"УТВЕРЖДАЮ" директор ИКИ РАН от тольности объем директор ИКИ РАН от тольности объем директор ИКИ РАН. А.А. Петрукович 31 января 2023 г.

ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

Федерального государственного бюджетного учреждение науки Института космических исследований РАН на диссертацию Федотовой Екатерины Алфеевны «Численное моделирование нагрева атмосферы Земли солнечным и тепловым излучением», представленную на соискание ученой степени кандидата физико-математических наук по специальности 1.2.2. — Математическое моделирование, численные методы и комплексы программ

Диссертационная работа Е.А. Федотовой посвящена численному моделированию нагрева атмосферы Земли солнечным излучением и собственным тепловым излучением. Главная цель диссертационной работы заключается в разработке блока расчета переноса излучения для модели общей циркуляции атмосферы Земли, который должен обеспечить, во-первых, хорошую точность расчетов стационарных полей солнечного и собственного инфракрасного излучении в атмосфере Земли от поверхности и до семидесяти километров с учетом рассеяния в облаках и, во-вторых, высокое быстродействие за счёт использования графических процессоров.

Актуальность диссертационной работы обусловлена тем, что блоки расчета переноса излучения существующих моделей общей циркуляции атмосферы Земли не обеспечивают хорошей точности в облачной атмосфере или на высотах более 25 км из-за использования ими двухпотокового приближения для расчета поля излучения и приближения оптических параметров атмосферного газа по оптическим свойствам только нижних слоёв атмосферы Земли, тогда как оптические свойства средних слоёв атмосферы существенно отличаются: с ростом высоты вклад водяного пара снижается, и растет вклад озона. В силу изложенных причин для физически корректного моделирования общей циркуляции нижней и средней атмосферы Земли был разработан новый блок расчёта переноса излучения.

Для создания этого блока в ходе работы над диссертацией автором разработаны способы построения приближений полного молекулярного поглощения, предназначенных для расчетов поля собственного инфракрасного излучения атмосферы Земли и поля солнечного излучения в атмосфере Земли в интервале высот от поверхности Земли до высоты 70 км и обеспечивающих хорошую точность этих расчетов. Разработаны две параметризации оптических характеристик атмосферы Земли в интервале высот от

поверхности Земли до высоты 70 км, одна из которых предназначена для расчетов поля собственного инфракрасного излучения атмосферы в частотном интервале от 10 до 3000 см⁻¹, а другая — для расчетов поля солнечного излучения в частотном интервале от 2000 до 50000 см⁻¹. Для проверки точности разработаны два комплекса программ для эталонных расчетов в нижней и средней атмосфере Земли с высоким спектральным разрешением поля собственного излучения в инфракрасном диапазоне и поля солнечного излучения в атмосфере Земли в частотном диапазоне от 2000 до 50000 см⁻¹ с учетом континуального поглощения молекул водяного пара и углекислого газа и с учетом рассеяния.

Обоснованность и достоверность результатов определяется корректностью применения уравнений переноса излучения в атмосфере Земли, высокой точностью применяемых численных методов, которая подтверждена результатами тестовых расчетов, а также согласием между результатами численного моделирования и данными наблюдений. Таким образом, тема диссертации является актуальной, а полученные автором результаты вполне обоснованы и обладают научной новизной.

Научную и практическую ценность представляют комплексы программ, предназначенные для расчетов с высоким спектральным разрешением поля собственного излучения в инфракрасном диапазоне и поля солнечного излучения в атмосфере Земли, а также методы построения параметризаций оптических характеристик атмосферы Земли и выявленные закономерности нагрева-охлаждения воздуха в нижней и средней атмосфере Земли за счет собственного излучения атмосферы в ИК-диапазоне и за счет солнечного излучения при наличии облачных слоев большой оптической толщины. Созданные комплексы программ можно использовать для интерпретации данных дистанционного зондирования атмосферы Земли и ее поверхности.

Практическую ценность представляют параметризация оптических характеристик атмосферы Земли в интервале высот от 0 до 70 км, предназначенная для расчетов поля собственного ИК-излучения атмосферы, и параметризация, предназначенная для расчетов поля солнечного излучения.

Созданный на основе этих параметризаций блок расчета переноса излучения модели общей циркуляции нижней и средней атмосферы Земли рекомендуется использовать в новых моделях прогноза погоды, разрабатываемых для Гидрометцентра России.

Оценка содержания работы и ее завершенности. Диссертация содержит 132 страницы текста, включая 24 рисунка, и состоит из введения, трех глав, заключения и списка литературы из 106 наименований.

Во введении обоснована актуальность темы диссертации, сформулированы цели работы, отмечена научная новизна и практическая ценность полученных результатов, сформулированы четыре основных результата, которые выносятся на защиту, а также кратко изложено содержание работы.

В главе I описан используемый метод расчета полей собственного излучения атмосферы в инфракрасном диапазоне и поля солнечного излучения в нижних и средних слоях атмосферы Земли в частотном диапазоне от 2000 до 50000 см⁻¹ с высоким спектральным разрешением в приближении горизонтально-однородной атмосферы с учетом континуального поглощения молекул водяного пара и углекислого газа. Представлен алгоритм параллельного высокопроизводительного расчета полного коэффициента молекулярного поглощения на графических процессорах на основе известного алгоритма вычисления профиля Фойгта.

Также в этой главе изложены метод дискретных ординат для дискретизации одномерного уравнения переноса по углам и конечно-разностный метод интегрирования вдоль характеристики с кусочно-постоянным приближением функции внешнего источника для дискретизации его по пространству. При этом для численного решения системы линейных алгебраических уравнений относительно распределений вдоль зенитных углов интенсивностей излучения в узлах пространственной сетки используется матричная прогонка. На основе данных методов разработаны два комплекса программ, один из которых предназначен для расчетов с высоким разрешением по частоте в учетом атмосферы континуального C приближении горизонтально-однородной поглощения молекул водяного пара и углекислого газа поля собственного излучения в атмосфере Земли в инфракрасном диапазоне от 10 до 10000 см-1, а другой для расчетов поля солнечного излучения в атмосфере Земли в частотном диапазоне от 2000 до 50000 см-1. Оба комплекса программ используют параллельные вычисления на графических процессорах и позволяют проводить большой объём вычислений.

В главе II приведены результаты вычислений поля собственного излучения в нижних и средних слоях атмосферы Земли в интервале высот от поверхности Земли до высоты 70 км в инфракрасном диапазоне как для случая отсутствия облаков, так и для случая наличия в тропосфере облачных слоев большой оптической толщины. Вычисления проводились с разрешением 9° по зенитному углу и 0,001 см⁻¹ по частоте. Результаты расчетов показывают, что облачные слои большой оптической толщины существенно влияют на поле собственного излучения атмосферы в интервале частот от 10 до 3000 см⁻¹ и существенно меняют общий энергетический баланс атмосферы по сравнению со случаем отсутствия облачных слоев.

Также в этой главе метод лебеговского осреднения применён для полного молекулярного поглощения с учётом различия газового состава нижних и средних слоёв атмосферы Земли, обеспечивающий хорошую точность многогрупповых расчетов переноса излучения как в безоблачной атмосфере, так и при наличии облачных слоев с большой оптической толщиной. С помощью данного метода получены осредненные в 280 групп оптические характеристики атмосферы Земли в частотном интервале от 10 до 2000 см⁻¹ на интервале высот от поверхности Земли до высоты 70 км. Показано, что потоки восходящего и нисходящего собственного излучения, рассчитанные с

использованием данного приближения отличаются от результатов, полученных в эталонном line-by-line расчёте с высоким спектральным разрешением не более чем на 1%, а отклонение скоростей нагрева-охлаждения не превышает 0,2 К/сутки вне облачных слоев и 0,4 К/сутки внутри облачных слоев с большой оптической толщиной.

В главе III изложены результаты расчетов с высоким спектральным разрешением поля солнечного излучения в атмосфере Земли в частотном интервале от 2000 до 50000 см⁻¹ на интервале высот от поверхности Земли до высоты 70 км на средних широтах как для случая отсутствия облаков, так и для случая наличия облачных слоев большой оптической толщины. Разрешение по зенитному углу составило 9°, по частоте - 0,001 см⁻¹. Методом лебеговского осреднения получены оптические характеристики атмосферы Земли в интервале высот от поверхности до 70 км в 318 каналах. Показано, что потоки восходящего и нисходящего солнечного излучения, рассчитанные с использованием данного приближения отличаются от результатов, полученных в эталонном line-by-line расчёте с высоким спектральным разрешением не более чем на 1%, отклонение скоростей нагрева-охлаждения также не превышает 1%, и наибольшее отклонение между этими скоростями достигается в интервалах частот от 2000 до 4000 см⁻¹ и составляет 0,5 К/сутки вне облачных слоев и 0,7 К/сутки внутри облачных слоев.

В Заключении сформулированы основные результаты диссертационной работы и результаты, которые выносятся на защиту.

Содержание диссертации достаточно полно отражено в опубликованных работах. В ней представлен ряд новых важных научных результатов в области численного моделирования процессов переноса излучения в атмосфере Земли, которые имеют большую практическую ценность и открывают новые возможности для математического моделирования общей циркуляции атмосферы Земли. Отметим только небольшие погрешности: 1) Во введении к главе 1 метод дискретных ординат назван модифицированным, что в дальнейшем не раскрывается. 2) Использование программами графических процессоров позволяет проводить большой объем вычислений, однако в работе не указаны ни машинная точность расчётов, ни эффективность параллелизации, что позволило бы судить об обоснованности выбора именно матричной прогонки для решения системы линейных алгебраических уравнений. 3) В главе 3, несмотря на упоминания выделения носителей резонансов при лебеговском осреднении, из текста работы не ясно, было ли оно использовано. В отдельных местах используется не общепринятая в теории переноса терминологии: например, метод групп называется параметризацией. Отмеченные недочеты не умаляют общей научной значимости представленной диссертации. Автореферат полностью и правильно отражает содержание диссертации.

Диссертация Е. А. Федотовой удовлетворяет всем требованиям ВАК РФ, предъявляемым к кандидатским диссертациям по специальности 1.2.2. – Математическое

моделирование, численные методы и комплексы программ, а автор заслуживает присвоения ей ученой степени кандидата физико-математических наук.

Отзыв составил заведующий отделом Физики планет ИКИ РАН чл.-корр. РАН, доктор физ.-мат. наук Олег Игоревич Кораблев.

Отзыв обсужден и одобрен на семинаре отдела Физики планет ИКИ РАН 31.01.2023 г., протокол № 1.

Зав. отделом физики планет ИКИ РАН чл.-корр. РАН, доктор физ.-мат. наук

О.И. Кораблев

117997, г. Москва, ул. Профсоюзная, д. 84/32, ИКИ РАН, телефон: +7 (495) 333-00-17, E-mail: <u>iki@cosmos.ru</u>

Подпись О.И. Кораблева подтверждаю: Ученый секретарь ИКИ РАН, кандидат физ.-мат. наук

А.М. Садовский