официального оппонента на диссертационную работу Павла Викторовича Павлухина "Эффективное решение задач газовой динамики на кластерных системах с графическими ускорителями", представленной на соискание ученой степени кандидата физикоматематических наук по специальности 05.13.18. – математическое моделирование, численные методы и комплексы программ.

Повышение производительности вычислительной техники идет по пути создания машин с гибридной архитектурой, среди которых особое место занимают машины с графическими ускорителями. В настоящее время, именно с использованием графических ускорителей осуществляется создание машин эксафлопсного класса. В созданных больших программных комплексах решения многомерных задач математической физики для областей сложной конфигурации реализованы алгоритмы, которые базируются на использовании неструктурированных сеток, неявных разностных аппроксимаций и многосеточных решателей систем линейных уравнений. Эти программные комплексы эксплуатируются на кластерных машинах с классической архитектурой. На новых системах с массовым параллелизмом созданные методы оказываются малоэффективными. В связи с этим возникает актуальная проблема: «что делать дальше?». Либо пытаться создать «хитрые» алгоритмы и программы погружения на машины с графическими ускорителями обкатанных методик, либо пересмотреть основы подхода к построению расчетных методик применительно к графическим ускорителям. Второе направление, по сути дела, является формулировкой новой парадигмы на построение расчетных методик. Этот путь требует проведения больших исследований, прежде чем он дойдёт до повседневного использования.

Целями диссертационного исследования Павла Викторовича Павлухина были: построение вычислительного алгоритма для решения задач газовой динамики на современных вычислительных системах с графическими ускорителями с целью достижения максимальной эффективности распараллеливания вычислений; создание программ с использованием технологий СUDA и MPI; проведение расчетов газодинамических течений и исследование эффективности и масштабируемости вычислительного алгоритма на больших задачах с использованием нескольких сотен графических ускорителей.

Структура диссертации включает введение, шесть глав, заключение и список литературы. Во введении обоснована актуальность темы диссертации, определены основные цели и направления исследований. На защиту выносятся четыре положения. В заключении приводятся основные результаты работы и определены направления дальнейших исследований. Приведем краткое содержание диссертации.

Первая глава является обзорной, посвященной этапам развития вычислительных систем, архитектурам графических ускорителей и вопросам реализации на них различных численных методов и схем.

Вторая глава посвящена описанию модели и метода свободной границы, построению явно-неявной схемы решения уравнений Эйлера и итеративного метода LU-SGS, используемого для решения получающейся системы разностных уравнений.

Третья глава посвящена решению задачи построения эффективного параллельного алгоритма для метода LU-SGS на кластерных системах с множеством графических ускорителей.

В четвертой главе описываются детали программной реализации параллельного алгоритма с использованием технологий CUDA и MPI.

В пятой главе приводятся результаты вычислительных экспериментов на машинах с графическими ускорителями. В ряде расчетов использовалось до 162 графических ускорителей.

Шестая глава посвящена детальному исследованию эффективности и масштабируемости разработанного программного комплекса.

<u>Актуальность работы</u> обосновывается необходимостью создания методологии разработки численных методов для эффективного счета на машинах с графическими ускорителями.

В результате выполненной работы автором получены следующие новые научные результаты:

- 1. Создан высокоэффективный масштабируемый параллельный алгоритм гибридной явнонеявной схемы на основе метода свободной границы применительно к вычислительным системам с графическими ускорителями.
- 2. Создана программа с использованием технологии CUDA и стандарта MPI для высокопроизводительных вычислительных систем с графическими ускорителями.
- 3. Выполнено численное моделирование ряда газодинамических течений с помощью разработанного программного комплекса, проведено сравнение с результатами, полученными по другим комплексам программ, и с данными эксперимента.
- 4. Проведено исследование эффективности и масштабируемости разработанного алгоритма на больших задач с использованием нескольких сотен графических ускорителей.

<u>Теоретическая ценность</u> диссертационной работы состоит в том, что принципиально показана возможность создания высокоэффективных вычислительных алгоритмов решения задач газовой динамики на машинах с большим числом графических ускорителей.

<u>Практическая ценность</u> диссертационной работы состоит в создании масштабируемого параллельного алгоритма для методов свободной границы и LU-SGS и в создании комплекса программ с использованием технологий CUDA и MPI для решения задач газовой динамики на машинах с сотнями графических ускорителей.

<u>Замечания.</u> Серьезных замечаний по материалам, представленным в содержательных главах диссертации, нет. Тем не менее, диссертационная работа не лишена ряда недостатков, в частности:

- 1. Имеются ряд опечаток (стр7, формула 2.43,...).
- 2. Было бы желательно привести описание организации итерационного процесса итерационного решателя LU-SGS.
- 3. Не показано сравнение по скорости решения СЛАУ в матричной и безматричной форме (безматричная экономит память, допускает совмещение обмена со счетом, но возможно удорожает вычисления), т.е. алгоритм решения СЛАУ высокопараллельный, но возможно медленнее слабопараллельного.
- 4. Показана идентичность последовательного и параллельного многоцветного алгоритма LU-SGS, но не сказано об ухудшении сходимости многоцветного алгоритма LU-SGS относительно одноцветного алгоритма LU-SGS при одинаковом шаге по времени (или уменьшении шага по времени), косвенно это представлено результатами экспериментов с агрегированной и неагрегированной раскраской (в разделе 5);
- 5. Представляется, что сравнение производительности 1-го ядра 6-ти ядерного Xeon5670 (TDP 95 ватт) и teslaC2050 (448 шейдерных процессоров) (238 ватт) является не весьма корректным.

Сделанные замечания имеют рекомендательный характер и не снижают ценности и достоверности полученных результатов.

Заключение. Диссертация написана на высоком научном уровне и показывает, что автор имеет высокую математическую культуру и может самостоятельно проводить полномасштабное научное исследование от анализа проблемы и постановки математических задач до разработки численных методов их решения, построения алгоритмов, реализации их в виде программ, проведения объемного вычислительного эксперимента.

Анализ диссертации, автореферата и публикаций автора, соответствующих основному содержанию диссертации, позволяют сделать вывод, что работа П.В.Павлухина посвящена актуальному направлению. Диссертация представляет собой законченное самостоятельное исследование, в котором приведены научные результаты, позволяющие их квалифицировать

жак решение важной научной задачи построения эффективных методов для машин с массовым параллелизмом.

Диссертационное исследование соответствует всем требованиям, предъявляемым к кандидатским диссертациям, а ее автор Павлухин Павел Викторович заслуживает присуждения ему ученой степени кандидата физико-математических наук по специальности 05.13.18 «Математическое моделирование, численные методы и комплексы программ».

Официальный оппонент, главный научный сотрудник доктор физико-математических наук

Подпись Ю.Н. Дерюгина заверяю, ученый секретарь ФГУП-"РФЯЦ-ВНИИЭФ" кандидат физико-математических наук

607188, г. Саров, Нижегородской обл., пр. Мира, 37 Телефон 8 (83130) 2-90-29, факс 8(83130) 4-47-61 E-mail: deryugin@vniief.ru

Ю.Н. Дерюгин

В.В. Хижняков

12.09.2019.