Таким образом, предыдущая известная итеративная нижняя оценка изменяется на слагаемое, соответствующее самодуальным бент-функциям от n-4 переменных.

Работа выполнена в рамках государственного задания ИМ СО РАН (проект № FWNF-2022-0018).

Список литературы

- 1. Rothaus O. On bent functions // J. Combin. Theory. Ser. A. 1976. V. 11, no. 5. P. 300–305.
- 2. Кузьмин А. С., Марков В. Т., Нечаев А. А., Шишкин В. А., Шишков А. Б. Бент-функции и гипербент-функции над полем из 2^l элементов // Пробл. передачи информации. 2008. Т. 44, вып. 1. С. 15–37.
- 3. Tokareva N. Bent Functions: Results and Applications to Cryptography. London: Acad. Press, 2015.
- 4. Carlet C., Danielsen L. E., Parker M. G., Solé P. Self dual bent functions // Int. J. Inform. Coding Theory. -2010.- V. 1- P. 384-399.
- 5. Hou X.-D. Classification of self dual quadratic bent functions // Des. Codes Cryptogr. -2012.-V.62, no. 2.-P.183-198.
- 6. Feulner T., Sok L., Solé P., Wassermann A. Towards the classification of self-dual bent functions in eight variables // Des. Codes Cryptogr. -2013.-V. 68, no. 1.-P. 395–406.
- 7. Luo G., Cao X., Mesnager S. Several new classes of self-dual bent functions derived from involutions // Cryptogr. Commun. 2019. V. 11, no. 6. P. 1261–1273.
- 8. Li Y., Kan H., Mesnager S., Peng J., How Tan C., Zheng L. Generic Constructions of (Boolean and Vectorial) Bent Functions and Their Consequences // IEEE Trans. Inform. Theory. 2022. V. 68, no. 4. P. 2735–2751.

DOI: 10.20948/dms-2022-85

ПОСТРОЕНИЕ ДУАЛЬНОГО АГ-КОДА МАЛОЙ РАЗМЕРНОСТИ В ЭЛЛИПТИЧЕСКОМ СЛУЧАЕ

Е.С. Малыгина (Калининград)

Пусть F/\mathbb{F}_p — функциональное поле, определенное над конечным полем \mathbb{F}_p , где p — простое число. Будем считать, что поле F задается

уравнением $y^2 = f(x)$, где $f(x) \in \mathbb{F}_p[x]$ — свободный от квадратов многочлен степени $\deg f = 2g+1, g$ — род поля F.

Зафиксируем обозначения:

 P_1, P_2, \ldots, P_n — попарно различные точки F/\mathbb{F}_p степени один;

 $D = P_1 + \ldots + P_n$ — дивизор, состоящий из точек $P_i, i = 1, \ldots, n;$

G — дивизор, в чьей записи не участвуют точки дивизора D. А Γ -код $\mathcal{C}_{\mathcal{L}}(D,G)$ определим следующим образом:

$$C_{\mathcal{L}}(D,G) = \{(h(P_1),\ldots,h(P_n)) : h \in \mathcal{L}(G)\} \subseteq \mathbb{F}_p^n,$$

где $\mathcal{L}(G)$ — пространство Римана-Роха [1]. Автоморфизмы F/\mathbb{F}_p образуют группу

$$Aut(F/\mathbb{F}_p) = \{ \sigma : \sigma(a) = a, \ a \in \mathbb{F}_p \},\$$

которая действует на точки поля как $\sigma(P) = \{\sigma(x) : x \in P\}$. Действие $Aut(F/\mathbb{F}_p)$ на точки можно продолжить до действия на дивизоры, полагая $\sigma(\sum n_P P) = \sum n_P \sigma(P)$. Определим

$$Aut_{D,G}(F/\mathbb{F}_p) = \{ \sigma \in Aut(F/\mathbb{F}_q) : \sigma(D) = D, \sigma(G) = G \}.$$

Обозначим за P_{∞} общий полюс функций x и y. Определим точки функционального поля F степени 1, отличные от P_{∞} , как $\mathbb{P}_F^{(1)}$ для вычисления f(x) следующим образом. Пусть $\alpha \in \mathbb{F}_p$, тогда:

1. Если $f(\alpha) = 0$, то главный дивизор $(x - \alpha)$ имеет вид:

$$(x-\alpha) = 2P_{\alpha,0} - 2P_{\infty}$$
, где $\deg P_{\alpha,0} = 1$.

2. Если $f(\alpha) = \beta^2$ и $\beta \in \mathbb{F}_p$, то главный дивизор $(x - \alpha)$ имеет вид:

$$(x-\alpha)=P_{\alpha,\beta}+P_{\alpha,-\beta}-2P_{\infty},$$
 где $\deg P_{\alpha,\beta}=\deg P_{\alpha,-\beta}=1.$

3. Если $f(\alpha)=\beta^2$ и $\beta\notin\mathbb{F}_p$, то главный дивизор $(x-\alpha)$ имеет вид:

$$(x-\alpha)=P_{\alpha}-2P_{\infty},$$
 где $\deg P_{\alpha}=2.$

Согласно [1] группа автоморфизмов $Aut_{D,G}(F/\mathbb{F}_p)$ функционального поля является подгруппой группы автоморфизмов $Aut(\mathcal{C}_{\mathcal{L}}(D,G))$ АГ-кода $\mathcal{C}_{\mathcal{L}}(D,G)$ при $\deg D>2g+2$. Выбирая соответствующим образом дивизор G, мы можем найти все элементы $Aut_{D,G}(F/\mathbb{F}_p)$. Для начала необходимо вычислить $Aut(F/\mathbb{F}_p)$, а затем выбрать те автоморфизмы, которые оставляют неподвижными дивизоры D и G.

Обозначим за $H(\mathbb{F}_p)$ все точки степени 1, образующие абелеву группу относительно операции \oplus вместе с нейтральным элементом P_{∞} . Пусть $Aut_{\infty}(F/\mathbb{F}_p)$ — группа автоморфизмов функционального поля F, которая фиксирует точку P_{∞} , и распространяет свое действие на группу $H(\mathbb{F}_p)$.

Лемма. Пусть F/\mathbb{F}_p — эллиптическое функциональное поле. Тогда существует биекция $H(\mathbb{F}_p) \times Aut_{\infty}(F/\mathbb{F}_p) \rightarrow Aut(F/\mathbb{F}_p),$ $(P,\sigma) \mapsto \tau_P \circ \sigma, \ \text{где } \tau_P(Q) = Q \oplus P.$

В эллиптическом случае группу $Aut(F/\mathbb{F}_p)$ достаточно легко вычислить, если $\dim \mathcal{C} < 6$. Однако задача вычисления группы автоморфизмов АГ-кодов высокой размерности порой неосуществима с вычислительной точки зрения. Поскольку $Aut(\mathcal{C}) = Aut(\mathcal{C}^\perp)$, то нахождение порождающей матрицы дуального кода существенно быстрее, нежели исходного. Если $\mathcal{C} = [n,k]$, то $\mathcal{C}^\perp = [n,n-k]$. При этом, если (I_k,M) — порождающая матрица кода $\mathcal{C}_{\mathcal{L}}(D,G)$, то $(-M^t,I_{n-k})$ — порождающая матрица дуального кода $\mathcal{C}^\perp_{\mathcal{L}}(D,G)$. Стоит отметить, что такой подход хорош только в том случае, если размерность дуального кода достаточно мала.

Рассмотрим эллиптическое функциональное поле F/\mathbb{F}_p с уравнением $y^2=x(x-\alpha)(x-\beta)$. Построим дуальный код к АГ-коду, ассоциированному с эти полем. Отметим, что точки стемепни 1 единственным образом определяют значения функций x и y. Для точки $P\in\mathbb{F}_F^{(1)}$ будем обозначать P=(x(P),y(P)). Также отметим, что отображение $\tau_P(Q)=P\oplus Q$ для фиксированной точки $Q\in\mathbb{F}_F^{(1)}$ является автоморфизмом поля F.

Поскольку $f(x)=x(x-\alpha)(x-\beta)$, то функциональное поле F имеет 4 разветвляющиеся точки над $\mathbb{F}_p(x)$. Обозначим эти точки как $P_1=(0,0),\,P_2=(\alpha,0),\,P_3=(\beta,0)$ и P_∞ — общий полюс функций x и y. Пусть $|\mathbb{F}_p^{(1)}|=n$. Обозначим оставшиеся разветвляющиеся точки поля F степени 1 как P_4,P_5,\ldots,P_n .

Существует 4 автоморфизма поля F, фиксирующих точку P_{∞} , которые образуют циклическую группу, обозначаемую $\langle \sigma \rangle$:

$$\sigma(x) = -x, \quad \sigma(y) = \xi y,$$

где $\xi^4 \equiv 1 \pmod{p}$ и $p \equiv 1 \pmod{4}$.

В качестве дивизоров, участвующих в построении АГ-кода, ассо-

циированного с эллиптической кривой, рассмотрим

$$D = \sum_{i=4}^{n} P_i \quad \text{if} \quad G = k_1 P_1 + k_2 P_2 + k_3 P_3 + k_0 P_{\infty}, \quad k_i \ge 0.$$

Теорема. Пусть $D = \sum_{i=4}^{n} P_i$. Если

$$G = k_1 P_1 + k_2 P_2 + k_3 P_3 + k_0 P_{\infty}, \quad k_i \ge 0, \quad i = 0, \dots, 3$$

 $u \ 1 \leq \deg G \leq 11, mo$

$$\mathcal{C}_{\mathcal{L}}(D,G)^{\perp} = v \cdot \mathcal{C}_{\mathcal{L}}(D,G'),$$

где $G' = 3(P_1 + P_2 + P_3 + P_\infty) - G$, $v = (h(P_4), \dots, h(P_n))$ u

$$h = \frac{(x - \gamma_1)(x - \gamma_2)}{\prod_{i=1}^{\frac{n-8}{4}} g_i(x)},$$

 $\gamma_1 \in \{0, \alpha, \beta\}, \ \gamma_2 \in \{0, \alpha, \beta\} \setminus \{\gamma_1\}, \ g_i(x)$ — неприводимые многочлены, участвующие в разложении $\frac{d((x-P_4)....(x-P_n))}{dx}$.

Очевидно, что $Aut_{D,G}(F/\mathbb{F}_p)$ совпадает с $Aut_{D,G'}(F/\mathbb{F}_p)$, что существенно упрощает вычисление группы автоморфизмов исходного кода. Также отметим, что умножая каждую координату кода на ненулевой элемент базового поля, мы получаем эквивалентный код, который имеет ту же размерность и минимальное расстояние.

Работа выполнена при финансовой поддержке Программы мобильности 5-100, а также при финансовой поддержке Минобрнауки России (соглашение № 075-02-2022-872).

Список литературы

1. Stichtenoth H. Algebraic Function Fields and Codes. — Springer Verlag, 1991.

DOI: 10.20948/dms-2022-86