставляет всего 17 часов для получения данных.

Данные предлагается передавать вблизи апоцентра, ввиду большого времени нахождения там и удобного положения антенны для быстрой переориентации.

Планируется около полутора часов распределить между камерами. Широкоугольную камеру планируется включать только около перицентра Нептуна. В таблице приведены данные за один виток.

Инструмент	Выделенное время, ч	Объём данных, гбит
Цветная узкоугольная камера	1.07	44.94
Цветная широкоугольная камера	0.23	7.59
Основной набор инструментов	17	7.35

Итого 60 гбит данных за виток передаётся на землю. Что даёт нам оценку в 600 гбит за эту фазу.

Основной научный интерес представляют кольца Нептуна. Только на этом этапе их возможно отснять с достаточной точностью. Ниже приведён результат моделирования покрытия колец участками наблюдений. Это моделирование сделано с учётом требуемого разрешения камеры не более 1 км/пикс.

Манёвры

• Второе торможение в перицентре – 308м/с	
Дата начала этапа	31.3.2050
Дата завершения этапа	8.06.2050
Затраты характеристической скорости на манёвры, км/с	0,308
Затраты рабочего тела (топлива), кг	328
Накопленная доза ионизирующего излучения, крад	0, 664
Объём переданных в ходе этапа научных данных, Гбит	600
Пиковое энергопотребление, Вт	389

Этап 2. Исследование магнитосферы

На этом этапе ключевую роль сыграют магнитометр и узкоугольная камера. Аппарат проведёт 10 витков на 32-дневной орбите, чередуя режимы наблюдения в надир с «плюсовыми» и «минусовыми». Для этого этапа были специально промоделированы площади покрытия Нептуна со всех трёх режимов. Угол альфа составлял 52 минуты.

Будем считать, что требуется 19 раз переориентироваться на Землю и обратно за виток. Все три в дальней части орбиты. Это оставляет 162.5 часов для получения данных.

Планируется около полутора часов распределить между камерами. Треть времени узкоугольная камера будет смотреть в надир, треть на «плюсовые» и треть на «минусовые». В таблице приведены данные за один виток.

Инструмент	Выделенное время, ч	Объём данных, гбит
Цветная узкоугольная камера	7.37	309.7
Основной набор инструментов	162.5	70.3

Итого 380 гбит данных за виток передаётся на землю. Что даёт нам оценку в 3800 гбит за эту фазу.

На изображении объединены все три режима. Чёрными точками представлены положения КА в проекции на вращающийся Нептун. Жёлтая полоса в центре – наблюдения в надир. Серая полоса – это плюсовые наблюдения, а фиолетовая – минусовые. Процент картографирования составляет более 95%, за исключением небольшого пятна. Второй рисунок представляет наблюдения до объединения. Разрешение не более 10 км/пиксель, остальные точки отсекаются.

Объединение трёх покрытий Нептуна

Манёвры

- Первое поднятие перигея к хвосту магнитосферы 1568м/с
- Второе поднятие перигея к хвосту магнитосферы 1434м/с
- Коррекция наклонения 52 м/с

Дата начала этапа	8.06.2050
Дата завершения этапа	23.06.2051
Затраты характеристической скорости на манёвры, км/с	3,054
Затраты рабочего тела (топлива), кг	1981
Накопленная доза ионизирующего излучения, крад	0, 059
Объём переданных в ходе этапа научных данных, Гбит	3800
Пиковое энергопотребление, Вт	389

Этап 3. Рандеву с Тритоном

На этом этапе самым важным инструментом станет широкоугольная камера CIVA. При пролёте с дневной стороны Тритона на высотах 265 км и 232 км, она позволит отснять его ранее не картографированную часть с разрешением от 5000 до 200 м / пиксель. КА выйдет на 20 дневную резонансную орбиту с Тритоном. При этом встречи будут происходить с дневной стороны спутника. Всего устраивается два рандеву с дневной стороны и одно с ночной. Важно понимать, что затраты характеристической скорости для поддержания резонанса здесь значительно больше, чем предполагалось, то есть 82 м/с и 234 м/с.

Снова приведём оценки. Будем считать, что данные передадим всего три раза, то есть по разу после каждой встречи с Тритоном. В таблице приведены данные за все три витка. Суммарно 60 гбит.

Инструмент	Выделенное время, ч	Объём данных, гбит
Цветная узкоугольная камера	0.15	6.42
Цветная широкоугольная камера	1	33
Основной набор инструментов	47.57	20.57
Масс-спектрометр	1.33	0.009

Ниже представим проекцию на вращающийся Тритон в представлении широко- и остроугольных камер. Здесь желтыми отмечены проекции КА на спутник при дневных пролётах, а синим – ночной пролёт. Красными областями показаны картографируемые зоны. Картографирование проводится только на освещённой стороне. Изображения с учётом требования не более 100 м/пиксель для узкоугольной и не более 5 км/пиксель для широкоугольной.

Как можно видеть из проекций, в область видимости попадает ранее не снимавшаяся область Тритона, а именно 30% поверхности. Суммарно же мы картографируем 77% широкоугольной и 5,3% узкоугольной.

Манёвры

- Спуск к орбите Тритона 263,2 м/с
- Ускорение для рандеву 24,56 м/с
- Первый резонанс 4:1 82.75 м/с
- Второй резонанс 4:1 234 м/с
- Пролёт в ночной зоне 4 м/с

Дата начала этапа	23.06.2051
Дата завершения этапа	8.10.2051
Затраты характеристической скорости на манёвры, км/с	0, 608
Затраты рабочего тела (топлива), кг	212.5
Накопленная доза ионизирующего излучения, крад	0, 045
Объём переданных в ходе этапа научных данных, Гбит	60
Пиковое энергопотребление, Вт	389

Этап N. Grand finale – Вход в плотные слои атмосферы Нептуна

Дата завершения миссии (r = 1 R _N)	20.10.2051
Радиальная скорость КА при r = 1 R _N , км/с (должна быть < 0)	-2.13
Затраты характеристической скорости на деорбитинг, км/с	0,95
Затраты рабочего тела (топлива), кг	260

Заключение

Суммарно КА пробудет возле Нептуна полтора года. По оценкам производителя МДУ сможет проработать ещё минимум три года, а маховики с учётом резерва до 9 лет. Основное ограничение на продолжительность миссии – вероятность выхода различного оборудования из строя. По завершению трёх основных этапов миссии возможно остаться на орбите вокруг Нептуна ещё около трёх лет, что может быть принято в качестве решения вместо входа в плотные слои атмосферы.

Основным нерешённым вопросом является точность ориентации с помощью маховиков. Для решения этого вопроса требуется построить фильтр Калмана с использованием измерений датчика угловой скорости и звёздного датчика. Кроме этого, неизвестно, пролетает ли КА возле астероидов. Все прочие вопросы так или иначе были обсуждены в тексте отчёта.