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Foreword

On December 13-16, 2022, the School of Mathematics at the Institute of Science
of Suranaree University of Technology in Nakhon Ratchasima, Thailand, hosted the
International Conference ”Modern Achievements in Symmetries of Differential Equa-
tions” (Symmetry 2022). This conference was a collaborative effort between the School
of Mathematics at Suranaree University of Technology (Thailand), the Keldysh Insti-
tute of Applied Mathematics (Russia), the Department of Mathematical Sciences at
the University of Stellenbosch (South Africa), and the Moscow Center for Fundamen-
tal and Applied Mathematics (Russia). The conference was included in the list of
events of the Russian Federation dedicated to the Russia-ASEAN Year and received
approval from the Government of the Russian Federation. Symmetry 2022 marked the
third international conference jointly organized by Suranaree University of Technology
(Thailand), Russian Institutes, and South African Universities. The first conference
took place with the Institute of Hydrodynamics (Novosibirsk) in 2019, and the second
conference with the Institute of Theoretical and Applied Mechanics (Novosibirsk) in
2021.

The primary objective of these conferences was to focus on the latest advancements
in the applications of Lie groups, encompassing a wide range of topics in interdisci-
plinary studies within theoretical and applied sciences. We aimed to bring together
researchers who apply Lie groups to address a variety of problems. The ”Modern
Achievements in Symmetries of Differential Equations and Applications” conference
was a resounding success.

The main topics of the conference revolved around Symmetry Methods and their
Applications. The conference was conducted in a virtual format, enabling the partic-
ipation of a diverse audience, including experts in the subject area, young scientists,
and graduate students interested in the analysis of nonlinear equations and group the-
oretical methods. In total, there were 66 registered participants from 21 countries,
representing all inhabited continents of the world. Talks were scheduled from late
morning until night local time, accommodating the differences in time zones. While
most presentations focused on the analysis of wave motion in continuum mechanics, nu-
merous other topics were also addressed, such as the stability of fluid flows, qualitative
analysis and integrability of partial differential equations, methods for constructing
exact solutions to continuum mechanics problems, symmetries and conservation laws
of differential equations with nonlocal terms, the method of differential constraints, nu-
merical analysis, construction of numerical schemes, and applications of mathematics
in medicine.

These Proceedings contain eight papers from among the 55 conference presenta-
tions.

Eckart Schulz
Sibusiso Moyo
Sergey Meleshko
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Abstract

In recent years, considerable attention is being paid to Fractional Differential Equations
(FDEs) due to their ability to model complex phenomena. Many numerical methods have
been proposed for FDEs. This study investigates the application of a blend of variational it-
eration method with Sumudu Transform for solving nonlinear delay FDEs. A genuine model
in science, engineering or economics, must comprise of time delays as they are natural com-
ponents of the dynamic processes. Under the assumption that the market is in equilibrium,
special emphasis is given to the formulation and construction of delayed fractional economic
models such as price adjustment equations involving Caputo derivative. This study presents
the qualitative solutions of the proposed economic models and suitable parameters are chosen
to analyze the models for different fractional orders.

Keywords: Sumudu Transform, Delay, Fractional derivatives, Demand and supply, Market
equilibrium.
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Unlike the integer-order derivative operators, fractional operators consider the global cor-
relation, and not only local characteristics in the study of evolution of a system [17]. In some
cases, discrepancy occurs between the results of the integer-order calculus and the experimen-
tal results. Fractional derivatives are suitable in describing several physical phenomena (see,
e.g, [9]). A large class of dynamical systems constitutes delay and they are best described by the
delay differential equations. Dynamic processes such as in engineering, science and economics,
constitute delays as their natural components. Introducing delays into a model can improve its
vitality and suitability in describing several phenomena. A challenge with models that are asso-
ciated with delays and fractional operators is how to obtain their solutions (see, e.g, [2, 3, 12]).
There is no any precise analytical method for solving such problems to obtain their exact solu-
tions (see, e.g, [4, 5, 15, 16]). The research efforts abound in the literature on the proposition of
the numerical methods for solving such equations. The construction of efficient analytical and
numerical methods for the solutions of ordinary and partial Fractional Differential Equations
(FDEs) with delay, is an active research area and it is of great interest to the researchers (see,
e.g., [1]).

The economic models can help to understand and predict the economic behaviour (see,
e.g, [10]). The economy concerning a commodity determines the trend of its price, which may
increase or decrease rapidly. Through the economic models, the economists can predict the
optimal profit to show the link between demand and supply. Mathematical models of economic
processes give insight into the interaction that exists between the price, demand and supply,
dependence of supply and demand on price and how to estimate the equilibrium point on the
supply and demand curves (see, e.g, [18]). Market equilibrium refers to a state in which the
quantity demand and the quantity supply of a commodity are equivalent. Both the market
equilibrium and economic growth occupy important positions in the description of the real
world problems. By the demand and supply functions, we shall refer to the quantity demand
and quantity supply as functions of price, respectively. These functions are respectively given
as:

fd(t) = d0 − d1p(t) and fs(t) = −s0 + s1p(t), (1.1)

where p(t) is the price of the commodities, t is the time, while d0, d1, s0 and s1 are positive
constants (see, e.g, [13]). At equilibrium, fd(t) = fs(t), which means that the quantity demand
and quantity supply are equal and the equilibrium price is obtained as

p∗ =
d0 + s0

d1 + s1
.

The price tends to be invariant at equilibrium and there is neither surplus nor shortage. Consider
the price adjustment equation which is given as

p′(t) = q (fd − fs) , (1.2)

where q > 0 denotes the speed of adjustment constant. Substitute (1.1) into (1.2) to get

p′(t) + q (d1 + s1) p(t) = q (d0 + s0) . (1.3)

The solution of linear differential equation (1.3) is obtained as

p(t) = p∗ + [p(0)− p∗] e−q(d1+s1)t,

where p(0) denotes the price at the time t = 0. An increase in the price of a commodity will
urge the buyers to buy more before prices increase further while the suppliers tend to offer less
for the hoping of more earning from higher prices in future (see, e.g, [6, 13]). In addition, when
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p′(t) = 0 for all t ≥ 0, this describes equilibrium in a changing economy, which implies that
market is in dynamic equilibrium.

This study presents a blend of variational iteration method with Sumudu Transform (ST)
for solving nonlinear delay FDEs. Under the assumption that the market is in equilibrium,
we propose the formulation and construction of delayed fractional economic models such as
price adjustment equations involving Caputo derivative. Then, a blend of variational iteration
method with ST which is presented in this study is applied to obtain the solutions of the newly
introduced economic models. Suitable parameters are chosen for different fractional orders to
analyze the solutions obtained for the newly introduced economic models.

2 Preliminaries

In this section, we give some definitions and a proposition which are essential in establishing
the main results of this paper. Throughout this paper, C and R will denote the sets of complex
and real numbers, respectively. In addition, N will denote the set of natural number.

Definition 2.1. Consider a set of functions A defined as (see, e.g, [7])

A =
{
g(t) : ∃ Q, τ1, τ2 > 0, |g(t)| < Qe|t|/τj , if t ∈ (−1)j × [0,∞)

}
.

For all real t ≥ 0 and g(t) ∈ A, the ST of g(t) is denoted by S[g(t)] = G(u) and it is defined as

G(u) = S[g(t)] =

∫ ∞
0

g(tu)e−tdt, u ∈ (−τ1, τ2). (2.1)

The function g(t) in equation (2.1) is the inverse ST of G(u) and the relation is denoted by
g(t) = S−1[G(u)]. Recall that the Laplace transform of g(t), denoted by L[g(t)] = L(u) is
defined as

L(u) = L[g(t)] =

∫ ∞
0

g(t)e−stdt, s > 0. (2.2)

By considering (2.1) and (2.2), one can express a duality relation which the Sumudu and Laplace
transforms exhibit as follows:

G (1/s) = sL(s), L (1/u) = uG(u).

Like the well known Laplace transform, the ST is an integral method. Using ST technique is
appealing as it yields an accurate result quickly and it does not impose any restricting assump-
tions about the results. It is a simple, effective and universal way by which one can obtain the
Lagrange multiplier. Linearity property of ST is well known (see, e.g, [7, 8, 12, 19]), that is, for
two given functions f(t) and g(t), and for arbitrary constants α and β,

S [αf(t) + βg(t)] = αS [f(t)] + βS [g(t)] .

The ST for the integer order derivatives is expressed as

S

[
dg(t)

dt

]
=

1

u
[G(u)− g(0)] . (2.3)

For the n-order derivative, the ST is given as

S

[
dng(t)

dtn

]
=

1

un

[
G(u)−

n−1∑
k=0

uk
dkg(t)

dtk
|t=0

]
. (2.4)

Table 1 gives some special STs.
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Table 1: Special Sumudu Transforms

g(t) G(u) = S [g(t)]

1 1

t u
tn

n! = tn

Γ(n+1) un

eat 1
1−au

sin at
a

u
1+a2u2

cos at 1
1+a2u2

ebt−eat
b−a , b 6= a 1

(1−bu)(1−au)

Definition 2.2. Let a > 0, b > 0 be positive real numbers. The left and right sided Caputo-
fractional derivatives of order µ are defined respectively as

C
aD

µ
t g(t) =

1

Γ (1− µ)

∫ t

a
(t− τ)−µg′(τ)dτ

and

CDµ
b,tg(t) =

−1

Γ (1− µ)

∫ b

t
(τ − t)µg′(τ)dτ,

where 0 < µ < 1. The Caputo-fractional derivatives of order µ admit the ST in the form (see,
e.g, [9])

S
[
C
0 D

µ
t g(t)

]
= u−µ (S [g(t)]− ω(0)) . (2.5)

In general, let n ∈ N and µ > 0 be such that n− 1 ≤ µ < n and G(u) be the ST of the function
g(t), then the ST of the Riemann-Liouville fractional derivative of g(t) of order µ is given by

S
[
C
0 D

µ
t g(t)

]
= u−µ

[
G(u)−

n−1∑
k=0

u−(k+1)
[

0D
µ−k−1
t g(t)

]
|t=0

]
.

Proposition 2.3. Let φ, ϕ : [0,∞)→ R, then the classical convolution product is given by

(φ× ϕ)(t) =

∫ t

0
φ(t− x)ϕ(x)dx.

The ST for the convolution product is given by

S [(φ× ϕ)(t)] = uS[φ(t)]S[ϕ(t)]

= uφ(u)ϕ(u).

Definition 2.4. One-parameter Mittag-Leffler function Eµ(t) is defined as

Eµ(t) =

∞∑
n=0

tn

Γ (µn+ 1)
, µ > 0.

The following results about Mittag-Leffler functions and ST are well known (see, e.g, [13]):

(i) S [Eµ (−atµ)] = 1
1+auµ ;

(ii) S [1− Eµ (−atµ)] = auµ

1+auµ .
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3 Main results

We present a blend of variational iterative method with ST for solving nonlinear FDEs with
delay. Then we apply the results to study economic models.

3.1 Sumudu variational iteration method

We shall refer to a blend of ST with variational iterative method as Sumudu Variational Iteration
(SVI) method. When compared with other well-known methods, the flexibility, consistency
and effectiveness of the variational iterative method (see e.g, [20, 21] and references therein),
motivated its choice for amalgamation with the ST.

3.1.1 Presentation of SVI method

The Caputo-fractional derivatives are of great use in the modeling of phenomena where consid-
eration is given to the interactions within the past and also problems with nonlocal properties
(see, e.g, [17]). The SVI method is presented for solving nonlinear problems which involve delay
and Caputo-fractional derivatives of order µ,

C
aD

µg(t) +R [g(t)] +N [g(t− τ)] = ω(t), (3.1)

subject to the initial conditions
g(0) = g0, (3.2)

where τ > 0, R is a linear operator, N is a nonlinear operator and ω(t) is a given continuous
function. The ST of (3.1) takes the form

S
[
C
aD

µg(t)
]

= S [ω(t)−R [g(t)]−N [g(t− τ)]] .

Apply (2.5) with a = 0, to obtain

u−µ (S [g(t)]− g(0)) = S [ω(t)−R [g(t)]−N [g(t− τ)]] ,

which leads to
u−µ (G(u)− g0) = S [ω(t)−R [g(t)]−N [g(t− τ)]] ,

since by (3.2), g(0) = g0. Therefore, the SVI formula is given as (see, e.g., [11]),

Gn+1(u) = Gn(u) + α(u)

(
Gn(u)− g0

uµ
− S [ω(t)−R [g(t)]−N [g(t− τ)]]

)
, n ∈ N. (3.3)

In taking the classical variation operator on both sides of (3.3), considering S [R [g(t)] +N [g(t− τ)]]
as the restricted term leads to

δGn+1(u) = δGn(u) + α(u)
1

uµ
δGn(u),

which gives a Lagrange multiplier as
α(u) = −uµ.

Taking the inverse ST of (3.3) gives the explicit iteration formula as

gn+1(t) = gn(t) + S−1

[
−uµ

(
Gn(u)− g0

uµ
− S [ω(t)−R [gn(t)]−N [gn(t− τ)]]

)]
= g1(t) + S−1 [uµS [ω(t)−R [gn(t)]−N [gn(t− τ)]]] , (3.4)

with the initial approximation which is given as g1(t) = S−1
[
−uµ

(−g0
uµ

)]
= g0S−1 [1] = g0.
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3.1.2 Variable coefficients nonlinear FDEs with delay

Suppose the given general nonlinear problem (3.1) contains variable coefficients such that the
equation has the form

C
aD

µg(t) + λR1[g(t)] + γ(t)R2[g(t)] +N [g(t− τ)] = ω(t), (3.5)

where λ is a constant, γ(t) is a variable coefficient, R1 and R2 denote linear operators and other
terms remain as defined in (3.1). Taking the ST of (3.5) and further computations give the SVI
formula

Gn+1(u) = Gn(u) + α(u)

(
Gn(u)− g0

uµ
− S

[
ω(t)− λR1[g(t)]

−γ(t)R2[g(t)]−N [g(t− τ)]

])
, n ∈ N.

Gn+1(u) = Gn(u) + α(u)

(
Gn(u)− g0

uµ
− S

[
ω(t)− λR1[g(t)]

− γ(t)R2[g(t)]−N [g(t− τ)]

])
, n ∈ N.

(3.6)

In taking the classical variation operator on both sides of (3.6), considering

S [γ(t)R2[g(t)] +N [g(t− τ)]]

as the restricted term leads to

δGn+1(u) = δGn(u) + α(u)
1

uµ
δGn(u),

which gives a Lagrange multiplier as
α(u) = −uµ.

Substitute for α(u) in (3.6) and take its inverse ST to obtain the explicit iteration formula

gn+1(t) = gn(t) + S−1

[
−uµ

(
Gn(u)− g0

uµ
− S [ω(t)− λR1[gn(t)]− γ(t)R2[gn(t)]−N [gn(t− τ)]]

)]
= g1(t) + S−1 [uµS [ω(t)− λR1[gn(t)]− γ(t)R2[gn(t)]−N [gn(t− τ)]]] ,

with the initial approximation which is given as g1(t) = S−1
[
−uµ

(−g0
uµ

)]
= g0S−1 [1] = g0.

3.2 Economic models

In this section, we present the solution of price adjustment equations with Caputo-fractional
derivative by using ST method. A special class of delay differential equations with a proportional
delay is referred to as pantograph differential equations and they have the form

p′(t) = Ωp(t) + Φp(λt),

where Ω,Φ, λ are real constants and 0 < λ < 1 (see [14]). We propose a new economic model
by introducing the delay, which is in the form of a pantograph type into the formulation and
construction of price adjustment equations with Caputo-fractional derivative. In addition, we
present the precepts for obtaining the qualitative solutions of the newly proposed economic
models and choose suitable parameters to analyze the models for different fractional orders.
Moreover, we use the graphs to show the comparison between the solutions of the price ad-
justment equation with Caputo-fractional derivative and the newly introduced price adjustment
equation with Caputo-fractional derivative that involves delays.
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3.2.1 Price adjustment equations with Caputo-fractional derivative

Consider the price adjustment equation with Caputo-fractional derivative which is given as

C
aD

µp(t) + q (d1 + s1) p(t) = q (d0 + s0) , p(0) = p0. (3.7)

Take the ST of (3.7) as

S
[
C
aD

µp(t)
]

+ q (d1 + s1)S [p(t)] = qS [(d0 + s0)] ,

to obtain

u−µ (S [p(t)]− p(0)) + q (d1 + s1)S [p(t)] = q (d0 + s0) ,

and then

u−µ (S [p(t)]− p0) + q (d1 + s1)S [p(t)] = q (d0 + s0) , (3.8)

since p(0) = p0. Factorise and simplify (3.8) to obtain

S [p(t)] =
u−µp0

u−µ + q (d1 + s1)
+

q (d0 + s0)

u−µ + q (d1 + s1)

=
p0

1 + q (d1 + s1)uµ
+

q (d0 + s0)uµ

1 + q (d1 + s1)uµ

=
1

1 + q (d1 + s1)uµ
p0 +

(d0 + s0)

(d1 + s1)

q (d1 + s1)uµ

1 + q (d1 + s1)uµ
. (3.9)

Taking inverse ST of both sides of (3.9) and applying Definition 2.4 (ii) gives

p(t) = p0Eµ (−q (d1 + s1) tµ) +
(d0 + s0)

(d1 + s1)
(1− Eµ (−q (d1 + s1) tµ)) . (3.10)

To display the solution (3.10) graphically, real values are assigned to the constants as follows:
p0 = 1, d0 = 15, s0 = 100, d1 = 14, s1 = 97 and q = 0.2. For µ = 0.76, Figure 1 displays graph
of the solution of price adjustment equation (3.7). It is the curve for the (3.10). Figure 2 shows
the effect of adjusting the values of the fractional order of the Caputo-fractional derivative on
the solutions of (3.7). It displays the trend for (3.10) as µ varies.

3.2.2 Price adjustment equations with Caputo-fractional derivative that involve
delays

We propose a model with delay for the price adjustment equation with the Caputo-fractional
derivative and it is given as

C
aD

µp(t) + q (d1 + s1) p

(
t

2

)
= q (d0 + s0) , (3.11)

where µ ∈ (0, 1) and p(0) = p0.

Remark 3.1. We shall solve equation (3.11) by applying the newly introduced SVI method. It
is impossible to use ordinary ST to solve equation (3.11) due to the presence of delay.
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Figure 1: Price adjustment equations without a delay.

Figure 2: Variation as µ varies in price adjustment equations without a delay.
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Therefore, we start by taking the ST of (3.11), which takes the form

S
[
C
aD

µp(t)
]

+ q (d1 + s1)S
[
p

(
t

2

)]
= qS [(d0 + s0)] .

Apply (2.5) with a = 0, to obtain

u−µ (S [p(t)]− p(0)) + q (d1 + s1)S
[
p

(
t

2

)]
= q (d0 + s0) ,

which leads to

u−µ (P (u)− p0) + q (d1 + s1)S
[
p

(
t

2

)]
= q (d0 + s0) ,

since p(0) = p0. Therefore, the Sumudu variational iteration formula is given as

Pn+1(u) = Pn(u) + α(u)

(
Pn(u)− p0

uµ
+ q (d1 + s1)S

[
pn

(
t

2

)]
− q (d0 + s0)

)
, n ∈ N. (3.12)

Taking the classical variation operator on both sides of (3.12) with pn( t2) as the restricted term
makes the Lagrange multiplier to be obtained as

α(u) = −uµ.

Taking the inverse-ST of (3.12) gives

pn+1(t) = pn(t) + S−1

[
−uµ

(
Pn(u)− p0

uµ
+ q (d1 + s1)S

[
pn

(
t

2

)]
− q (d0 + s0)

)]
= p1(t) + S−1

[
−uµ

(
q (d1 + s1)S

[
pn

(
t

2

)]
− q (d0 + s0)

)]
= p1(t) + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)S
[
pn

(
t

2

)])]
,

with the initial approximation which is given as p1(t) = S−1
[
uµ
( p0
uµ

)]
= p0S−1 [1] = p0. There-

fore, the explicit iteration formula is obtained as

pn+1(t) = p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)S
[
pn

(
t

2

)])]
. (3.13)

Observe that since p1(t) = p0, then p1( t2) = p0. Therefore,

p2(t) = p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)S
[
p1

(
t

2

)])]
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
S−1 [uµ]

= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
tµ

Γ(µ+ 1)
.
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Notice that p2( t2) = p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
tµ

2µΓ(µ+1) , therefore

p3(t) = p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)S
[
p2

(
t

2

)])]
= p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)S
[
p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
tµ

2µΓ(µ+ 1)

])]
= p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)

(
p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
uµ

2µ

))]
= p0 + qS−1

[
uµ
(

(d0 + s0)− p0 (d1 + s1)− q (d1 + s1)

(
(d0 + s0)− p0 (d1 + s1)

)
uµ

2µ

)]
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
S−1

[
uµ − q (d1 + s1)

u2µ

2µ

]
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
tµ

Γ(µ+ 1)
− q (d1 + s1)

t2µ

2µΓ(2µ+ 1)

)
.

Notice that p3( t2) = p0 + q

(
(d0 + s0)−p0 (d1 + s1)

)(
tµ

2µΓ(µ+1) − q (d1 + s1) t2µ

23µΓ(2µ+1)

)
, there-

fore

p4(t) = p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)S
[
p3

(
t

2

)])]
= p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)

×S
[
p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
tµ

2µΓ(µ+ 1)
− q (d1 + s1)

t2µ

23µΓ(2µ+ 1)

)])]
= p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)

×
{
p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
uµ

2µ
− q (d1 + s1)

u2µ

23µ

)})]
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
S−1

[
uµ
{

1− q (d1 + s1)

(
uµ

2µ
− q (d1 + s1)

u2µ

23µ

)}]
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
S−1

[
uµ − q (d1 + s1)

(
u2µ

2µ
− q (d1 + s1)

u3µ

23µ

)]
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
tµ

Γ(µ+ 1)

−q (d1 + s1)

(
t2µ

2µΓ(2µ+ 1)
− q (d1 + s1)

t3µ

23µΓ(3µ+ 1)

))
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
tµ

Γ(µ+ 1)

−q (d1 + s1)
t2µ

2µΓ(2µ+ 1)
+ q2 (d1 + s1)2 t3µ

23µΓ(3µ+ 1)

)
.

Notice that

p4(
t

2
) = p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
tµ

2µΓ(µ+ 1)

−q (d1 + s1)
t2µ

23µΓ(2µ+ 1)
+ q2 (d1 + s1)2 t3µ

26µΓ(3µ+ 1)

)
,
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therefore

p5(t) = p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)S
[
p4

(
t

2

)])]
= p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)

×S
[
p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
tµ

2µΓ(µ+ 1)

−q (d1 + s1)
t2µ

23µΓ(2µ+ 1)
+ q2 (d1 + s1)2 t3µ

26µΓ(3µ+ 1)

)])]
= p0 + qS−1

[
uµ
(

(d0 + s0)− (d1 + s1)

×
{
p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
uµ

2µ
− q (d1 + s1)

u2µ

23µ
+ q2 (d1 + s1)2 u

3µ

26µ

)})]
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
×S−1

[
uµ
{

1− q (d1 + s1)

(
uµ

2µ
− q (d1 + s1)

u2µ

23µ
+ q2 (d1 + s1)2 u

3µ

26µ

)}]
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)
×S−1

[(
uµ − q (d1 + s1)

(
u2µ

2µ
− q (d1 + s1)

u3µ

23µ
+ q2 (d1 + s1)2 u

4µ

26µ

))]
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
tµ

Γ(µ+ 1)
− q (d1 + s1)

(
t2µ

2µΓ(2µ+ 1)

−q (d1 + s1)
t3µ

23µΓ(3µ+ 1)
+ q2 (d1 + s1)2 t4µ

26µΓ(4µ+ 1)

))
= p0 + q

(
(d0 + s0)− p0 (d1 + s1)

)(
tµ

Γ(µ+ 1)
− q (d1 + s1)

t2µ

2µΓ(2µ+ 1)

+q2 (d1 + s1)2 t3µ

23µΓ(3µ+ 1)
− q3 (d1 + s1)3 t4µ

26µΓ(4µ+ 1)

)
.

Hence, it can be deduced that


p1(t) = p0,

pn(t) = p0 + q

(
(d0 + s0)− p0 (d1 + s1)

) n−1∑
k=1

(−q (d1 + s1))k−1 tkµ

2
k
2

(k−1)µΓ(kµ+ 1)
, n > 1,

p(t) = lim
n→∞

pn(t), n ∈ N.
(3.14)

To display the solution (3.14) graphically, real values are assigned to the constants as follows:
p0 = 1, d0 = 15, s0 = 100, d1 = 14, s1 = 97 and q = 0.2. For µ = 0.76, Figure 3 displays the
iterations of the solutions of price adjustment equation with a delay (3.11). It shows how the
iterations progress to give the solution of (3.11). Figure 4 shows the effect of changing the values
of the fractional order of the Caputo-fractional derivative on the solution of (3.11). It displays
the trend for (3.14) as µ varies.
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Figure 3: Price adjustment equations with a delay.

Figure 4: Variation as µ varies in the price adjustment equations with a delay.

4 Conclusion

This study considers how to obtain the solutions of FDEs. The study presents SVI method,
which is a blend of ST with variational iterative method, for solving nonlinear FDEs with
delay. The study displays the craft of SVI method in obtaining the Lagrange multiplier. A
genuine model in science, engineering or economics, must comprise of time delays as they are
natural components of the dynamic processes. Therefore, we propose a new economic model by
introducing the delay into the formulation and construction of price adjustment equations with
Caputo-fractional derivatives. We follow the systematic steps in the newly introduced method
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that we presented in this study, to obtain the solutions of the newly proposed economic models
with delay. Choosing suitable parameters, we use Matlab to display the curves for the models of
different fractional orders. Furthermore, the graphs show the comparison between the solutions
of the price adjustment equations with Caputo-fractional derivatives and the newly introduced
price adjustment equations with Caputo-fractional derivatives that involve a delay.
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Abstract

This paper investigates the dynamical and integrability properties and the complete an-
alytical solutions of the well-known SEIR and the SIRV models utilized for the COVID-19
pandemic by employing the partial Hamiltonian method based on Lie group theory. Regard-
ing the model’s parameters, two distinct cases are evaluated for each model. The closed-form
solutions for the SIRV model are examined by using a single-phase space. Furthermore, the
graphical representations of the dynamical behavior of the analytical solutions are discussed.

Keywords: SEIR model, SIRV model, first integrals, analytical solutions, artificial Hamilto-
nian, epidemic models, Lie groups, Covid-19.

1 Introduction

One of the most important approaches for analyzing differential equations is Lie group the-
ory [1–3]. There are several examples of Lie group applications to ordinary, partial, and integrod-
ifferential equations in the literature [12–14] and [24–26]. In addition, the artificial Hamiltonian
technique, which offers a mechanism to obtain the exact solutions of a number of coupled non-
linear systems of ordinary differential equations (ODEs), may be used to apply the Lie groups
theory to nonlinear dynamical systems as well. Additionally, since every first-order system of
ODEs can be written as an artificial Hamiltonian system, the idea of an artificial Hamiltonian
offers an efficient method for figuring out how to solve these dynamical systems of first-order
ODEs. Some examples of systems where this method is particularly useful are given in the
studies [18–23].

The SIR model, which only considers the susceptible, infectious, and recovered populations,
is a well-known model for analyzing epidemic disease in the literature [4] & [5–8]. However,
the current COVID-19 epidemic outbreak demonstrates that the effect of vaccines (mRNA,
viral vectors, or subunit vaccines) on the other population fractions suspected S, infected I,
and recovered R populations is significant and that this effect should be incorporated into the
model to produce more accurate results from the studies on epidemics. As a result, a new
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42911 for the Ph.D. Thesis of Navid Amiri Babaei.
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model known as the SIRV model is developed as a generalized version of the SIR model to
demonstrate the effect of vaccines. The SIRV model is a system of coupled first-order nonlinear
ordinary differential equations from the mathematical perspective, and it is a fourth-dimensional
nonlinear dynamical system from the standpoint of mechanics.

The remainder of the study is divided into the following sections: In Section 2, the artificial
Hamiltonian definition is presented. The SEIR and SIRV model’s mathematical and physical
characteristics are described in Section 3. And then the SIRV model’s first integral and analytical
solutions are represented along with a graphical depiction of the dynamics of the model.

2 Biological models in epidemiology

Bio-mathematical models can be based on ordinary differential equations (ODEs) or partial
differential equations (PDEs). ODE models are the most commonly used bio-mathematical
models since they are effective to formulate and solve and can reveal system behavior over time.
ODE models can range from simple systems with two variables to complex systems with a large
number of variables. For example, the Lotka-Volterra predator-prey model, which describes
predator-prey populations, is a popular ODE model [23]. This model describes the growth rates
and interactions of the two populations using coupled ODEs. The SIR model is a standard
mathematical model for describing the spread of infectious diseases within a population. [4] The
model classifies the population into three groups: susceptible (S), infectious (I), and recovered
(R) individuals. A four-variable ODE model of neuron action potential dynamics is the Hodgkin-
Huxley model. [9] The membrane potential and ion channel opening and closing are described
by four non-linear ODEs in this model. The SEIRD model extends the SIR model by adding a
compartment for exposed non-infectious individuals [10,15]. Five-dimensional non-linear models
include susceptible, exposed, infectious, recovered, and deceased individuals. A well-known
example of a six-dimensional model that describes the dynamics of a gene regulatory network
is the Goodwin oscillator [11]. The six-dimensional non-linear model describes the interactions
between genes and proteins in a straightforward feedback loop.

2.1 The SEIR model

The SEIR model is a mathematical model that is used to examine the transmission of infectious
illnesses within a community. The model classifies the population as susceptible (S), exposed
(E), infected (I), and recovered (R). According to the model, individuals progress from being
susceptible to exposure to infection to recovering. A set of differential equations governs the
transition between categories by describing the rate of change of each category. The SEIR
model has been extensively utilized to analyze the transmission of infectious diseases such as
COVID-19, influenza, and Ebola, as well as the effectiveness of interventions such as vaccination,
quarantine, and social isolation. [15–17]. Figure 1 depicts the flowchart for the SEIR model.

Figure 1: The flow diagram of epidemic SEIR-model

Based on the flow diagram in Figure 1, the SEIR model can be expressed in the literature
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as a system of coupled nonlinear first-order ODEs

Ṡ(t) = µN − µS − βIS

N
,

Ė(t) =
βIS

N
− (µ+ a)E,

İ(t) = aE − (γ + µ)I,

Ṙ(t) = γI − µR,

(2.1)

where a−1 represents the typical latency period and µ, γ, and β are the ratios of death, recovery,
and infection. and N is the total population, constant.

2.1.1 General case of the SEIR model

In this section, we investigate the first integrals and their associated analytical solutions using
the artificial Hamiltonian approach for the SEIR model (2.1) without considering any constraints
on the model parameters.

Remark 2.1. Assume that time t is an independent variable for i= 1,2,...,n, and that the phase
space parameters are (pi, qi) as dependent variables. As a result, the systems of the first-order
ODEs listed below can be defined

q̇i = W i
1(t, pi, qi), (2.2)

ṗi = W i
2(t, pi, qi), (2.3)

where W i
1(t, pi, qi) and W i

2(t, pi, qi) are continuous differentiable functions of the form

ṗi = Dt(pi), q̇i = Dt(qi), (2.4)

in which Dt represents the total derivative operator defined by

Dt =
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi
+ . . . . (2.5)

In order to achieve this, we first define the phase space of the form

S = p1, E = p2, I = q1, R = q2. (2.6)

In terms of Hamiltonian functions H, the following differential expressions are written as

q̇1 =
∂H

∂p1
−→ İ =

∂H

∂S
,

q̇2 =
∂H

∂p2
−→ Ṙ =

∂H

∂E
,

ṗ1 = −∂H
∂q1

+ Γ1 −→ Ṡ = −∂H
∂I

+ Γ1,

ṗ2 = −∂H
∂q2

+ Γ2 −→ Ė = −∂H
∂R

+ Γ2.

(2.7)

Hence, the direct integration (2.7) yields

Γ1 = µN − βp1q1
N

− p1(γ + 2µ) + γp2, Γ2 = −p2(a+ µ) +
βp1q1
N

− µp2, (2.8)

and
H = ap1p2 − p1q1(γ + µ) + γp2q1 − µp2q2. (2.9)
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Definition 2.2. The function W i
2(t, pi, qi) can be written as

W i
2(t, qi, pi) = −

∫
∂W i

1

∂qi
dpi + gi(t, qi) + Γi(t, qi, pi), (2.10)

where Γi(t, qi, pi) and gi(t, qi) are integrable functions. Therefore, the system (2.2) and (2.3) can
be written in the following form

q̇i =
∂H

∂pi
, (2.11)

ṗi = −∂H
∂qi

+ Γi(t, pi, qi), (2.12)

in which H called as artificial Hamiltonian [19–21] satisfies the relation

H(t, qi, pi) =

∫
W i

1(t, qi, pi) dpi −
∫
gi(t, qi) dqi. (2.13)

Remark 2.3. It can be shown that both the functions g2(t, q1, q2) and g1(t, q1, q2), for the phase
space (2.6) in the equation (2.10) are zero and then the equation (2.13) is satisfied.

Definition 2.4. The generator of Lie point symmetries for phase space (t, pi, qi) is a differential
operator:

X = ξ(t, pi, qi)
∂

∂t
+ ηi(t, pi, qi)

∂

∂qi
+ ζt

∂

∂pi
, (2.14)

called the partial Hamiltonian operator. If there exists a gauge function B(t, pi, qi) satisfying
the equation

ζt
∂H

∂ṗi
+ piDt(ηi)−X(H)−HDt(ξ) = Dt(B)−

(
ηi − ξ

∂H

∂ṗi

)
(Γi), (2.15)

and then the first integrals of system (2.2)-(2.3) are determined by

I : piηi − ξH −B. (2.16)

The differential operator (2.15) for n = 2 is written as below

X = ξ(t, q1, q2)
∂

∂t
+ η1(t, q1, q2)

∂

∂q1
+ η2(t, q1, q2)

∂

∂q2
. (2.17)

It can be verified that the first term at (2.15) is zero. As a result, by using the partial
Hamiltonian operator (2.14) on the equations (2.1), the determining equation (2.15) in terms of
x(t, q1, q2), η

1(t, q1, q2), η
2(t, q1, q2) and B(t, q1, q2) is written of the form

Bq1(q1(γ + µ)− ap2) +
(N(µN + γp2)− p1(N(γ + 2µ) + βq1))(ξ(q1(γ + µ)− ap2) + η1)

N

+

(
βp1q1
N

− p2(a+ 2µ)

)(
η2 − ξ(ap1 + γq1 − µq2)

)
+ p1

(
η1q1(ap2 − q1(γ + µ)) + (γq1 − µq2)η1q2 + η1t

)
− (ap1p2 − p1q1(γ + µ) + γp2q1 − µp2q2) (ξq1(ap2− q1(γ + µ)) + (γq1 − µq2)ξq2 + ξt)

+ p2
(
η2q1(ap2 − q1(γ + µ)) + (γq1 − µq2)η2q2 + η2t

)
+ (µq2 − γq1)Bq2 −Bt

+ (p1(γ + µ)− γp2)η1 + µp2η
2 = 0.

(2.18)

For the general case, it is straightforward to demonstrate that the solution of the system
(2.18) is

ξ = 0, η1 = 0, η2 = 0, B = c1. (2.19)

where c1 is a constant. As a result, it gives only a trivial first integral. Thus, we consider some
constraint relations between the model’s parameters.
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2.1.2 Sub-case of the SEIR model

Remark 2.5. One can take into account the case a = −γ and β = γ2−µ2
γ for the integrability

requirements of the SEIR model in order to find nontrivial closed-form solutions.

Taking into account this constraint, the solution of the determining equations (2.18) is found
as

ξ = 0,

η1 = eµt
(
q2c2e

µt + c3
)
,

η2 = eµt
(
c2e

µt

(
q2 −

γ2N

γ2 − µ2

)
+ c3

)
,

B = c4 +
c2e

2µt
(
−2γN(q1 + q2) + 2µNq2 + (γ − µ)(q1 + q2)

2
)

2(µ− γ)
+ c3e

µt(N − q1 − q2),

(2.20)

where c2, c3 and c4 are constants. Using the formula (2.16), the following first integrals

I1 :
(γ + µ)

(
2(γ − µ)q2(N − p1 − q1) + q1(2γN + (µ− γ)q1) + (µ− γ)q22

)
+ 2p2

(
γ2N +

(
µ2 − γ2

)
q2
)

2e−2µt(µ− γ)(γ + µ)

− c5 = 0,

I2 : eµt(−N + p1 + p2 + q1 + q2)− c6 = 0,

I3 : −1− c7 = 0,

(2.21)

are obtained. We can take the two preceding constants, namely c5 and c6 as zero without losing
generality. From I2, we can calculate p1:

p1 = N − p2 − q1 − q2. (2.22)

The first integral I1 yields

p1 =
(γ + µ)

(
−2γNq1 + (γ − µ)q21 + (µ− γ)q22

)
2γ2N

, (2.23)

and the fourth equation of the system (2.1) gives

q1 =
q̇2 + µq2

γ
. (2.24)

By taking γ = 2µ, the third equation of system (2.1) yields the following analytical solution

q2 = e−
1
3
t
√

2µ2+6
√

3µ2(N+8)

(
c8e

2
3
t
√

2µ2+6
√

3µ2(N+8) + c9

)
, (2.25)

where c8 and c9 are integration constants. It can be shown that the solutions (2.25), (2.24),
(2.23), and (2.22) satisfies the SEIR model given by (2.1).

2.2 The SIRV model

The SIRV model is one of the most widely used models for describing epidemiology and clas-
sifying diseases in the community. The vaccinated population variable as a function of time is
added to the system in the SIRV model, which is connected to the SIR model. Studies looking
at diseases like COVID-19 and Ebola have employed this methodology [22, 23]. In the recent
study [22], by using the partial Hamiltonian approach based on the theory of Lie groups, the
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Figure 2: The flow diagram of epidemic SIRV-model

integrability conditions and exact analytical solutions of the initial-value problem defined for the
prominent SIRV model used for the pandemic Covid-19 are investigated. However, in this study,
a distinct SIRV model different from the model considered in the study [22] will be analyzed.
Figure 2 depicts the flowchart for the modified SIRV model.

Based on the flow diagram in Figure 1, the SIRV model can be expressed in the literature
as a system of coupled nonlinear first-order ODEs.

Ṡ(t) = B(1− ν1)− βSI − ν2S +Q1R+Q2V − pS,
İ(t) = βSI − aI − pI,
Ṙ(t) = aI −Q1R− pR,
V̇ (t) = ν1B + ν2S −Q2V − pV,

(2.26)

where the dot represents the time derivative. From the perspective of mechanics, the system
can be categorized as a fourth-dimensional nonlinear dynamical system. Four variables make
up the model’s structure in this illustration: S(t) represents the susceptible individual, I(t)
represents the infected individual, R(t) represents the recovered individual, and V (t) represents
the population that has received vaccinations. Based on the behavior of the disease described,
the structural components of the model might be improved. Additionally, B and p stand for the
typical birth and death rates. ν1 and ν2, which stand for newborns and questionable individuals
are two different vaccination rates. The parameters β and a show the infection and recovery
rates. Additionally, in the model, there are two separate susceptibility ratios, Q1 and Q2, which
are defined for the susceptible people following recovery and vaccination.

2.2.1 General case of the SIRV model

In this section, we investigate the first integrals and their associated analytical solutions for the
SIRV model given by (2.26) without putting any constraints on the model parameters. In order
to achieve this, we similarly define the phase space:

S = q2, I = p1, R = q2, V = p2. (2.27)
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In terms of Hamiltonian functions H, the following differential expressions can be written

q̇1 =
∂H

∂p1
−→ Ṡ =

∂H

∂I
,

q̇2 =
∂H

∂p2
−→ Ṙ =

∂H

∂V
,

ṗ1 = −∂H
∂q1

+ Γ1 −→ İ = −∂H
∂S

+ Γ1,

ṗ2 = −∂H
∂q2

+ Γ2 −→ V̇ = −∂H
∂R

+ Γ2.

(2.28)

The direct integration of the system (2.28) produces

Γ1 = −1

2
p1(2a+ 4p+ 2ν2 +βp1−2βq1), Γ2 = −p2(Q1 +Q2 + 2p) +Q1p1 +Bν1 +ν2q1, (2.29)

and

H = ap1p2+Q1p1q2−Q1p2q2+Q2p1p2−pp1q1−pp2q2+B(p1−ν1p1)−
1

2
βp21q1−ν2p1q1. (2.30)

Remark 2.6. Similarly, it can be shown that the functions g2(t, q1, q2) and g1(t, q1, q2) are zero.

The differential operator (2.15) for n = 2 is provided by

X = ξ(t, q1, q2)
∂

∂t
+ η1(t, q1, q2)

∂

∂q1
+ η2(t, q1, q2)

∂

∂q2
. (2.31)

Additionally, it can be verified that the first term at (2.15) equals zero. As a result, by using the
partial Hamiltonian operator (2.15) on the equations (2.26), the determining equation is written
in the form:

Bq2(q2(Q1 + p)− ap1)−
1

2
(−2ap1p2 − 2Q1p1q2 + 2Q1p2q2 − 2Q2p1p2 + 2pp1q1 + 2pp2q2 + 2B(ν1 − 1)p1

+ βp21q1 + 2ν2p1q1)(ξq2(q2(Q1 + p)− ap1) + ξq1(−Q1q2 −Q2p2 + q1(p+ ν2 + βp1) +B(ν1 − 1))− ξt)
+ p1(η

1
q2(ap1 − q2(Q1 + p)) + η1q1(Q1q2 +Q2p2 − q1(p+ ν2 + βp1) +B(−ν1) +B) + η1t )

− 1

2
p1(2a+ 4p+ 2ν2 + βp1 − 2βq1)(ξ(p2(−(a+Q2))−Q1q2 + q1(p+ ν2 + βp1) +B(ν1 − 1))

+ η1) + p2(η
2
q2(ap1 − q2(Q1 + p)) + η2q1(Q1q2 +Q2p2 − q1(p+ ν2 + βp1)

+B(−ν1) +B) + η2t ) + (−p2(Q1 +Q2 + 2p) +Q1p1 +Bν1 + ν2q1)(ξ(q2(Q1 + p)− p1(a+Q2))

+ η2) +Bq1(−Q1q2 −Q2p2 + q1(p+ ν2 + βp1) +B(ν1 − 1))−Bt + (p2(Q1 + p)−Q1p1)η
2

+
1

2
p1(2p+ 2ν2 + βp1)η

1 = 0.

(2.32)

For the general situation, it is straightforward to show that the solution of the system (2.32) is

ξ = 0, η1 = c1e
pt, η2 = c1e

pt, B =
c1e

pt(B − p(q1 + q2))

p
+ c2. (2.33)

where c1 and c2 are constants of integration. Using the formula (2.16), the following first integrals

I1 :
ept(p(p1 + p2 + q1 + q2)−B)

p
− c3 = 0,

I2 : 1− c4 = 0,

(2.34)

are determined, where c3 and c4 are constants, in which the first integral obtained above is a
novel first integral for the SIRV model, however, it is not sufficient to determine the complete
analytical solutions of the system.
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2.2.2 Sub-case of the SIRV model

Remark 2.7. One can take into account the constraint a = −Q1 + Q2 + ν2 for the complete
integrability of the SIRV model in order to obtain the nontrivial closed-form solutions.

Taking into account the constraint between the parameters of the model, the solution of the
determining equations (2.32) gives the solution for the infinitesimals as below

ξ = 0,

η1 = c6e
pt − c5ν2e

t(Q2+p+ν2)

Q2
,

η2 = c5e
t(Q2+p+ν2) + c6e

pt,

B =
c5e

t(Q2+p+ν2) (Q1(−Q2(Bν1 + ν2(q1 + q2))− ν2((p+ ν2)(q1 + q2) +B(ν1 − 1))) + (Q2 + ν2) (Ω))

Q2(−Q1 +Q2 + ν2)(Q2 + p+ ν2)

+
c6e

pt(B − p(q1 + q2))

p
+ c7,

(2.35)

and
Ω = ν2q1(Q2 + p) +Q2Bν1 +B(ν1 − 1)ν2 + ν22q1, (2.36)

where c5, c6 and c7 are constants. Using the formula (2.16), the following first integrals

I1 :
et(Q2+p+ν2)

(
Q1ν2q2

−Q1+Q2+ν2
+ B(ν2−ν1(Q2+ν2))

Q2+p+ν2
+Q2p2 − ν2(p1 + q1)

)
Q2

− c8 = 0,

I2 : ept
(
−B
p

+ p1 + p2 + q1 + q2

)
− c9 = 0,

I3 : −1− c10 = 0,

(2.37)

are obtained, where c8, c9 and c10 are constants. First, from I1, we can calculate p2:

p2 =
ν2

(
− Q1q2
−Q1+Q2+ν2

+ p1 + q1

)
+ B(Q2ν1+(ν1−1)ν2)

Q2+p+ν2

Q2
. (2.38)

From I2, we have

p1 = − (Q2 −Q1)q2
−Q1 +Q2 + ν2

+
B(Q2 − pν1 + p)

p(Q2 + p+ ν2)
− q1, (2.39)

and from the third equation of the system (2.26), one can write

q1 =
(Q2 + p)q2 + q̇2
Q1 −Q2 − ν2

+
B(Q2 − pν1 + p)

p(Q2 + p+ ν2)
. (2.40)

Remark 2.8. By considering the constraint Q1 = Q2 = −p between the parameters of the model,
we can obtain the analytical solution of the system.

From the first equation in the system (2.26), the differential equation

ν2q̇2

(
p

(
−
(
βB

pν2
− 1

))
− 2p− βB(ν1 − 1)

ν2
− ν2

)
− ν2q̈2 − βq̇22, (2.41)

is obtained, which has the solution of the form

q2(t) =

ν2

(
ln

(
e
t
(
p+

βBν1
ν2

+ν2
)
− βec11(ν2(p+ν2)+βBν1)

)
− ln

(
e
t
(
p+

βBν1
ν2

+ν2
)))

β
+ c12, (2.42)
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where c11 and c12 are constants. By applying (2.42) to (2.38), (2.39), and (2.40), the exact
analytical solutions for the SIRV model

S(t) = −ν2(p+ ν2)e
c11(ν2(p+ν2)+βBν1) +Bν1e

t
(
p+

βBν1
ν2

+ν2
)

ν2

(
e
t
(
p+

βBν1
ν2

+ν2
)
− βec11(ν2(p+ν2)+βBν1)

) ,

I(t) =
(ν2(p+ ν2) + βBν1)e

c11(ν2(p+ν2)+βBν1)

ν2

(
e
t
(
p+

βBν1
ν2

+ν2
)
− βec11(ν2(p+ν2)+βBν1)

) ,

R(t) =

ν2

(
ln

(
e
t
(
p+

βBν1
ν2

+ν2
)
− βec11(ν2(p+ν2)+βBν1)

)
− ln

(
e
t
(
p+

βBν1
ν2

+ν2
)))

β
+ c12,

V (t) =

ν2

(
ln

(
e
t
(
p+

βBν1
ν2

+ν2
))
− ln

(
e
t
(
p+

βBν1
ν2

+ν2
)
− βec11(ν2(p+ν2)+βBν1)

))
β

+B

(
1

p
+
ν1
ν2

)
− c12,

(2.43)

are determined. It can be shown that the analytical solutions satisfy the SIRV model(2.26).
Additionally, by taking into account the numerical values of the parameters in Table 2.1, the
graphical representations for the analytical solutions are provided in Figure 2 and Figure 3.

Parameters ν1 ν2 p B β

Values 0.50 0.70 0.55 0.9 2.5× 10−5, 2.5× 100, 2.5× 10+1

Table 2.1: Parameter values considered for the subcase

As seen from the graphs, they reveal that as time passes, the population’s estimated num-
ber of suspects and infected people gradually declines, while the number of people who have
successfully recovered from the disease and received the vaccine rises. These developments are
directly related to the vaccination drive, which gives people immunity and aids in halting the
disease’s spread.

The proportion of susceptible people in the population declines as vaccination rates rise,
making it more difficult for the disease to spread. Because of this, fewer infections are acquired,
which lowers the number of active cases. Concurrently, those who have recovered from the
illness or received the vaccine offer an additional layer of protection to the populace, lowering
the overall impact of the disease. All of these patterns suggest that vaccination can be a useful
tool for halting the spread of infectious diseases and lessening their negative effects on society.

3 Conclusions

In this study, we have presented an analytical analysis of two different epidemic models namely
the SEIR and the SIRV models. The SEIR model is a prominent epidemiological model used
to track the transmission of infectious diseases. The SEIR model splits the population into
four compartments: susceptible (S), exposed (E), infected (I), and recovered (R). The rate of
movement from one compartment to another depends on many things, such as the mortality
rate, the infection rate, and the recovery rate.

For a specific subcase, an exact solution to the SEIR model is obtained. This solution offers
a closed-form formula for the number of organisms in each compartment as a function of time.
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(a) (b)

(c) (d)

Figure 3: Graphics showing how SIRV population variables have changed over time for the
subcase, For each figure, three different situations are considered for the different values of β
changing from 2.5× 101 to 2.5× 10−5

Our results reveal that the behavior of the SEIR model is highly sensitive to the values of the
model parameters and that changes in these parameters can have a major impact on the overall
course of an outbreak. This study offers valuable insights into the dynamics of infectious disease
transmission and can inform public health policies and activities targeted at preventing the
spread of infectious illnesses. Under one subbase, two unique first integrals for the study of the
SEIR model are obtained, and we show these two first integrals are sufficient to obtain the exact
analytic solution for the SEIR model.

In addition, this study examines the impact of vaccination on the course of the disease using
the SIRV (Susceptible-Infected-Recovered-Vaccinated) epidemic model, which is used to analyze
the COVID-19 pandemic disease. The integrability characteristics of a COVID-19 model known
as the SIRV model are examined in this paper based on the theory of Lie groups and the
Hamiltonian technique in order to investigate the exact analytical solutions. The SIRV model
generalizes the well-known SIR model (Susceptible-Infected-Recovered), one of the most popular
epidemic models for comprehending the mathematical and dynamic components of an epidemic
outbreak. The SIR model does not, however, take into account the populations of vaccinated
people and their impacts, which are critical in situations like the COVID-19 or SARS epidemic
outbreaks.

In the first place, two nontrivial first integrals are produced for the specific subcase. It is
demonstrated that these two first integrals render the system fully integrable. After obtaining
the analytical solutions, the innovative, exact analytical solutions of the model are derived. In
addition, the graphical representations of the solutions’ evaluations are provided. It is proven
that the results are compatible with the outcomes expected. If we compare the results acquired
by numerical methods with the analytical results obtained using Lie group analysis, one can find
that the analytical solutions are consistent with the results produced by numerical methods. In
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Figure 4: Graphical representations of all population fractions, S(t), I(t), R(t), and V (t), eval-
uated by time t.

addition, the outcomes of this investigation reflect genuine physical conditions in the real world.
For instance, it is evident from Figure 3 that the number of suspected and infected individuals
reduces as the number of vaccines grows over time. From graphs Figure 3 and Figure 4, it can be
seen that the number of infected and susceptible people will decrease to almost zero, while the
number of recovered people will increase in the future as a result of vaccination when the number
of vaccinated people will first increase and then become nearly constant as a steady-state case
in the distant future. The analytical results and graphs in this study show that vaccine use
influences the number of infected and recovered populations over time. These results can be
taken as an acceptable and fair forecast from the results acquired in this study concerning the
end of the COVID-19 pandemic, as one of the novel contributions to the study.

References

[1] Lie, Sophus. Theorie der Transformationsgruppenreal-world. Leipzig: Teubner, 1888.
http://eudml.org/doc/202642

[2] Lie, Sophus. Theorie der Transformationsgruppen Abschn. 2. Leipzig: Teubner, 1890.
http://eudml.org/doc/202999

[3] Lie, Sophia. Theory of Transformation Groups Sect. 3 . Leipzig: Teubner, 1893.
http://eudml.org/doc/202686

[4] Kudryashov, N. A., Chmykhov, M. A., & Vigdorowitsch, M. Analytical features of
the SIR model and their applications to COVID-19, Applied Mathematical Modelling.
2021;90,466–473. https://doi.org/10.1016/j.apm.2020.08.057

[5] Sene, N. SIR epidemic model with Mittag–Leffler fractional derivative. Chaos, Solitons and
Fractals 2020; 137, 6–8. https://doi.org/10.1016/j.chaos.2020.109833

[6] Chekroun, A., & Kuniya, T. Global threshold dynamics of an infection age-structured
SIR epidemic model with diffusion under the Dirichlet boundary condition. Journal of
Differential Equations. 2020; 269(8), 117–148. https://doi.org/10.1016/j.jde.2020.04.046

[7] Tian, C., & Zhang, Q., Zhang, L. Global stability in a networked SIR epidemic model.
Applied Mathematics Letters 2020;107,106444. https://doi.org/10.1016/j.aml.2020.106444

[8] Simon, M. SIR epidemics with stochastic infectious periods. Stochastic Processes and Their
Applications. 2020;130(7),4252–4274. https://doi.org/10.1016/j.spa.2019.12.003

http://eudml.org/doc/202642
http://eudml.org/doc/202999
http://eudml.org/doc/202686
https://doi.org/10.1016/j.apm.2020.08.057
https://doi.org/10.1016/j.chaos.2020.109833
https://doi.org/10.1016/j.jde.2020.04.046
https://doi.org/10.1016/j.aml.2020.106444https://doi.org/10.1016/j.aml.2020.106444
https://doi.org/10.1016/j.spa.2019.12.003


26 N. A. Babaei and T. Özer
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Abstract

For a plane flow of a vibrationally excited dissociating diatomic gas the necessary con-
ditions of the existence of growing (neutral) inviscid disturbances, similar to the Rayleigh
criterion of a “generalized” inflection point, are obtained. The corresponding formulas are
presented for cases having a certain physical interpretation. In particular, the model of a
vibrationally excited one-component gas is considered as the initial stage of thermal dissoci-
ation, as well as a wide spread model with one dissociation-recombination reaction. The case
of a binary molecular-atomic mixture with a vibrationally excited molecular component and
a “frozen” gas-phase dissociation-recombination reaction is considered as an intermediate
one. Comparative numerical calculations were carried out, which showed, in particular, that
under conditions of developed dissociation, the use of the criterion of the “generalized” in-
flection point does not take into account the specifics of the process. The wave numbers and
phase velocities of the I and II inviscid modes calculated on its basis may differ significantly
from the results obtained using the new necessary condition.

Keywords: inviscid disturbances, Rayleigh criterion of “generalized” inflection point, vibra-
tional excitation, dissociation-recombination reaction, I and II inviscid modes.

1 Introduction

The problem of finding growing (neutral) inviscid disturbances is a part of the general problem
of linear stability of flows. From the spectrum of inviscid disturbances, the most growing modes
are distinguished, which are reproduced in the viscous problem. For an ideal incompressible
fluid, the necessary condition for the existence of such disturbances is known as the Rayleigh
criterion [1]. A compressible ideal gas has a similar condition for a “generalized” inflection
point [2]. For a supersonic boundary layer at Mach numbers M > 2.2, the appearance of more
unstable high-frequency modes [3] has been established. The manifestation of the real properties
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of the gas, such as vibrational excitation, dissociation-recombination, and other physical and
chemical processes, necessarily affects the physical picture of the occurrence and development of
disturbances. From a mathematical point of view, taking into account these processes leads to
the appearance of source terms in the equations of continuity and energies of the initial steady
flow and the corresponding equations for disturbances of the linear theory of stability. In this
case, a consistent consideration of the conditions for the growth of inviscid disturbances should
lead to further generalizations of the inviscid criterion.

In paper [4], an expression for the growth criterion for inviscid disturbances was obtained
for a gas model with a simple first-order chemical reaction. However, when deriving the energy
equation, the term corresponding to the work of pressure forces during volumetric deformation
of the medium was omitted. Such an unjustified simplification casts doubt on the adequacy
of the result obtained, especially not confirmed by numerical calculations. The article con-
siders the necessary conditions for the existence of neutral (growth) inviscid perturbations in
a vibrationally excited dissociating gas for the case of single-mode vibrational relaxation and
dissociation-recombination of a diatomic gas according to the scheme

A2 + M � A + A + M.

Here A2 is a molecule, A is an atom, and M is the collision partner (the third body in
recombination), which can be either a molecule or an atom. Thus, a binary reacting gas mixture
is considered.

As a first approximation, the model of a vibrationally excited one-component gas is consid-
ered as the initial stage of thermal dissociation, when the concentration of atoms is insignificant.
As another approximation, the case of a binary molecular-atomic mixture with a vibrationally
excited molecular component and a “frozen” gas-phase dissociation-recombination reaction is
analyzed. This approximation corresponds to the experimental conditions in a high-enthalpy
wind tunnel. The practical interest is the criterion of neutral (growth) inviscid disturbances
obtained for the widely used model of a dissociating gas without taking into account vibra-
tional excitation, which is substantiated by a significant difference in the characteristic times
of the processes. To check the significance of the criteria obtained, numerical calculations were
performed for the conditions of developed dissociation.

2 Statement of problem and basic equations

A model of a diatomic gas is considered with allowance for vibrational relaxation and the
dissociation-recombination reaction [5]. The current distance x = L along the plate and pa-
rameters of the unperturbed flow outside the boundary layer, marked by the index “∞” were
chosen for nondimensionalization — the velocity, U∞, the density, ρ∞, and the temperature,
T∞, the coefficients of the shear and bulk viscosities, η∞ and ηb∞, correspondingly, the ther-
mal conductivity coefficient due to the energy transfer in translational and rotational degrees
of freedom, λ∞ = λt∞ + λr∞, the coefficient of thermal conductivity describing the diffusion
transfer of the energy of vibrational quanta, λv∞. For nondimensionalization of the pressure and
time, the combined values of ρ∞U

2
∞ and L/U∞, respectively were used. Energies and enthalpies

are dimensionless by the value ρ∞T∞R/(2Ma), where R is the universal gas constant, Ma is
the molecular weight of the atom. The production (death) rate ẇ of the atomic component
is scaled by the complex kdρ

2
∞/ (2Ma), where kd is the dissociation constant. The problem is

characterized by dimensionless criteria — the Reynolds number, Re∞ = ρ∞LU∞/η∞, the Mach
number, M∞ = U∞/

√
γ∞T∞R/(2Ma), the Damköhler number, Dad = kdρ

2
∞L/(2MaU∞), the

Schmidt number, Sc = η∞/(ρ∞D12∞), where D12∞ is binary the coefficient of diffusion.
In the inviscid approximation, it is assumed that

η ∼ λ ∼ λv ∼ D12 ∼ o(1).
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As a consequence, in the limit Re∞ → ∞, the terms describing the processes of transfer of
momentum, heat, and mass are excluded from the initial equations [5]. As a result, the system
of equations takes the form

∂ρ

∂t
+
∂uρ

∂x
+
∂vρ

∂y
= 0, ρ

∂c

∂t
+ ρu

∂c

∂x
+ ρv

∂c

∂y
= Dadẇ,

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
, ρ

∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
,

ρ
∂ei
∂t

+ ρu
∂ei
∂x

+ ρv
∂ei
∂y

+ γpM2
∞

(
∂v

∂x
+
∂v

∂y

)
= Dad

(
J − 1

2
evẇ

)
− (1− c)Qtr−v, (2.1)

ρ
∂(1− c)ev

∂t
+ ρu

∂(1− c)ev
∂x

+ ρv
∂(1− c)ev

∂y
=

1

2
Dadevẇ + (1− c)Qtr−v,

p =
1

γM2
∞

(1 + c)ρT.

Since the pressure is constant across the layer, then ρT = (1 + c∞)/(1 + c).
Here

ei =

(
5

2
+

1

2
c

)
T, ev = θh

[
exp

(
θh
Tv

)
− 1

]−1
, Qtr−v = ρ

ev(T )− ev(Tv)
τ

,

θh is the characteristic temperature of gas molecules, J = h0aẇ is the dimensionless thermal
effect of dissociation-recombination reactions, h0a is the dimensionless enthalpy of formation of
atoms, τ is the relaxation time.

The production of atoms is calculated by the formula [5]

ẇ = R1 = k
(1)
d

(1− c)2ρ2

4Ma
− k(1)r

(1− c)c2ρ3

2M2
a

, k
(1)
d = a1T

−1/2 exp

(
−Ed
kT

)
, k(1)r = b1T

−1/2,

where Ed is the dissociation energy of a gas molecule, k is the Boltzmann constant.
The system (2.1) was linearized on a stationary boundary layer solution for a plate. In

deriving the linearized equations for disturbances the instantaneous values of the hydrodynamic
variables were represented in the form

u = US + u′, v = v′, ρ = ρS + ρ′, c = cS + c′, T = TS + T ′, p = pS + p′, Tv = TvS + T ′v.

Here the subscript “S” denotes the values of the variables related to the stationary flow, and
the primed quantities are the disturbances of these variables. The disturbances of quantities
that are functionally dependent on the main variables were expressed in terms of their first-order
total differentials. In this case, the derivatives included in them were calculated on a stationary
solution. As a result we get following expressions

ei = eiS + e′i = eiS + eiTT
′ + eicc

′, ev = evS + e′v = evS + evTvT
′
v,

ẇ = ẇS + ẇ′ = ẇS + ẇρρ
′ + ẇTT

′ + ẇcc
′. (2.2)

Here

eiT =
5

2
+

1

2
cS , eic =

1

2
TS , evTv = θh

[
exp

(
θh
TvS

)
− 1

]−2
exp

(
θh
TvS

)
θh
T 2
vS

,

wρ =

[
k
(1)
dS

(1− cS)2ρS
2Ma

− k(1)rS
(1− cS)c2S3ρ2S

2M2
a

]
,
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ẇT =

[
a1 exp

(
− θd
TS

)
(θd/TS − 1/2)

T
3/2
S

(1− cS)2ρ2S
4Ma

+
1

2

b1

T
3/2
S

(1− cS)c2S3ρ2S
2M2

a

]

ẇc = −
[
k
(1)
dS

(1− cS)ρS
Ma

+ k(1)r
(2cS − 3c2S)ρ3

2M2
a

]
.

We considered the stability of disturbances periodic in the longitudinal coordinate x in the
form of traveling plane waves

q′(x, y, t) = q(y) exp [iα (x− V t)] ,

q′(x, y, t) = (u′, v′, ρ′, T ′, T ′v, p
′, c′, ẇ′)∗, q(y) = (u, αv, ρ, θ, θv, p, C,Ω)∗,

Here α is the wave number along the periodic variable x,V = Vr + iVi is the complex phase
velocity, i is the imaginary unit, the asterisk “∗” denotes transposition. For part of the amplitude
functions, the descriptions of the corresponding initial variables are used. Substituting q′(x, y, t)
into the system of equations for disturbances gives a system of equations for their amplitudes

Dρ+ αρSσ + αv
dρS
dy

= 0, DρS + ρSαv
dcS
dy

= DadΩ
′,

DρSu+ ρSαv
dUS
dy

= −iαp, DρSαv = −dp
dy
,

DρSe
′
ia + ρSαv

deiS
dy

+ γ∞M2
∞pSασ = Dad

(
J ′a −

1

2

(
e′vaẇS + evSΩ′

))
−Q′tr−v,a,

(1− cS)DρSe
′
va − ρSevSDC + ρSαv

d(1− cS)evS
dy

=
1

2
Dad

(
e′vaẇS + evSΩ′

)
+Q′tr−v,a,

p = pS [C/ (1 + cS) + ρ/ρS + θ/TS ] , pS =
ρSTS (1 + cS)

γM2
∞

. (2.3)

Here we introduced the notation

D = iαW, W = US − V, σ = iu+
dv

dy
, Ω′ = ẇρρ+ ẇT θ + ẇcC.

The subscript “a” in expressions of disturbances means that in formulas (2.2) values of corre-
sponding amplitudes are substituted. For example

e′ia = eiT θ + eicC,

Q′tr−v,a = (1− cS)ρS
e′v(θ)− e′v(θv)

τ
− CρS

evS(T )− evS(Tv)

τ
+ (1− cS)ρ

evS(T )− evS(Tv)

τ
.

The system (2.3) reduces to two first-order equations for a pair of functions (v, p) or to a
second-order equation for one of them [3,4].

3 Criteria for inviscid instability

In all considered cases, criteria for inviscid instability are derived within the framework of a
single calculation scheme generalizing the approach used in [6]. At the first stage, the system
(2.3) is reduced to a second-order equation for the transverse velocity perturbation amplitude
v. The equation can be written in the following universal form

1

W

d

dy

(
v
′
W − vU ′

S

χ
+ vWS

)
= α2ρSv, v = vr + ivi. (3.1)
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Equation (3.1) is complemented by homogeneous boundary conditions

v(0) = v(δ) = 0, (3.2)

where δ is the conditional upper boundary of the boundary layer. Here and below, the primes
denote derivatives with respect to the coordinate y, the functions χ and S are defined in each
particular case. In order to go to (3.1), (3.2) to a well-posed spectral problem and in the
derivation of the criterion, D complexes entering in a complicated way into the expressions χ,
S, containing the spectral parameter α, are omitted.

The equation (3.1) is multiplied by the complex conjugate function v∗. The complex conju-
gate to it is subtracted from the resulting equation. After a series of transformations, we arrive
at a differential identity

v∗W

|W |2
∗ d

dy

(
Wv

′ − vU ′
S

χ
+ vWS

)
=

vW

|W |2
d

dy

(
W ∗v

′∗ − v∗U ′
S

χ∗
+ v∗W ∗S∗

)
. (3.3)

Regrouping the terms in (3.3), we obtain the expression

v∗
d

dy

(
v′

χ

)
− v d

dy

(
v∗

′

χ∗

)
=

vv∗

|W |2

[
W

d

dy

(
U

′
S

χ∗

)
−W ∗ d

dy

(
U

′
S

χ

)
+

(
W

χ∗
− W ∗

χ

)
dUS
dy

+

+

(
WS∗

dW ∗

dy
−W ∗SdW

dy

)
+ |W |2 d

dy
(S∗ − S)

]
+ (v∗′vS∗ − v∗v′S).

For disturbances close to neutral, one can set |Vi| � |Vr|, |US | and neglect the imaginary
component in W . As a result, we get W = W ∗, χ = χ∗, S = S∗. After that, the expression is
converted to the form

d

dy

(
1

χ

d

dy
(vrvi)− Svrvi

)
=
Vi|v|2

|W |2

[
d

dy

(
1

χ

dUS
dy

)
+ S

dUS
dy

]
− vrvi

dS

dy
. (3.4)

Here the expressions on both sides of the identity (3.4) are purely real.
The necessary condition (criterion) for growing inviscid perturbations at Vi > 0 is obtained

from (3.4) based on the following reasoning. On the left side (3.4) is the derivative of the
differentiable function

F (y) =
1

χ

d

dy
(vrvi)− Svrvi.

Due to (3.2), this function vanishes at the ends of the interval [0, δ]. By Rolle’s theorem, its
derivative must vanish at least at one interior point of the interval. By virtue of the structure
of the right-hand side, such a point should be the coordinate of the critical layer y = yc, where
W = 0. Indeed, at this point the first term contains a singularity, which must be compensated
in order to preserve the boundedness of the derivative of the differentiable function F (y) on the
left side. With positive increments Vi > 0 this is possible if and only if the expression in square
brackets is zeroed out

d

dy

(
1

χ

dUS
dy

)
+ S

dUS
dy

= 0. (3.5)

For this point to be the zero of the derivative of F (y), one must also require

dS

dy
= 0. (3.6)

Thus, the system of equations can serve as a criterion for inviscid instability

‘
d

dy

(
1

χ1

dUS
dy

)
+ S1

dUS
dy

= 0,
dS1
dy

= 0. (3.7)
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Here χ1, S1 are expressions of the functions χ, S for W = 0, whose joint solution determines
the coordinate yc.

The resulting system (3.7) is too complicated for practical use as a criterion, in particular,
in the case of bulk dissociation-recombination. Assuming the leading role of the first equation,
which compensates for the singularity US − cr = 0, possible simplifications were considered. As
a result of evaluation calculations, an approximation was chosen in the form of equation

d

dy

(
1

χ1

dUS
dy

)
+

(
max
y
S1

)
dUS
dy

= 0, (3.8)

the first roots of which differ from the roots of the system (3.7) by no more than the third
decimal place.

3.1 Vibrationally excited gas without dissociation-recombination reaction

This case corresponds to the initial stage of thermal dissociation, which is always preceded by
vibrational excitation. In this case, the concentration of atoms is negligible and the gas remains
one-component. In this case, when deriving the equation (3.1) in the system (2.3), it is necessary
to vanish all quantities associated with dissociation-recombination and use the equation of state
for the boundary layer of an ideal gas [5]

p =
1

γ∞M2
∞

(
ρ

ρS
+

θ

TS

)
, ρSTS = 1. (3.9)

Let us rewrite the energy equations in terms of temperature perturbations

Dθ + αvT ′′S + ασ
1

ρSCtrv
= −γv

θ − θv
τ

, Dθv + αvT ′′vS =
θ − θv
τ

,

γv =
CV v
CV trv

, CV trv =
dei
dT

=
5

2
, CV v =

dev
dTv

=
θh

[exp(θh/Tv)− 1]2
exp

(
θh
Tv

)
θh
T 2
v

.

After transformations of the resulting system, we arrive at an equation of the form (3.1) for the
perturbation of the transverse velocity v, in which the coefficient functions are defined as

χ = TS −M∗2∞W
2, S =

1

χ

γv(T
′
S − T ′vS)

(τD + 1)γ + γv
. (3.10)

Here

M∗2∞ = m2M2
∞, m2 = m2

r + im2
i , m2

r =
R1(1 + γv + ατVi) + ∆2

R2
1 + ∆2

, m2
i = −γv

γ

(γ − 1)∆

R2
1 + ∆2

,

R1 = 1 +
γv
γ

+ ατVi, ∆ = ατVr.

In accordance with equalities (2), their expressions for W = 0 are

χ1 = TS , S1 =
1

TS

γv(T
′
S − T ′vS)

γ + γv
.

As a result, the inviscid instability criterion for a vibrationally excited gas is expressed as

d

dy

(
1

TS

dUS
dy

)
+ max

y

[
γv(T

′
S − T ′vS)

TS(γ + γv)

]
dUS
dy

= 0. (3.11)

It can be seen that in the absence of vibrational excitation, the equality (3.11) is transformed
into well-known condition of the “generalized” inflection point [2]

d

dy

(
1

TS

dUS
dy

)
= 0. (3.12)
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3.2 “Frozen” dissociation-recombination reaction with an accounting for
vibrational excitation

In this case, it is assumed that the gas-phase dissociation-recombination reaction is “frozen”
in volume, which corresponds to ẇ = 0 in (2.1) Ω′ in (2.3), leaving a heterogeneous reaction
on the solid surface. In supersonic flows, such a model corresponds to the rapid expansion of
a thermally dissociated gas when recombination slows down [7]. In this case, in fact, there
is a mixture of two non-reacting gases, one component of which is vibrationally excited. For
each of the components, it is convenient to consider separate continuity equations and energy
equations written in terms of temperatures. In this case, the system of equations for amplitudes
of disturbances (2.3) in a two-component gas is rewritten in the form

Dρ1 + αρ1Sσ + αv
dρ1S
dy

= 0, Dρ2 + αρ2Sσ + αv
dρ2S
dy

= 0, DρSu+ ρSαv
dUS
dy

= −iαp,

DρSαv = −dp
dy
, Dρ1Sθ + αvρ1ST

′
S + ασ

1

cV a

ρ1S
ρS

= 0,

Dρ2Sθ + αvρ2ST
′
S + ασ

1

cV m

ρ2S
ρS

= −γvρ2S
θ − θv
τ

, Dρ2Sθv + αvρ2ST
′
v = ρ2S

θ − θv
τ

,

p =
1

γM2
∞

[(2ρ1S + ρ2S)θ + (2ρ1 + ρ2)TS ] , ρS = ρ1S + ρ2S . (3.13)

Having excluded from the system (3.13) all dependent variables, except for the perturbation of
the transverse velocity v,, we pass to a second-order equation of the form (3.1). In the resulting
equation, the coefficient functions have the form

χ = TS

(
1 + cS
1 + c∞

)[
1− γM2

∞W
2

(1 + cS)TSA

]
, A =

(τD + 1)γ + γv
τD + 1 + γv

S =
1

χ

γv(T
′
S − T ′vS)

(τD + 1)γ + γv
.

(3.14)
The expressions (3.14) for W = 0 are

χ1 = TS
1 + cS
1 + c∞

, S1 =
1

χ1

γv(T
′
S − T ′vS)

γ + γv
.

The inviscid instability criterion for a vibrationally excited gas with a “frozen” dissociation-
recombination reaction is given by formula

d

dy

(
1

TS

1 + c∞
1 + cS

dUS
dy

)
+ max

y

[
1

TS

1 + c∞
1 + cS

γv(T
′
S − T ′vS)

TS(γ + γv)

]
dUS
dy

= 0. (3.15)

Neglecting vibrational excitation, one can obtain the inviscid instability criterion for a gas
with a “frozen” exchange reaction in the form

d

dy

(
1

TS

1 + c∞
1 + cS

dUS
dy

)
= 0. (3.16)

The transition from the formulas (3.15), (3.16) to the “generalized” inflection point criterion
(3.12) is obvious.

3.3 Dissociating gas without vibrational excitation

In this case, the equation for vibrational energy is excluded from the system (2.3) and γv = 0
is set. Due to the cumbersomeness of the expressions, the coefficient functions in the equation
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of the form (3.1) for the perturbation of the transverse velocity v are not presented here. For
W = 0 they have the form

χ1 =
1

ρS
, S1 = Λ

[
ρS

(
dcS
dy

h0a −
deiS
dy

)
+N

dρS
dy

]
, Λ =

ρS

ρSN − γM2
∞pS

,

N =
(
h0a − eiSc

)
(1 + cS) +

[(
h0a − eiSc

)
(1 + cS) + eiSTTS

] ẇc (1 + cS)− ẇρρS
ẇc (1 + cS)− ẇTTS

. (3.17)

The inviscid criterion is given by the expression

d

dy

(
ρS
dUS
dy

)
+ max

y

{
Λ

[
ρS

(
dcS
dy

h0a −
deiS
dy

)
+N

dρS
dy

]}
dUS
dy

= 0. (3.18)

Disregarding dissociation-recombination, the criterion (3.18) transforms into the classical con-
dition (3.12). Indeed, the fractional expression in (3.17) can be converted to the equivalent
expression

− (1 + cS) + ρSẇρ/ẇc
(1 + cS)− TSẇT /ẇc

.

This expression turns into −1 when passing to an ideal gas. Accordingly, the content of the
square brackets in (3.18) goes into the expression

−ρS
dTS
dy
− TS

dρS
dy

= − d

dy
(ρSTS) .

This expression is vanished due to (3.9). This gives the desired transition. Similarly, it is
shown that in the case of a “frozen” reaction, the criterion (3.18) passes into the corresponding
criterion (3.16).

4 Numerical calculations

For a preliminary assessment of the significance of the obtained criteria in identifying the most
growing inviscid modes, we chose the mode of hypersonic flight in the undisturbed terrestrial
atmosphere. The boundary layer on the plate was considered. As boundary conditions at the
upper boundary of the boundary layer, we used the flow parameters behind an oblique shock wave
on the head part in the form of a semi-wedge with an angle α = 20◦, flying with a Mach number
M0 = 15 at an altitude of h = 30 km, where the temperature is T0 ' 227◦K and the pressure is
p0 ' 1197 Pa. The values of the flow parameters behind the oblique shock wave were obtained
based on the formulas of the oblique shock theory [8]: M∞ = 6.337, T∞ = Tv∞ = 1986.3◦K,
p∞ = 57688.2 Pa.

In the calculations, all physical characteristics of the gas were taken from the data for
nitrogen. The profiles of hydrodynamic quantities in the carrier flow were calculated on the
basis of locally self-similar equations [5]. At the upper boundary of the boundary layer, the
dimensionless boundary conditions had the form

US(δ) = 1, TS(δ) = TvS(δ) = 1, cS(δ) = c∞ = 0.01.

The boundary conditions for an adiabatic absolutely non-catalytic wall were set on the surface
of the plate [7]

US(0) = 0, T ′S(0) = 0, TvS(0) = T (0).

Chosen condition for the vibrational temperature is due to the fact that at hypersonic Mach
numbers the temperature of the adiabatic wall is sufficient to excite the vibrational degrees of
freedom.
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Table 1: Wave numbers α
(c)
k and perturbation frequencies ω

(c)
k of the first four inviscid Mack

modes.

Mode I Mode II Mode III Mode IV

Criterion (3.12)

α
(c)
k ω

(c)
k × 103 α

(c)
k ω

(c)
k × 103 α

(c)
k ω

(c)
k × 103 α

(c)
k ω

(c)
k × 103

0.0959 0.9452 0.2726 3.8041 0.3233 0.8199 0.5548 -0.3999

Criterion (3.11)

0.0957 0.8309 0.2721 3.3474 0.3226 0.7209 0.5537 -0.3515

Criterion (3.15)

0.0843 0.7329 0.2392 2.9424 0.2849 0.6366 0.4878 -0.3104

Criterion (3.18)

0.0821 0.7136 0.2329 2.8641 0.2773 0.6198 0.4748 -0.3022

Using the obtained distributions, based on the formulas for the criteria (3.12), (3.11), (3.15),
(3.18) were the coordinates of the critical layer yc are calculated, where the phase velocities
of the perturbation are equal to the velocity of the carrier flow Vr = USc. Then, for each
value of the phase velocity at M∞ = 6.337, based on the equation (3.1) with homogeneous

boundary conditions (3.2), real wave numbers α
(c)
k for first four the inviscid Mack modes [3],

where k = I, . . . , IV, and the superscript fixes the criterion by which they were calculated.

Finally, for each wave number α
(c)
k , we solved the spectral problem (3.1), (3.2), whose eigenvalues

are the complex phase velocities V
(c)
k = V

(c)
rk + iV

(c)
ik , and the perturbation frequencies were

calculated ω
(c)
k = α

(c)
k V

(c)
ik . All spectral problems were solved by the “shooting” method. To

do this, the problem (3.1), (3.2) was replaced by a normal system of first-order equations with
homogeneous boundary conditions. The system thus obtained was integrated numerically using
the fourth-order Runge — Kutta procedure on the intervals y ∈ (0, 0.5δ) and y ∈ (0.5δ, δ) with
step ∆y = 10−3. The “aiming” point was the middle of the boundary layer y = 0.5δ, where
it was required that the calculated “left” and “right” at the point y = 0.5δ the solution values
coincided up to 10−6. The calculated data for first four the inviscid Mack modes are summarized
in Table 1. As follows from Table 1, modes I and II are growing for all the introduced criteria.
This is important from the point of view that, in contrast to the classical criterion (3.12), the
obtained conditions are only necessary according to the inference logic and do not formally
guarantee the growth of perturbations allocated on their basis. All criteria define mode II as the
most growing, which also confirms their physicality. The results calculated on the same profiles
of hydrodynamic variables, taking into account joint vibrational excitation and dissociation-
recombination reactions, are relative. They make it possible to estimate the error associated
with using the “generalized” inflection point criterion (3.12) under non-ideal gas conditions.
Comparing the data obtained by the criteria (3.11) and (3.12), one can see that, under the
calculated conditions, vibrational excitation has almost no effect on the wave numbers of inviscid
growing modes. This conclusion is indirectly confirmed by comparing the corresponding results
obtained on the basis of the criteria (3.15) and (3.18). This suggests that if the vibrational
excitation, far from the onset of dissociation, is the only deviation from an ideal gas, we can
restrict ourselves to using the “generalized” inflection point condition, as was done in [9]. The
relative deviation of the wave numbers of modes I and II, calculated by the criterion (3.12)
for an ideal gas and the criterion (3.18) for a dissociating gas without vibrational excitation,
is about 14.5 %. At the same time, the relative deviation of imaginary frequencies (growth
increments) lies within 24 % — 25 %, which is significant. In this case, the criterion (3.18) gives
smaller growth increments, which directly corresponds to the damping effect of the dissociation
process noted in [7]. The analysis performed shows that the obtained criteria, in particular,
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(3.18) for a dissociating gas, allow us to take into account the influence of the real properties of
the gas on the characteristics of growing inviscid disturbances, and through them on the results
of calculations of the stability of the corresponding flows.

5 Conclusion

Necessary conditions for the existence of growing (neutral) inviscid disturbances were obtained
for a plane flow of a vibrationally excited dissociating diatomic gas. These conditions generalize
the inviscid Rayleigh criterion, which determines the presence of a “generalized” inflection point
on the velocity profile of an unperturbed flow. The equations for the amplitudes of sinusoidal
disturbances were used as initial ones. The derivation of the corresponding dependences is a
natural generalization of the well-known calculations for obtaining the condition of a “gener-
alized” inflection point in a compressible gas. Criteria are obtained for a vibrationally excited
one-component gas as the initial stage of thermal dissociation, as well as for a gas with a sin-
gle dissociation-recombination reaction. The case of a binary molecular-atomic mixture with a
vibrationally excited molecular component and a “frozen” gas-phase dissociation-recombination
reaction is considered as an intermediate one. It is shown that all relations, when vibrational
excitation and dissociation are neglected, go over into the classical condition of a “generalized”
inflection point. The performed comparative numerical calculations for the conditions of devel-
oped dissociation showed that the use of the “generalized” inflection point criterion does not
take into account the specifics of the process. The wave numbers and phase velocities of I and
II inviscid modes calculated on its basis may differ significantly from the results obtained using
the new necessary condition.
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Abstract

Based on recent results in the construction of conservative finite-difference schemes, a
new scheme for one-dimensional isentropic flows of polytropic gas in cylindrical geometry in
the presence of a radial magnetic field is presented. The proposed scheme adds to the list of
recently constructed schemes, and completes the consideration of conservative schemes for
the case of isentropic flows in cylindrical geometry.
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1 Introduction

Magnetohydrodynamics (MHD) describes flows of electrically conductive fluids and is important
in a wide range of natural phenomena and technological applications, including astrophysics,
fusion energy, and geophysics. The MHD equations are nonlinear, and even obtaining particular
solutions for them encounters significant difficulties. In this regard, it is necessary to use various
methods of numerical simulation. The most common numerical simulation methods in fluid dy-
namics are based on the finite-difference method. Classical results on modeling one-dimensional
MHD flows for the case of finite conductivity were obtained by Samarskiy and Popov in [1, 2],
where they used mass Lagrangian coordinates to simplify the formulation of boundary value
problems in plasma physics. Following their approach, here we also consider the equations in
mass Lagrangian coordinates.

In recent studies [3, 4], the Samarskiy–Popov schemes have been analyzed from the per-
spective of Group Analysis [5–7]. This included examining the symmetries they admit and the
difference conservation laws they possess. A specific set of additional conservation laws in the
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case of infinite conductivity is determined by the form of the entropy and magnetic flux and is
established as a result of group classification [8, 9].

It has been found that the results of [1, 2] can be extended to the case of infinite conduc-
tivity, however, there are certain limitations. Specifically, it is extremely difficult to construct
difference schemes that have an extended set of conservation laws in this case. Instead of simply
extending existing schemes, a more productive approach is to construct conservative schemes by
approximating additional conservation laws that arise for entropy or magnetic fluxes of a spe-
cific form. During this process, it is common to find that some terms included in the difference
scheme are not fully determined, meaning they can be chosen as various approximations for the
corresponding terms of the differential equations. By refining the form of these approximations,
one can obtain schemes with a wider set of conservation laws.

The results of group classifications [8, 9] and set of conservation laws for the equations vary
significantly depending on the presence of the longitudinal (radial) component of the magnetic
field. The present study examines the case of cylindrical spatial symmetry (cylindrical geometry)
and isentropic flows in the presence of a radial magnetic field Hr. In [4], the case when the
radial component of the magnetic field is absent (Hr = 0) was studied in detail, and difference
schemes were constructed that possess a number of conservation laws, including the conservation
of entropy, mass, and magnetic fluxes. The present study focuses on the more complex case
of Hr 6= 0.

2 The Studied Equations

The following system in mass Lagrangian coordinates is considered [2, 4].

ρt = −ρ2(ru)s, (2.1a)

ut −
v2

r
= −rps −

1

2r

(
r2(Hθ)2

)
s
− r

2

(
(Hz)2

)
s
, (2.1b)

vt +
uv

r
= Hr

(
rHθ

)
s
, θt =

v

r
, (2.1c)

wt = rHrHz
s , zt = w, (2.1d)

pt = −γρp(ru)s, (2.1e)

Hθ
t = rρ((vHr)s −Hθus), (2.1f)

Hz
t = ρ((rwHr)s −Hz(ru)s), (2.1g)

rt = u, rs =
1

rρ
, (2.1h)

where

Hr =
A

r
, A = const 6= 0,

t is time, s is Lagrangian mass coordinate, ρ is density, p is pressure, u = (u, v, w) is the
velocity vector, H = (Hr, Hθ, Hz) is the magnetic field vector, ε is internal energy, r, θ, z are
cylindrical (Eulerian) spatial coordinates.

The energy evolution equation (2.1e) for the polytropic gas with the standard state equation

ε =
1

γ − 1

p

ρ
, (2.2)

taking into account (2.1a), is simplified to(
p

ργ

)
t

= St = 0. (2.3)
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The latter means the preservation of the entropy S = S(s) along the paths of motion.

Further we restrict ourselves to the isentropic case S = S0 = const. In this case the conser-
vation laws possessed by system (2.1) are the following [4].

• mass (
1

ρ

)
t

− (ru)s = 0; (2.4)

• momentum along z-axis

(w)t − (rHrHz)s = 0; (2.5)

• motion of the center of mass along z-axis

(tw − z)t − (rtHrHz)s = 0; (2.6)

• angular momentum in (r, θ)-plane

(rv)t −
(
r2HrHθ

)
s

= 0; (2.7)

• magnetic fluxes (
Hθ

rρ

)
t

− (vHr)s = 0, (2.8)

(
Hz

ρ

)
t

− (rwHr)s = 0; (2.9)

• energy

{
1

γ − 1

p

ρ
+

1

2
(u2 + v2 + w2) +

(Hθ)2 + (Hz)2

2ρ

}
t

+

{
ru

(
p+

(Hθ)2 + (Hz)2

2

)
− rHr(vHθ + wHz)

}
s

= 0; (2.10)

• entropy along trajectories of motion (
p

ργ

)
t

= 0; (2.11)

• the additional conservation law (for S = S0 = const)(
u

rρ
+
vHθ + wHz

Aρ

)
t

−
(

1

2
(u2 + v2 + w2)− γS0

γ − 1
ργ−1

)
s

= 0. (2.12)

In the next section, we construct finite-difference schemes possessing finite-difference ana-
logues of the above conservation laws.
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3 Construction of Conservative Finite-Difference Schemes

Following [3, 4], we start with an approximation for the additional conservation law (2.12). By
approximating this conservation law, we are able to derive the equations of the scheme in a more
or less general form, leaving some terms unspecified whenever possible. Next, we further refine
the form of the unspecified terms of the scheme by considering approximations for the remaining
conservation laws.

Recall [5] that any finite-difference conservation law of a system of N difference equations

F j = 0, j = 1, 2, . . . , N,

can be represented as a sum
N∑
j=1

ΛjF
j = 0,

where the quantities Λj , j = 1, . . . , N, are referred to as finite-difference conservation law mul-
tipliers, analogous to differential equations.

In terms of equations (2.1) and conservation law multipliers, (2.12) can be written as

u

ρr2
(rt − u) +

(
v2 − u2

r
− uvHθ

A

)(
rs −

1

rρ

)
+

(
vHθ + wHz

Aρ2
+

u

rρ2

)
(ρt + ρ2(ru)s)

− 1

rρ

(
ut −

v2

r
+ rHzHz

s +Hθ(rHθ)s +
γS0

γ − 1
rρ(ργ−1)s

)
− Hθ

rA

(
vt +

uv

r
− A

r
(rHθ)s

)
− Hz

rA
(wt −AHz

s )

− v

rA

(
Hθ
t − rρ

(
vA

r

)
s

+ rρHθus

)
− w

rA
(Hz − ρ (Aws −Hz(ru)s)) = 0. (3.1)

The scheme is constructed on the basis of the following finite-difference analogue of (3.1)

u+
∗

ρrr̂
(rt−u+)+

(
v2
∗

r(1)
− u+u+

∗
r̂
−
uv∗H

θI(2)

A

)(
r̂s −

1

rρ

)
+

(
v∗H

θ + w∗H
z

Aρρ̂
+
u+
∗

r̂ρρ̂

)
(ρt + ρρ̂(r̂u)s)

− 1

r̂ρ̂

(
(u+
∗ )t −

r̂ρ̂

rρ

v2
∗

r(1)
+ r̂ĤθΞ + r̂Ĥz(Hz

(1))s +
γS0

γ − 1
r̂ρ̂(ργ−1)s

)
− Ĥθ

Aρ̂

(
v∗t +

ρ̂

ρ

Hθ

Ĥθ

uv∗
r(2)
−AΞ

)
− Ĥz

Aρ̂
(w∗t −A(Hz

(1))s)

− v∗
Aρ̂

(
Hθ
t + r̂+ρ̂

(
Hθus +

Av∗r̂s
r̂+r(1)

− Avs̄
r̂+

))
− w∗
Aρ̂

(Hz
t + ρ̂ (Hz(r̂u)s −Aws̄))

= −
(
u+
∗
rρ

+
v∗H

θ + w∗H
z

Aρ

)
t

+

(
u2 + v2

− + w2
−

2
− γS0

γ − 1
ργ−1

)
s

= 0, (3.2)

where

I(2) =
r(1− ρr(2)r̂s)

r(2)(1− ρrr̂s)
,

r(1) and r(2) are some approximations for r, Hz
(1) is an approximation for Hz, and Ξ approximates

the term
1

r
(rHθ)s. Here and further, we use the standard notation introduced in [2], and ft

and fs denote the finite-difference derivatives of f with respect to t and s.
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Hence, (3.2) determines the family of schemes for system (2.1)

ρt + ρρ̂(r̂u)s = 0, (3.3a)

(u+
∗ )t −

r̂ρ̂

rρ

v2
∗

r(1)
+ r̂ĤθΞ + r̂Ĥz(Hz

(1))s +
γS0

γ − 1
r̂ρ̂(ργ−1)s = 0, (3.3b)

v∗t +
ρ̂

ρ

Hθ

Ĥθ

uv∗
r(2)
−AΞ = 0, (3.3c)

w∗t −A(Hz
(1))s = 0, (3.3d)

rt = u+, r̂s =
1

rρ
, zt = w∗, (3.3e)

Hθ
t + r̂+ρ̂

(
Hθus +

Av∗r̂s
r̂+r(1)

− Avs̄
r̂+

)
= 0, (3.3f)

Hz
t + ρ̂ (Hz(r̂u)s −Aws̄) = 0, (3.3g)

p

ργ
= S0. (3.3h)

Remark 3.1. For any natural value of γ > 1, one can also derive the evolutionary equation
for pressure from (3.3h):

pt = −ρp̂ (r̂u)s

γ−1∑
k=0

(
ρ

ρ̂

)k
.

A more general formula can be established for any rational γ > 1. See [4] for the details.

Thus, by choosing free parameters (indefinite approximations of some terms of the equa-
tions and conservation law multipliers for (3.2)), one arrives at the scheme with the following
conservation laws:

• mass (
1

ρ

)
t

− (r̂u)s = 0; (3.4)

Remark 3.2. By means of the equations of system (3.3) one can also write(
1

ρr

)
t

− us = 0; (3.5)

• magnetic flux along θ-axis (
Hθ

ρr

)
t

−
(
Av−
r̂

)
s

= 0, (3.6)

provided

r(1) =
Av∗

Av − hr̂+Hθus
r̂+ = r +O(h+ τ), A 6= 0.

Remark 3.3. Here, the desired form of the term r(1) has been refined by considering approx-
imations for the conservation law of magnetic flux. In contrast, the use of simpler forms

of r(1) results in conservation laws with source terms. For example, given r(1) =
v∗
v−
r̂, one

derives (
Hθ

ρr+

)
t

−
(
Av−
r̂

)
s

= Hθ

((
1

ρr+

)
t

− us
)
.



42 E. I. Kaptsov

• magnetic flux along z-axis (
Hz

ρ

)
t

− (Aw−)s = 0; (3.7)

• momentum along z-axis
w∗t − (AHz

(1))s = 0; (3.8)

• motion of the center of mass along z-axis

(tw∗ − z)t − (At̂Hz
(1))s = 0; (3.9)

• angular momentum in (r, θ)-plane

(v∗r−)t − (ArHθ)s = 0, (3.10)

provided

r(2) =
ρ̂

ρ

Hθ

Ĥθ
r̂−, Ξ =

1

r̂−
(rHθ)s;

Thus, the desired forms of the terms r(2) and Ξ have been established.

• entropy along trajectories of motion (
p

ργ

)
t

= 0; (3.11)

• additional conservation law (3.2)(
u+
∗
rρ

+
v∗H

θ + w∗H
z

Aρ

)
t

−
(
u2 + v2

− + w2
−

2
− γS0

γ − 1
ργ−1

)
s

= 0.

Notice that the conservation laws do not impose any restrictions on the choice of approximation
Hz

(1), so we still get a family of schemes parameterized by this approximation.
While the schemes constructed do not have the conservation of energy property, they do

preserve entropy at a single point, as opposed to the preservation of entropy at two points by
the schemes presented in [4].

4 Conclusion

A family of conservative finite-difference schemes is constructed for one-dimensional MHD flows
in cylindrical geometry in the presence of a radial magnetic field, in the case of constant entropy.
These schemes possess finite-difference analogues of most of the conservation laws of the original
differential model.

The method used for constructing new conservative schemes involves approximating addi-
tional conservation laws and refining indefinite terms. This approach has proven to be effective
in a number of specific examples, as seen in previous studies [3, 4]. While it is relatively labor-
intensive and relies on certain assumptions and observations, further research could focus on
developing an algorithmic approach to this method.

The results obtained complete our study [4] of conservative finite-difference schemes for one-
dimensional isentropic MHD flows (S = S0 = const) for an arbitrary adiabatic exponent in
cylindrical geometry.
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Abstract

Complex symmetry methods were developed to enhance the power of Lie symmetry
analysis by splitting the variables into their real and imaginary parts. These methods
managed to not only solve systems of ordinary differential equations with an inadequate
number of symmetries for the purpose, but even those with none. To explore if that suc-
cess could be extended, iterative application of the complex splitting was investigated. On
splitting, these methods produced many operators that did not form a Lie algebra. The
dimension of the system normally obtained doubled the original dimension, but could be
constrained to include odd dimensions. While the original investigation had been limited
to one application of the splitting, here we extend those methods to repeated applications
and study how the number of operators and the dimensions develop more generally. It is
hoped that this study will either enhance the range of the complex methods further, or give
the limitations for such enhancements.

Keywords: Half-integer splitting, Iterative complex splitting, Lie-like operators. 2020 MSC:

Primary 34M30; Secondary 76M60.

1 Introduction

Lie symmetries of ordinary differential equations (ODEs) are widely discussed in the literature
(see, e.g. [8, 16]). In [1] it was noted that complex analyticity had not been used by Lie, even
though he assumed differentiable complex functions of complex variables, and in the complex
domain that automatically implies complex analyticity. This means that the Cauchy-Riemann
equations (CREs) must hold. The CREs are an extra system of equations. It is not the system
of equations one thought one had as there are additional equations. Powerful methods of complex
symmetry analysis (CSA) were developed, which allowed one to solve systems not only with
not enough symmetries, but even with no symmetry [12]. Following Ali [4], we call the dif-
ferential equations (DEs) in which dependent variables are complex functions, (CODEs), and
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those of them in which the independent variable is real, r-CODEs. To use analyticity the depen-
dent and independent variables are split into two real dependent and independent variables
each. We call the split system of symmetry generators Lie-like operators, which are not gener-
ally Lie symmetries, as they may not form a Lie algebra. On splitting, a scalar CODE yields a
4-d system of PDEs with associated CREs [1,4], which can be reduced to a 2-d system of ODEs
by restricting the independent variable to be real. This procedure can easily be extended for n
iterations to yield 2n-d systems.

We can access odd-dimensional systems of ODEs by inserting an algebraic constraint in the
iteratively split systems. Thus, after double splitting one gets 3-d systems, after the next level
5-d systems, and so on [11]. We call such a splitting half-integer splitting. We will apply the
half-integer splitting on a scalar “Emden-Fowler” equation. At any stage of the iterative split-
ting according to the required odd-dimensional system, we can consider one of the dependent
variables as pure imaginary and the others as complex. The processes of splitting and applying
algebraic constraints do not commute, e.g. the result of first splitting a doubly split system and
then applying an algebraic constraint, or first applying the algebraic constraint and then split-
ting are different. As such, the procedure is not unique. Notice that by splitting a 3-d system
we can get a 6-d system and so on. Thus we can get systems of all dimensions in principle, and
are not limited to 2n-d systems.

The plan of the paper is as follows. In section 2, the ideas of iterative splitting of scalar 2nd

order r-CODE and theorems are given. In section 3, the procedure for obtaining higher odd-
dimensional systems of ODEs by half-integer splitting is presented. An example is constructed
for several odd-dimensional systems. The final section, 4, consists of the conclusion and dis-
cussion.

2 Iterative Splitting of a Scalar CODE

Though the original paper [13] presented the first iterative step, i.e. double splitting, we will
repeat that to obtain the number of Lie-like operators and compare it with the number of
Lie symmetries. The equations become cumbersome beyond the first iteration and are not
displayed in detail here, merely quoting the values for the third and then the nth. We use the
procedure outlined above for the the general 2nd order scalar ODE,

v′′(s) = h(s,v(s),v′(s)), (2.1)

and put v = f1 + ιf2 to obtain the 2-d system of ODEs

f ′′1 = h1(s, f1, f2, f
′

1 , f
′

2 ), f ′′2 = h2(s, f1, f2, f
′

1 , f
′

2 ), (2.2)

with the CR-conditions
h1,f1

= h2,f2
, h1,f2

= −h2,f1
;

h1,f ′1
= h2,f ′2

, h1,f ′2
= −h2,f ′1

.
(2.3)

For the 2nd splitting write fj = fjr + ιfji , hj = hjr (s,a,a
′) + ιhji (s,a,a

′); (j = 1,2), where a =
(f1r , f1i , f2r , f2i ) and a′ = (f ′1r , f

′
1i
, f ′2r , f

′
2i

). Splitting yields the 4-d system

f ′′jr = hjr (s,a,a
′), f ′′ji = hji (s,a,a

′), (2.4)
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with the CR-conditions

h1r, f1r
+ h1i, f1i

= h2r, f2r
+ h2i, f2i

, h1r, f1i
− h1i, f1r

= h2r, f2i
− h2i, f2r

,

h1r, f2r
+ h1i, f2i

= −h2r, f1r
− h2i, f1i

, h1i, f2r
− h1r, f2i

= h2i, f1r
+ h2r, f1i

,

h1r, f ′1r
+ h1i, f ′1i

= h2r, f ′2r
+ h2i, f ′2i

, h1r, f ,1i
− h1i, f ′1r

= h2r, f ′2i
− h2i, f ′2r

,

h1r, f ′2r
+ h1i, f ′2i

= −h2r, f ′1r
− h2i, f ′1i

, h1i, f ′2r
− h1r, f ′2i

= h2i, f ′1r
+ h2r, f ′1i

.

(2.5)

This can be continued to the nth iteration to obtain a 2n-d system of ODEs.

We now present five examples for iterative splitting to all iterations, but will give the alge-
bras associated with the split systems up to only the 2nd iteration.

Example 2.1. As a first example we take the 2nd order r-CODE

v′′ = h(s), (2.6)

with the symmetry generators [16]

Z1 =
∂
∂v
, Z2 = s

∂
∂v
. (2.7)

The first splitting yields the 2-d system of ODEs:

f ′′1 = h(s), f ′′2 = 0, (2.8)

with symmetries

Z1 =
∂
∂f1

, Z2 =
∂
∂f2

, Z3 = s
∂
∂f1

,

Z4 = s
∂
∂f2

, Z5 = f2
∂
∂f1

, Z6 = f2
∂
∂f2

.

(2.9)

They form a 6-d algebra h6 with non-zero commutators [Z2,Z5] = Z1, [Z2,Z6] = Z2, [Z4,Z5] =
Z3, [Z4,Z6] = Z4, [Z5,Z6] = −Z5. The largest normal subalgebra of h6 is g4 =〈Zc〉 (c=1,...,4)
and h6/g4=I2, where I2=〈Z5,Z6〉 is the dilation algebra. Putting Zj = Xj + ιYj, the split system
of symmetry generators yields the four Lie-like operators

X1 =
∂
∂f1

, Y1 =
∂
∂f2

, X2 = s
∂
∂f1

, Y2 = s
∂
∂f2

, (2.10)

which are also symmetries of the split system and form an abelian algebra.

The next splitting gives

f ′′1r = h(s), f ′′1i = 0, f ′′2r = 0, f ′′2i = 0, (2.11)
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with symmetries

Z1 =
∂
∂f1r

, Z2 =
∂
∂f1i

, Z3 =
∂
∂f2r

, Z4 =
∂
∂f2i

,

Z5 = s
∂
∂f1r

, Z6 = s
∂
∂f1i

, Z7 = s
∂
∂f2r

, Z8 = s
∂
∂f2i

,

Z9 = f1i
∂
∂f1r

, Z10 = f2r
∂
∂f1r

, Z11 = f2i
∂
∂f1r

, Z12 = f1i
∂
∂f1i

,

Z13 = f1i
∂
∂f2r

, Z14 = f1i
∂
∂f2i

, Z15 = f2r
∂
∂f1i

, Z16 = f2i
∂
∂f1i

,

Z17 = f2r
∂
∂f2r

, Z18 = f2r
∂
∂f2i

, Z19 = f2i
∂
∂f2r

, Z20 = f2i
∂
∂f2i

.

(2.12)

Writing Xj = Xj1 + ιXj2 , Yj = Yj1 + ιYj2 , gives the eight Lie-like operators

X11
=

∂
∂f1r

, X12
=

∂
∂f1i

, Y11
=

∂
∂f2r

, Y12
=

∂
∂f2i

,

X21
= s

∂
∂f1r

, X22
= s

∂
∂f1i

, Y21
= s

∂
∂f2r

, Y22
= s

∂
∂f2i

,

(2.13)

which are also the symmetries of the system (2.11) and form an abelian algebra.

The 3rd splitting gives an 8-d system of ODEs, with 72 symmetries and 16 Lie-like opera-
tors. The sequences of numbers for the iterative procedure up to the nth splitting are given in
Table 1.

n dn ln mn = 2dn − ln Ln en = Ln − ln
1 2 4 0 6 2
2 4 8 0 20 12
3 8 16 0 72 56
...

...
...

...
...

...
n 2n 2(n+1) 0 2n(2n + 1) 2n(2n − 1)

Table 1: Here n is the number of splitting iterations, dn the dimension of the split system, ln
the number of Lie-like operators, mn the number of missing Lie-like operators, Ln the number
of symmetries of the corresponding split system, and en the number of extra symmetries apart
from the Lie-like operators.

The general result can be presented as:

Theorem2.2. For (2.6) with symmetries given by (2.7), the iteratively split system is of 2n-dimension,
has 2(n+1) Lie-like operators with no missing operator, 2n(2n + 1) symmetries and 2n(2n − 1) extra
symmetries.

Proof. Let the theorem hold true for some n. Obviously, dn doubles on each splitting, so it will
be true for (n+1). Since there is no derivative with respect to the independent variables among
the symmetry generators, ln also doubles at each splitting. Hence it holds for l(n+1). (Notice that
this would not hold if there was no explicit dependence of the equation on the independent
variable.) Since, by definition, ln = 2dn, there are no missing operators, i.e. m(n+1) remains zero.
It remains to prove if the algebra of split operators closes for the nth iteration it will also hold
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for the (n+ 1)st iteration. Since the new split operators are only of the type of a derivative with
respect to the dependent variable and the independent variable times a derivative with respect
to a dependent variable, it is obvious that they must all commute. Hence for the next iteration
the algebra will be closed. Hence the algebra closes for all n.

Example 2.3. As a second example we take the 2nd order r-CODE

v′′ = h(v), (2.14)

with symmetries

Z1 =
∂
∂s
, Z2 = v

∂
∂s
. (2.15)

The first splitting yields the 2-d system of ODEs:

f ′′1 = h1(f1, f2), f ′′2 = h2(f1, f2), (2.16)

with symmetries

Z1 =
∂
∂s
, Z2 = f1

∂
∂s
, Z3 = f2

∂
∂s
, (2.17)

which form a 3-d abelian algebra h3, and the split system remains unchanged.

The next splitting gives a 4-d system of ODEs

f ′′jr = hjr (f1r , f1i , f2r , f2i ), f
′′
ji

= hji (f1r , f1i , f2r , f2i ), (2.18)

with symmetries

Z1 =
∂
∂s
, Z2 = f1r

∂
∂s
, Z3 = f1i

∂
∂s
, Z4 = f2r

∂
∂s
, Z5 = f2i

∂
∂s
, (2.19)

that form a 5-d abelian algebra, h5, and again the split system remains unchanged.

The 3rd splitting gives an 8-d system of ODEs, with 9 symmetries and identical Lie-like op-
erators. Looking at the sequences of numbers the iterative procedure up to the nth splitting
should be as given in Table 2.

n dn ln mn = 2dn − ln Ln en = Ln − ln
1 2 3 1 3 0
2 4 5 3 5 0
3 8 9 7 9 0
...

...
...

...
...

...
n 2n 2n + 1 2n − 1 2n + 1 0

Table 2: In this case missing Lie-like operators are non-zero with zero extra symmetries.

The general result can be presented as:

Theorem 2.4. For (2.14) with symmetries given by (2.15), the iteratively split system, has 2n-
dimension, 2n + 1 Lie-like operators with 2n − 1 missing operators, 2n + 1 symmetries and no extra
symmetry.

Proof. The result for the dimension of the system is the same as before. Let the theorem hold
true for some n. Since there is a derivative with respect to the independent variables among
the symmetry generators and in one generator the coefficient is a dependent variable, which
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doubles after splitting, while the other one remains the same throughout the splitting, ln =
dn + 1 at each splitting. Hence, it holds for l(n+1). There are missing operators mn at each
splitting because one operator does not split into two. Alsom(n+1) remains non-zero. It remains
to prove that the algebra of the split operators closes all iterations. Because, as before, the
operators only involve derivatives with respect to the independent variable, so the algebra
always closes.

Example 2.5. As a third example we take the 2nd order r-CODE for nonzero function of one
variable

v′′ = h(v′), (2.20)

with symmetries

Z1 =
∂
∂s
, Z2 =

∂
∂v
. (2.21)

The first splitting yields the 2-d system of ODEs:

f ′′1 = h1(f ′1 , f
′

2 ), f ′′2 = h2(f ′1 , f
′

2 ), (2.22)

with symmetries

Z1 =
∂
∂s
, Z2 =

∂
∂f1

, Z3 =
∂
∂f2

,

Z4 = s
∂
∂s
, Z5 = f1

∂
∂s
, Z6 = f2

∂
∂s
.

(2.23)

They form a 6-d algebra h6 with the only non-zero commutators [Z1,Z4] = Z1, [Z2,Z5] =
Z1, [Z3,Z6] = Z1. The maximal normal subalgebra of h6 is g3=〈Zc〉, where c = 1,2,3 and
h6/g3 =〈Z4,Z5,Z6〉 which is an abelian algebra. Thus h6 = g3 ⊗s I3. The split system of symme-
try generators yields the three Lie-like operators

X1 =
∂
∂s
, X2 =

∂
∂f1

, Y2 =
∂
∂f2

, (2.24)

which are also symmetries of the split system and form an abelian algebra.

The next splitting gives

f ′′jr = hjr (f
′

1r , f
′

1i , f
′

2r , f
′

2i ), f
′′
ji

= hji (f
′

1r , f
′

1i , f
′

2r , f
′

2i ), (2.25)

with symmetries

Z1 =
∂
∂s
, Z2 =

∂
∂f1r

, Z3 =
∂
∂f1i

, Z4 =
∂
∂f2r

, Z5 =
∂
∂f2i

,

Z6 = s
∂
∂s
, Z7 = f1r

∂
∂s
, Z8 = f1i

∂
∂s
, Z9 = f2r

∂
∂s
, Z10 = f2i

∂
∂s
.

(2.26)

They form a 10-d algebra h10 with non-zero commutators [Z1,Z6] = Z1, [Z2,Z7] = Z1, [Z3,Z8] =
Z1, [Z4,Z9] = Z1, [Z5,Z10] = Z1, [Z6,Z7] = −Z7, [Z6,Z8] = −Z8, [Z6,Z9] = −Z9, [Z6,Z10] =
−Z10. The largest normal subalgebra is g5 =〈Zc〉; (c=1,2,. . . ,5) and h10/g5=I5, where I5 =〈Zd〉;
(d=6,7,. . . ,10) is the dilation algebra. The split system of symmetry generators yields the five
Lie-like operators

X11
=
∂
∂s
, X21

=
∂
∂f1r

, X22
=

∂
∂f1i

, Y21
=

∂
∂f2r

, Y22
=

∂
∂f2i

, (2.27)

which are also the symmetries of the split system and form an abelian algebra.
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n dn ln mn = 2dn − ln Ln en = Ln − ln
1 2 3 1 6 3
2 4 5 3 10 5
3 8 9 7 18 9
...

...
...

...
...

...
n 2n 2n + 1 2n − 1 2(2n + 1) 2n + 1

Table 3: In this case the number of missing Lie-like operators are non-zero and number of
symmetries at each step is more than that of the Lie-like operators.

The 3rd splitting gives an 8-d system of ODEs, with 18 symmetries and 9 Lie-like operators.
Looking at the sequences of numbers the iterative procedure up to the nth splitting should be
as given in Table 3.

The general result can be presented as:

Theorem 2.6. For (2.20) with symmetries given by (2.21), the iteratively split system, has 2n-
dimension, 2n + 1 Lie-like operators with 2n − 1 missing operators, 2(2n + 1) symmetries and 2n + 1
extra symmetry.

Proof. The first part of the proof is trivial as before and we only give the argument for the
closure of the algebra. Since the split operators again have no coefficients for the derivatives,
they must all commute and form an abelian Lie algebra.

Example 2.7. As a fourth example we take the 2nd order r-CODE

v′′ = h(s,v′), (2.28)

with symmetry

Z1 =
∂
∂v
. (2.29)

The first splitting yields the 2-d system of ODEs:

f ′′1 = h1(s, f ′1 , f
′

2 ), f ′′2 = h2(s, f ′1 , f
′

2 ), (2.30)

with symmetries

Z1 =
∂
∂f1

, Z2 =
∂
∂f2

(2.31)

which form a 2-d algebra h2, and the split system remains unchanged.

The next splitting gives

f ′′jr = hjr (s, f
′

1r , f
′

1i , f
′

2r , f
′

2i ), f
′′
ji

= hji (s, f
′

1r , f
′

1i , f
′

2r , f
′

2i ), (2.32)

with symmetries

Z1 =
∂
∂f1r

, Z2 =
∂
∂f1i

, Z3 =
∂
∂f2r

, Z4 =
∂
∂f2i

, (2.33)

that form a 4-d abelian algebra, h4, and again the split system remains unchanged.

The 3rd splitting gives an 8-d system of ODEs, with 8 symmetries and identical Lie-like op-
erators. Looking at the sequences of numbers the iterative procedure up to the nth splitting
should be as given in Table 4.
The general result can be presented as:
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n dn ln mn = dn − ln Ln en = Ln − ln
1 2 2 0 2 0
2 4 4 0 4 0
3 8 8 0 8 0
...

...
...

...
...

...
n 2n 2n 0 2n 0

Table 4: In this case the number of obtained Lie-like operators is equal to the number of sym-
metries, with no missing Lie-like operators or extra symmetries.

Theorem 2.8. For (2.28) with symmetries given by (2.29), the iteratively split system, has 2n-
dimension, 2n Lie-like operators with no missing operator, 2n symmetries and no extra symmetry.

Proof. The first part of the proof is trivial as before and we only give the argument for the
closure of the algebra. Since the split operators again have no coefficients for the derivatives,
they must all commute and form an abelian algebra.

Example 2.9. As a fifth example we take the 2nd order r-CODE

v′′ = h(v,v′), (2.34)

with symmetry

Z =
∂
∂s
. (2.35)

The first splitting yields the 2-d system of ODEs:

f ′′1 = h1(f1, f2, f
′

1 , f
′

2 ), f ′′2 = h2(f1, f2, f
′

1 , f
′

2 ), (2.36)

with symmetry (2.35) and identical Lie-like operator.

The next splitting gives
f ′′jr = hjr (a,a

′), f ′′ji = hji (a,a
′); (2.37)

where a = (f1r , f1i , f2r , f2i ) and a′ = (f ′1r , f
′

1i
, f ′2r , f

′
2i

) with unchanged symmetry and Lie-like oper-
ator.

The 3rd splitting gives an 8-d system of ODEs, again identical symmetry and Lie-like operator.
Looking at the sequences of numbers the iterative procedure up to the nth splitting should be
as given in Table 5.

n dn ln mn = dn − ln Ln en = Ln − ln
1 2 1 1 1 0
2 4 1 3 1 0
3 8 1 7 1 0
...

...
...

...
...

...
n 2n 1 2n − 1 1 0

Table 5: Since the symmetry is only of the type of a derivative with respect to the indepen-
dent variable, so it remains same after splitting with missing Lie-like operators and no extra
symmetries.

The general result can be presented as:
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Theorem 2.10. For (2.34) with symmetries given by (2.35), the iteratively split system, has 2n-
dimension, 1 Lie-like operator with 2n − 1 missing operators, 1 symmetry and no extra symmetry.

Proof. As before the proof is trivial because there is only one split operator always.

3 Half-integer Splitting

Now we provide the iterative splitting procedure for obtaining odd-dimensional split systems
of ODEs, which cannot be obtained by direct splitting. In the second splitting we have two
options: either we obtain a 3-d system of ODEs by considering one variable as pure imaginary
and the other as complex, or a 4-d system of ODEs by retaining all variables as complex. Sim-
ilarly, we have four options for the third splitting. Two of the options will come from a 3-d
system which will be either 5 or 6-d systems or from a 4-d system which will be 7 or 8-d and
so on.

For a 2nd order r-CODE in the second splitting, we consider f1 = ιf1i and f2 = f2r + ιf2i which
implies

ιf ′′1i = h1r (s,a,a
′) + ιh1i (s,a,a

′), f2r + ιf2i = h1r (s,a,a
′) + ιh1i (s,a,a

′). (3.1)

Quadratic algebraic constraints between the dependent variables, of the split systems, are re-
quired (which are illustrated in the examples below). Then we are left with only three ODEs.

f ′′1i = h1i (s,a,a
′), f ′′2r = h2r (s,a,a

′), f ′′2i = h2i (s,a,a
′), (3.2)

with the CR-conditions

h2r,f2r
= h2i,f2i

, h2r,f2i
= −h2i,f2r

, h2r,f ′2r
= h2i,f ′2i

, h2r,f ′2i
= −h2i,f ′2r

. (3.3)

Instead, we can take f1 = f1r + ιf1i and f2 = ιf2i , which can be regarded as “dual” to the above.
After applying this procedure for the r-CODE, we always have an algebraic constraint for the
odd number of ODEs. Iterative use of this procedure yields higher odd-dimensional systems
with an algebraic constraint. We call this procedure half-integer splitting.

Example 3.1. As an example we take the 2nd order scalar Emden-Fowler equation

v′′(s) +
5
s
v′(s) + v2(s) = 0, (3.4)

which has one scaling symmetry generator

Z1 = s
∂
∂s
− 2v

∂
∂v
. (3.5)

By applying half-integer splitting on this equation we obtain 2, 3, 4, 5, 6 and 7-d systems of
ODEs. We focus on the two directions at the second splitting. First consider one variable pure
imaginary and the other complex. Then proceed to the third splitting.

CASE: 1 For this, put v = f1 + ιf2 to obtain the 2-d system of ODEs

f ′′1 +
5
s
f ′1 + (f 2

1 − f
2

2 ) = 0,

f ′′2 +
5
s
f ′2 + 2f1f2 = 0,

(3.6)



Iteratively split symmetry generators of complex scalar ODEs 53

with symmetry

Z = s
∂
∂s
− 2f1

∂
∂f1
− 2f2

∂
∂f2

. (3.7)

The split system yields the two Lie-like operators

X1 = s
∂
∂s
− f1

∂
∂f1
− f2

∂
∂f2

,

Y1 = f2
∂
∂f1
− f1

∂
∂f2

.

(3.8)

The next splitting, f1 = ιf11
, f2 = f21

+ ιf22
, gives 3-d system of ODEs

f ′′11
+

5
s
f ′11
− f21

f22
= 0,

f ′′21
+

5
s
f ′21
− f11

f22
= 0,

f ′′22
+

5
s
f ′22

+ f11
f21

= 0,

(3.9)

with constraint
f 2

22
= f 2

11
+ f 2

21
. (3.10)

The symmetry of the system is

Z = s
∂
∂s
− 2f11

∂
∂f11

− 2f21

∂
∂f21

− 2f22

∂
∂f22

(3.11)

with four Lie-like operators

X11
= 2s

∂
∂s
− 2f11

∂
∂f11

− f21

∂
∂f21

− f22

∂
∂f22

, X12
= −f22

∂
∂f21

+ f21

∂
∂f22

,

Y11
= 2f22

∂
∂f11

− f11

∂
∂f22

, Y12
= −2f21

∂
∂f11

− f11

∂
∂f21

,

(3.12)

which are not the symmetries of the split system. Further for 5-d system of ODEs consider
f11

= ιf111
, f21

= f211
+ ιf212

and f22
= f221

+ ιf222

f ′′111
+

5
s
f ′111
− 2(f211

f222
− f212

f221
) = 0,

f ′′211
+

5
s
f ′211

+ 2f111
f222

= 0,

f ′′212
+

5
s
f ′212
− 2f111

f221
= 0,

f ′′221
+

5
s
f ′221
− 2f111

f212
= 0,

f ′′222
+

5
s
f ′222

+ 2f111
f211

= 0,

(3.13)

with constraint
f211

f221
= f212

f222
. (3.14)

The symmetries of the system are

Z1 = f212

∂
∂f211

+ f211

∂
∂f212

− f222

∂
∂f221

− f221

∂
∂f222

,

Z2 = f221

∂
∂f211

− f222

∂
∂f212

+ f211

∂
∂f221

− f212

∂
∂f222

,

Z3 = s
∂
∂s
− 2f111

∂
∂f111

− 2f211

∂
∂f211

− 2f212

∂
∂f212

− 2f221

∂
∂f221

− 2f222

∂
∂f222

,

(3.15)
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with eight Lie-like operators

X111
= 4s

∂
∂s
− 4f111

∂
∂f111

− f211

∂
∂f211

X112
= −f212

∂
∂f211

+ f211

∂
∂f212

,

− f212

∂
∂f212

,

X121
= −f221

∂
∂f211

− f222

∂
∂f212

, X122
= −f222

∂
∂f211

+ f221

∂
∂f212

,

Y111
= 4f222

∂
∂f111

+ f111

∂
∂f222

, Y112
= −4f221

∂
∂f111

− f111

∂
∂f221

,

Y121
= −4f212

∂
∂f111

− f111

∂
∂f212

, Y122
= 4f211

∂
∂f111

− f111

∂
∂f211

.

(3.16)

For the 6-d system we take the variables of the form f11
= f111

+ ιf112
, f21

= f211
+ ιf212

and
f22

= f221
+ ιf222

f ′′211
+

5
s
f ′211
− 2f111

f221
+ 2f112

f222
= 0,

f ′′112
+

5
s
f ′112
− 2f211

f222
− 2f212

f221
= 0,

f ′′211
+

5
s
f ′211
− 2f111

f221
+ 2f112

f222
= 0,

f ′′212
+

5
s
f ′212
− 2f111

f222
− 2f112

f221
= 0,

f ′′221
+

5
s
f ′221

+ 2f111
f211
− 2f112

f212
= 0,

f ′′222
+

5
s
f ′222

+ 2f111
f212

+ 2f112
f211

= 0,

(3.17)

with symmetry

Z = s
∂
∂s
− 2f111

∂
∂f111

− 2f112

∂
∂f112

− 2f211

∂
∂f211

− 2f212

∂
∂f212

−2f221

∂
∂f221

− 2f222

∂
∂f222

= 0.
(3.18)

This yields the eight Lie-like operators,

Y111
= 2f221

∂
∂f111

+ 2f222

∂
∂f112

− f111

∂
∂f221

− f112

∂
∂f222

,

Y112
= 2f222

∂
∂f111

− f221

∂
∂f112

− f112

∂
∂f221

+ f111

∂
∂f222

,

Y121
= −2f211

∂
∂f111

− 2f212

∂
∂f112

− f111

∂
∂f211

− f112

∂
∂f212

,

Y122
= −2f212

∂
∂f111

− f211

∂
∂f112

− f112

∂
∂f211

− f111

∂
∂f212

.

(3.19)

We summarize the results in Table 6.

CASE: 2 Following the second branch, at the stage of second splitting consider both variables
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n Variables Form Constraint dn ln mn Ln en
1 v = f1 + ιf2. 2 2 0 1 0

2
f1 = ιf11

,
f2 = f21

+ ιf22
.

f 2
22

= f 2
11

+ f 2
21

3 4 0 1 0

3

f11
= ιf11

,
f21

= f211
+ ιf212

,

f22
= f221

+ ιf222
.

f211
f221

= f212
f222

5 8 0 3 0

f11
= f111

+ ιf112
,

f21
= f211

+ ιf212
,

f22
= f221

+ ιf222
.

6 8 0 1 0

Table 6: In the first case of half-integer splitting the number of Lie-like operators is more
than the symmetries, with no missing operators and extra symmetries. Note the algebraic
constraints because of the odd dimensions of the system.

as complex then proceed to the third splitting with one variable pure imaginary and the other
complex. At the first step we have a 4-d system of ODEs

f ′′11
+

5
s
f ′11

+ f 2
11
− f 2

12
− f 2

21
+ f 2

22
= 0,

f ′′12
+

5
s
f ′12

+ 2f11
f12
− 2f21

f22
= 0,

f ′′21
+

5
s
f ′21

+ 2f11
f21
− 2f12

f22
= 0,

f ′′22
+

5
s
f ′22

+ 2f11
f22

+ 2f12
f21

= 0,

(3.20)

with the single symmetry generator

Z = s
∂
∂s
− 2f11

∂
∂f11

− 2f12

∂
∂f12

− 2f21

∂
∂f21

− 2f22

∂
∂f22

, (3.21)

and the corresponding four Lie-like operators

X11
= 2s

∂
∂s
− f11

∂
∂f11

− f12

∂
∂f12

− f21

∂
∂f21

− f22

∂
∂f22

,

X12
= −f12

∂
∂f11

+ f11

∂
∂f12

− f22

∂
∂f21

+ f21

∂
∂f22

,

Y11
= f21

∂
∂f11

+ f22

∂
∂f12

− f11

∂
∂f21

− f12

∂
∂f22

,

Y12
= f22

∂
∂f11

− f21

∂
∂f12

− f12

∂
∂f21

+ f11

∂
∂f22

.

(3.22)

For the next splitting take the first dependent variable to be imaginary and the others complex;
f11

= ιf111
, f12

= f121
+ ιf122

, f21
= f211

+ ιf212
and f22

= f221
+ ιf222

, which gives a 7-d system of
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ODEs

f ′′111
+

5
s
f ′111
− 2f121

f122
− 2f211

f112
+ 2f221

f222
= 0,

f ′′121
+

5
s
f ′121
− 2f111

f122
− 2f211

f221
+ 2f212

f222
= 0,

f ′′122
+

5
s
f ′122

+ 2f111
f121
− 2f211

f222
− 2f212

f221
= 0,

f ′′211
+

5
s
f ′211
− 2f111

f212
− 2f121

f221
+ 2f122

f222
= 0,

f ′′212
+

5
s
f ′212

+ 2f111
f211
− 2f121

f222
− 2f122

f221
= 0,

f ′′221
+

5
s
f ′221
− 2f111

f222
− 2f122

f212
+ 2f121

f211
= 0,

f ′′222
+

5
s
f ′222

+ 2f111
f221

+ 2f121
f212

+ 2f122
f211

= 0,

(3.23)

with constraint

f 2
111

+ f 2
121

+ f 2
211

+ f 2
222

= f 2
122

+ f 2
212

+ f 2
221
. (3.24)

The symmetry generator of the split system is

Z = s
∂
∂s
− 2f111

∂
∂f111

− 2f121

∂
∂f121

− 2f122

∂
∂f122

− 2f211

∂
∂f211

− 2f212

∂
∂f212

−2f221

∂
∂f221

− 2f222

∂
∂f222

,

(3.25)

with eight Lie-like operators

X111
= 4s

∂
∂s
− 4f111

∂
∂f111

− f121

∂
∂f121

− f122

∂
∂f122

− f211

∂
∂f211

− f212

∂
∂f212

− f221

∂
∂f221

− f222

∂
∂f222

,

X112
= −f122

∂
∂f121

+ f121

∂
∂f122

− f212

∂
∂f211

+ f211

∂
∂f212

− f222

∂
∂f221

+ f221

∂
∂f222

,

X121
= −2f122

∂
∂f111

+ f111

∂
∂f122

− f221

∂
∂f211

− f222

∂
∂f212

+ f211

∂
∂f221

+ f212

∂
∂f222

,

X122
= 2f121

∂
∂f111

+ f111

∂
∂f121

− f222

∂
∂f211

+ f221

∂
∂f212

+ f212

∂
∂f221

− f211

∂
∂f222

,

Y111
= −2f212

∂
∂f111

+ f221

∂
∂f121

+ f222

∂
∂f122

− f111

∂
∂f212

− f121

∂
∂f221

− f122

∂
∂f222

,

Y112
= 2f211

∂
∂f111

+ f222

∂
∂f121

− f221

∂
∂f122

− f111

∂
∂f211

+ f122

∂
∂f221

− f121

∂
∂f222

,

Y121
= −2f222

∂
∂f111

− f211

∂
∂f121

− f212

∂
∂f122

− f121

∂
∂f211

− f122

∂
∂f212

+ f111

∂
∂f222

,

Y122
= 2f221

∂
∂f111

− f212

∂
∂f121

+ f211

∂
∂f122

− f122

∂
∂f211

+ f121

∂
∂f212

+ f111

∂
∂f221

.

The table for this case is



Iteratively split symmetry generators of complex scalar ODEs 57

n Variables Form Constraint dn ln mn Ln en

2
f1 = f11

+ ιf12
,

f2 = f21
+ ιf22

.
4 4 0 1 0

3

f11
= ιf111

,

f12
= f121

+ ιf122
,

f21
= f211

+ ιf212
,

f22
= f221

+ ιf222
.

f 2
111

+ f 2
121

+ f 2
211

+ f 2
222

= f 2
122

+ f 2
212

+ f 2
221

7 8 0 1 0

Table 7: The same outcomes as in the previous case are obtained since there are more Lie-like
operators than symmetries, there are no missing operators, and there are no extra symmetries.
Also it is worth noting the algebraic constraint for odd dimension.

4 Conclusion

The aim of the last section was to obtain odd-dimensional systems of ODEs by iterative com-
plex splitting. We observed that iterative splitting with an algebraic constraint can be used to
obtain higher odd-dimensional systems of ODEs. For this purpose we provided a new proce-
dure, which we called half integer splitting. We applied the half-integer splitting to the scalar
Emden-Fowler equation, for which we obtained several odd-dimensional systems of ODEs.
The algebraic constraint that arises in the system of odd-dimensional ODEs was not apparent
in setting up the system but was made explicit in the examples. The iterative splitting for ob-
taining a 2n-d system of second order ODEs was provided. This splitting can be done for third
and higher order ODEs [5–7, 9–11, 15]. The procedure of iterative splitting and half-integer
splitting can also be performed for second or higher order PDEs for obtaining 2n-d systems
of PDEs of the corresponding order. However, the examples show that we can lose all the Lie
symmetry generators and be left only with Lie-like ones. For the Emden-Fowler equation, we
are left with no Lie symmetries from the Lie-like operators, though the equation has a scaling
symmetry and so does the split system. In general, we obtain Lie-like operators and not Lie
symmetry generators that would form an algebra [13]. The Lie-like operators somehow encode
the symmetries of the base equation. It would be most important to learn how they do so.
It may be that the CR-conditions will enable us to re-construct the Lie symmetries from the
Lie-like operators. It is of interest to note that not only for the ODEs but also for the systems
of PDEs, we get Lie-like operators arising and lose some Lie-symmetry generators [2, 14]. We
hope that in the future, it would lead to interesting and useful insights.
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1 Introduction

We study constitutive relations between stress and strain rate describing granular materials, like
cohesionless soils or broken rocks, within the hypoplastic theory proposed first by Kolymbas [15],
further continued by [26, 27], and extended to barodesy in the recent books [16, 17]. Unlike
hyper- and hypoelastic material laws, the hypoplastic response differs for loading and unloading,
thus corresponds to inelastic materials. While in classical elastoplastic models the strain is
decomposed into elastic and plastic parts, e.g. [1, 8, 14], our approach relies on hypoplastic
models of the rate type which are incrementally nonlinear. The interested reader is referred
to [25] for a survey on rate-independent processes and hysteresis problems, and to [10–12,22–24]
for an account on mathematical modeling of granular and multiphase media.

Our study considers a simplified version of the hypoplastic constitutive relation that was
originally introduced by Bauer [2] and Gudehus [13]. In the previous works [5, 6, 18, 20, 21] we
considered the stress-strain rate law as a nonlinear differential equation for the stress under
a given proportional strain rate, that we call strain control. Recently, the case of unknown
strain rate that should be derived from a given proportional stress, called stress control, was
investigated within implicit differential equations in [7,19]. In the current study, we investigate
the case of mixed stress-strain control in a so-called plane strain biaxial test.

In particular, for plane strain conditions we study the response of a hypoplastic material
element under constant lateral stress and a monotonic vertical compression/extension. Such
tests are of interest in various fields of applied mechanics to study the onset and evolution of
shear strain localization [3,4,9,29]. Shear strain localization may occur under a particular stress
state where the constitutive equations describe not only continuous homogeneous deformations,
but also non-homogeneous deformations. Thus, the system of constitutive equations exhibits
non-unique solutions and in the case of a shear band bifurcation two symmetric shear bands may
appear. While for the investigation of the onset of strain localization usually the theory of shear-
band localization [28] can be applied, the focus of the present paper is based on possible solutions
of the system of differential equations under the specified plane strain conditions considered.

2 Plan strain biaxial problem

For coaxial and homogeneous deformation, the tensors of Cauchy stress σ and strain rate ε̇ have
the diagonal form

σ =

σ1 0 0
0 σ2 0
0 0 σ3

 , ε̇ =

ε̇1 0 0
0 ε̇2 0
0 0 ε̇3

 . (2.1)

The hypoplastic constitutive equations due to Bauer et al. [6] under the assumption (2.1) are

dσ1
dt

= fstrσ
{
a2ε̇1 +

(σ : ε̇

trσ

) σ1
trσ

+ afd

(2σ1
trσ
− 1

3

)
‖ε̇‖
}
, (2.2)

dσ2
dt

= fstrσ
{
a2ε̇2 +

(σ : ε̇

trσ

) σ2
trσ

+ afd

(2σ2
trσ
− 1

3

)
‖ε̇‖
}
, (2.3)

dσ3
dt

= fstrσ
{
a2ε̇3 +

(σ : ε̇

trσ

) σ3
trσ

+ afd

(2σ3
trσ
− 1

3

)
‖ε̇‖
}
, (2.4)

where the scalar product σ : ε̇ = σ1ε̇1+σ2ε̇2+σ3ε̇3, and the Frobenius norm ‖ε̇‖ =
√
ε̇21 + ε̇22 + ε̇23.

Herein fs(t) < 0 and fd(t) > 0 represent state dependent parameters of the model, and the con-
stant a > 0 is related to the yield strength.

In a biaxial test, the following three quantities are prescribed:

ε̇1 = D1, σ2 = σ02, ε̇3 = 0, (2.5)
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with constant D1 and σ02 < 0. In the constitutive relations σ1(t) < 0, σ3(t) < 0, and ε̇2(t) are
three unknown functions of time t ≥ 0. We insert the assumption (2.5) into the hypoplastic
equations such that (2.2)–(2.4) become

dσ1
dt

=fstrσ
{
a2D1+

(σ1D1 + σ02 ε̇2
trσ

) σ1
trσ

+ afd

(2σ1
trσ
− 1

3

)√
D2

1 + ε̇22

}
, (2.6)

0 =fstrσ
{
a2ε̇2 +

(σ1D1 + σ02 ε̇2
trσ

) σ02
trσ

+ afd

(2σ02
trσ
− 1

3

)√
D2

1 + ε̇22

}
, (2.7)

dσ3
dt

=fstrσ
{ (σ1D1 + σ02 ε̇2

trσ

) σ3
trσ

+ afd

(2σ3
trσ
− 1

3

)√
D2

1 + ε̇22

}
. (2.8)

The sum of (2.6)–(2.8) implies the following differential equation for the trace

d(trσ)

dt
= fstrσ

{
a2(D1 + ε̇2) +

σ1D1 + σ02 ε̇2
trσ

+ afd

√
D2

1 + ε̇22

}
. (2.9)

Denoting for brevity the ratio of the stress tensor scaled with its trace by

σ̂1 =
σ1
trσ

, σ̂2 =
σ02
trσ

, σ̂3 =
σ3
trσ

, trσ = σ1 + σ02 + σ3, (2.10)

we get the following expression for its derivative

dσ̂n
dt

=
1

trσ

dσn
dt
− σ̂n

trσ

d(trσ)

dt
, n = 1, 3.

Hence, from equations (2.9), (2.6) and (2.8) we infer that

dσ̂1
dt

=fs

{
a2D1−a2(D1 + ε̇2)σ̂1 + afd

(
σ̂1 −

1

3

)√
D2

1 + ε̇22

}
, (2.11)

dσ̂3
dt

=fs

{
−a2(D1 + ε̇2)σ̂3 + afd

(
σ̂3 −

1

3

)√
D2

1 + ε̇22

}
. (2.12)

After summation of (2.11) and (2.12), the identity σ̂1 + σ̂2 + σ̂3 = 1 leads to

dσ̂2
dt

= fs

{
a2ε̇2 − a2(D1 + ε̇2)σ̂2 + afd

(
σ̂2 −

1

3

)√
D2

1 + ε̇22

}
. (2.13)

Whereas the algebraic equation (2.7) can be rewritten using (2.10) as

D1σ̂1σ̂2 + (a2 + σ̂22)ε̇2 + afd

(
2σ̂2 −

1

3

)√
D2

1 + ε̇22 = 0. (2.14)

Note that σ̂3 does not enter (2.14), and (2.12) can be deduced from the governing equations.
The coupled system (2.11), (2.13), and (2.14) has to be solve with respect to three unknowns
σ̂1, σ̂2, and ε̇2, endowed with the initial conditions:

σ̂1(0) =
σ01

σ01 + σ02 + σ03
, σ̂2(0) =

σ02
σ01 + σ02 + σ03

, (2.15)

for prescribed σ01 < 0, σ03 < 0, and σ02 from (2.5).

Theorem 2.1 (Solution). A solution to the linear Cauchy system (2.11) and (2.13) under initial
conditions (2.15) and constrained by (2.14) can be written in the integral form:

σ̂1(t)−
1

3
= e

t∫
0

φ3(τ) dτ[
σ̂1(0)− 1

3
+

∫ t

0
φ1(ξ)e

−
ξ∫
0

φ3(τ) dτ
dξ
]
, (2.16)

σ̂2(t)−
1

3
= e

t∫
0

φ3(τ) dτ[
σ̂2(0)− 1

3
+

∫ t

0
φ2(ξ)e

−
ξ∫
0

φ3(τ) dτ
dξ
]
, (2.17)
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where the integrands are

φ1 = a2fs
2D1 − ε̇2

3
, φ2 = a2fs

2ε̇2 −D1

3
, φ3 = a2fs

{
−(D1 + ε̇2) +

fd
a

√
D2

1 + ε̇22

}
. (2.18)

Moreover, under the solvability condition

D := a2f2dD
2
1

(
2σ̂2 −

1

3

)2{
σ̂21σ̂

2
2 +

(
a2 + σ̂22

)2 − a2f2d(2σ̂2 −
1

3

)2}
≥ 0 (2.19)

(where the discriminant D becomes zero for σ̂2 = 1/6), from the algebraic equation (2.14) we
deduce two possible expressions for ε̇2, namely

(ε̇2)± =
D1σ̂1σ̂2(a

2 + σ̂22)±
√
D

a2f2d
(
2σ̂2 − 1

3

)2 − (a2 + σ̂22
)2 . (2.20)

Proof. Using the notation (2.18) we can rewrite (2.11) and (2.13) in a unified way as

d

dt

(
σ̂n −

1

3

)
= φn + φ3

(
σ̂n −

1

3

)
, n = 1, 2. (2.21)

The multiplication of (2.21) by the factor exp(−
∫ t
0 φ3(τ) dτ) yields the equivalent equation

d

dt

[(
σ̂n(t)− 1

3

)
e
−

t∫
0

φ3(τ) dτ]
= φn(t)e

−
t∫
0

φ3(τ) dτ
, n = 1, 2.

Thus, formulas (2.16) and (2.17) can be obtained by simple integration over the interval [0, t]
and taking into account the initial values given in (2.15).

Considering the aforementioned σ̂1 and σ̂2, from (2.14) we deduce a quadratic equation for
the unknown ε̇2 as follows:[

a2f2d

(
2σ̂2 −

1

3

)2
−
(
a2 + σ̂22

)2]
ε̇22 − 2D1σ̂1σ̂2(a

2 + σ̂22)ε̇2

+D2
1

[
a2f2d

(
2σ̂2 −

1

3

)2
− σ̂21σ̂22

]
= 0, (2.22)

whose discriminant D is given in (2.19), and consequently we have two possible solutions (ε̇2)±
as in (2.20). Note that (2.19) ensures that D is non-negative independently of the sign of D1.
The proof is completed.

For a physically consistent model relevant for cohesionless granular materials, only negative
normal stresses are admissible. Therefore, trσ < 0, and formula (2.10) leads to the restriction
σ̂n = σn/trσ > 0 for n = 1, 2, 3.

3 Numerical simulations

Based on Theorem 2.1, we analyze the existence of numerical solutions for two systems with
unknowns σ̂1, σ̂2, and ε̇2 and accounting for the plain strain biaxial model in the form of Cauchy
problem (2.11), (2.13)–(2.15). Note that the normalized stresses σ̂1, σ̂2 ∈ (0, 1) as unknown
variables in the linear equations (2.11), (2.13) are numerically advantageous over the stresses
σ1, σ3 in the nonlinear equations (2.6), (2.8), which are unbounded in general. After finding the
solution, we can determine the quantities σ̂3 and trσ in (2.9) and (2.12) which are implicitly
given by

σ̂3 = 1− σ̂1 − σ̂2, trσ =
σ02
σ̂2
. (3.1)
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To make our presentation of the numerical scheme more precise, we distinguish the two
systems comprehending equations (2.11), (2.13), and (2.20) taking into account the discriminant
as in (2.19), which are gathered as follows:

D = a2f2dD
2
1

(
2σ̂2 −

1

3

)2{
σ̂21σ̂

2
2 +

(
a2 + σ̂22

)2 − a2f2d(2σ̂2 −
1

3

)2}
,

ε̇2 =
D1σ̂1σ̂2(a

2 + σ̂22)−
√
D

a2f2d
(
2σ̂2 − 1

3

)2 − (a2 + σ̂22
)2 , (−

√
D)

dσ̂1
dt

= fs

{
a2D1 − a2(D1 + ε̇2)σ̂1 + afd

(
σ̂1 −

1

3

)√
D2

1 + ε̇22

}
,

dσ̂2
dt

= fs

{
a2ε̇2 − a2(D1 + ε̇2)σ̂2 + afd

(
σ̂2 −

1

3

)√
D2

1 + ε̇22

}
,

and

D = a2f2dD
2
1

(
2σ̂2 −

1

3

)2{
σ̂21σ̂

2
2 +

(
a2 + σ̂22

)2 − a2f2d(2σ̂2 −
1

3

)2}
,

ε̇2 =
D1σ̂1σ̂2(a

2 + σ̂22) +
√
D

a2f2d
(
2σ̂2 − 1

3

)2 − (a2 + σ̂22
)2 , (+

√
D)

dσ̂1
dt

= fs

{
a2D1 − a2(D1 + ε̇2)σ̂1 + afd

(
σ̂1 −

1

3

)√
D2

1 + ε̇22

}
,

dσ̂2
dt

= fs

{
a2ε̇2 − a2(D1 + ε̇2)σ̂2 + afd

(
σ̂2 −

1

3

)√
D2

1 + ε̇22

}
.

In both cases we consider the initial conditions in (2.15) with the constant parameters yet to be
prescribed.

The local solutions to (−
√

D) and (+
√

D) might be ensured for t ∈ [0, t0] with small t0 > 0.
However, our interest concerns global solutions for arbitrary t ≥ 0, and, if a global solution to
either (−

√
D) or (+

√
D) exists, in its asymptotic behavior for growing t.

To measure an error of numerical schemes applied, we suggest to estimate the residual of the
algebraic equation (2.7):

Res := fstrσ
{
a2ε̇2 +

(σ1D1 + σ02 ε̇2
trσ

) σ02
trσ

+ afd

(2σ02
trσ
− 1

3

)√
D2

1 + ε̇22

}
. (3.2)

From our numerical tests we can report the following features. Refining the uniform time mesh,
numerical iterations may diverge or leave a region of the physical consistency, the residual error
may remain large or converge very slow, thus theoretical solution be numerically unattainable.
Typically we observe only one numerically reasonable and physically consistent solution.

3.1 Biaxial extension test

For a first simulation test, we prescribe the initial stresses and the constant strain rate ε̇1 to be

σ01 = σ02 = σ03 = −100, and D1 = 1, (3.3)

which implies an isotropic state in a domain of parameters satisfying the feasibility conditions.
In view of (2.5) and taking into account the sign convention of rational mechanics, the choice
D1 = 1 describes a state of vertical extension with a constant strain rate 1. The material
parameters for the hypoplastic equations (2.2)–(2.4) are taken from [18]:

a = 0.33, fd = 1, fs = −550.

These data satisfy the solvability condition (2.19) at t = 0 and, by continuity, the condition also
holds true, at least, in an interval [0, t0], with some t0 > 0.
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Since the constitutive equations are rate independent, we opted for the representation of
numerical results with respect to the vertical strain rather than the time evolution. The numer-
ical result for solution (σ1(t), ε2(t), σ3(t)) of (+

√
D) under data set (3.3) and a constant lateral

stress σ2 obtained with a MAPLE code is depicted versus the vertical strain ε1(t) = D1t from
(2.5) for t ∈ (0, 0.04) in the four plots of Figure 1.

Vic_Biaxial extension alternative discriminant - minimum deviation.mw

The factor in front of the square root (Eq. (2.20) from the manuscript by Victor from 
24.02.2023) is now included in the discriminant!

The solution for D2 is related to the solution of D2 fulfilling the requirement tT22=0

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<
#  PLOTS

Figure 1: The simulation test of biaxial extension under data set (3.3).

In the upper left and right plots of Figure 1 the first (vertical) and the third (horizontal)
stress components are depicted. We observe that the evolution is physically consistent: σ1 < 0
and σ3 < 0 stress components remain negative during extension and tend from below towards
asymptotic values which are related to the parameter a for the stress limit state. In the lower
left plot of Figure 1, the horizontal strain component ε2(t) is calculated from its rate ε̇2(t) and
the initial value ε2(0) = 0. We remark that the strain ε2 ≤ 0 in this case, that is, when extension
takes place. Evolution of the discriminant D is presented in the lower right plot of Figure 1. We
can observe that the discriminant is strictly positive and tends towards an asymptotic value.

To check if the solutions converge or diverge by the time discretization, the system of dif-
ferential algebraic equation is solved in MATLAB using the standard solver RK4. In Figure 2
we show in the log-log scale the absolute value of the residual for the numerical solution of the
system (+

√
D) when decreasing the time mesh size as {10−5, 10−4, 10−3, 10−2}. For this we

calculate the average of |Res| in (3.2) over time for the current states under equdistant meshing
by 101, 1001, 10001, 100001 time points, respectively. In Figure 2 a high rate of convergence
of the solution (+

√
D) when refining the mesh is clearly observed. The evolution of the system

(−
√

D) is not presented here, since its residual is large of order 104 and converges very slowly
such that the limit (if exists) is numerically unattainable.
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Figure 2: Log-log plot of the residual for (+
√

D) versus time step size.

3.2 Biaxial compression test

Now let us consider the initial values as defined above but changing the sign of the strain rate,
that is,

σ01 = σ02 = σ03 = −100, and D1 = −1, (3.4)

which describes a state of vertical compression with a constant strain rate −1.

In this test, the standard numerical schemes are not well behaved. Therefore, from the two
possible solutions ε̇2 we select the one which minimizes the value of |Res| in (3.2). The general
idea of the such selection procedure is commonly used in many numerical methods in which the
solution is based on the minimum of a defined residual. Indeed, if we look at the evolution of the
residual Res calculated from (+

√
D) and (−

√
D) as drawn in the left and right plots of Figure 3,

respectively, we observe a point approximately ε1 = −0.01324, where the zero residual switches
from (+

√
D) to (−

√
D).

(1)(1)

(2)(2)

#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Figure 3: The residual Res in (3.2) for (+
√

D) and (−
√

D).

The corresponding numerical solution is depicted versus the vertical strain ε1 = D1t for
t ∈ (0, 0.08) in Figure 4. We can see in the upper left and right plots that σ1 < 0 and σ3 < 0.
Under the axial compression, the amount of both the vertical stress and the horizontal stress
increases, which is physically consistent. Moreover, the stress components show an asymptotical
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Vic_Biaxial compression alternative discriminant - minimum deviation.
mw

The factor in front of the square root (Eq. (2.20) from the manuscript by Victor from 
24.02.2023) is now included in the discriminant!

The solution for D2 is related to the solution of D2 fulfilling the requirement tT22=0
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Figure 4: The simulation test of biaxial compression under data set (3.4).

behaviour with continued vertical compression. Note that in the lower left plot ε2 ≥ 0 during
the whole evolution. In contrast to the extension test, in the lower right plot the discriminant
D decreases at the beginning of vertical compression, becomes zero at the vertical strain of
approximately ε1 = −0.01324, and afterwards it slightly increases and reaches an almost constant
value. Exactly this state is relevant to switch for the solution of ε̇2 from (+

√
D) to (−

√
D).

4 Conclusion

We have studied well-posedness of the hypoplastic constitutive equations carried out in a plane
strain biaxial test. Under mixed stress-strain control, we construct two systems of differential
algebraic equations, corresponding to the strain rate obtained by solving a quadratic equation.
In numerical simulations we find a single feasible solution, provided that the data are chosen in a
domain of parameters satisfying the proposed solvability conditions. More detailed investigations
are still under way and the results are the topic of an future publication.
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Abstract

This article is a continuation of our previous work under the title “A Study on the exact
solutions of the Ramani equation by using Lie symmetry analysis”. We studied about the
Lie point symmetries, associated similarity reductions and the Painleve analyis of certain
symmetry-reduced equations. Furthemore, we computed the travelling wave solutions using
an improved (G′/G)− expansion method. This paper focus on the study of the classification
of all group-invariant solutions. We therefore derive the one-dimensional optimal system
of subalgebras of the Ramani equation using the method outlined in [4] and [3]. The algo-
rithm requires the computation of the commutator table, adjoint representation table, adjoint
transformation matrix and calculation of invariants. Finally, we derive the mutually inequiv-
alent one-dimensional subalgebras and present new reductions and solutions with respect to
the optimal system. Also, we study here the classification of the admitted four-dimensional
Lie algebra.

Keywords: Lie symmetries, optimal system, similarity-reductions, invariant solutions.

1 Introduction

The Lie point symmetries, associated similarity reductions and the Painleve analyis of certain
symmetry-reduced equations of the sixth-order nonlinear Ramani equation

uxxxxxx + 15(uxuxxxx + uxxuxxx) + 45u2xuxx − 5(uxxxt + 3uxuxt + 3utuxx)− 5utt = 0. (1.1)
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were studied by the authors in [1]. The travelling-wave solutions were also computed using an
improved (G′/G)− expansion method. In this paper we focus on the study of the classification
of all group-invariant solutions of (1.1). Because there are an infinite number of subalgebras
of a given dimension, a classification is achieved by constructing the optimal system of subal-
gebras (here one-dimensional). We employ the method outlined in [4] and [3]. The algorithm
requires the computation of the commutator table, adjoint representation table, adjoint trans-
formation matrix and calculation of invariants. Finally, we derive the mutually inequivalent
one-dimensional subalgebras and present new reductions and solutions with respect to the opti-
mal system. Also, we present the classification of the admitted four-dimensional Lie algebra. It
is to be noted that in [2] the authors have computed the optimal system of the Ramani equation.
However each member in their system can be seen to be equivalent to a member in the optimal
system of one-dimensional subalgebras derived in this study.

2 Construction of the optimal system

According to the authors’ findings in [1], the four-dimensional Lie algebra L4 admitted by (1.1)
is spanned by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 =
∂

∂u
,

X4 = t
∂

∂t
+
x

3

∂

∂x
− u

3

∂

∂u
.

(2.1)

The commutator Table 1 is obtained by using the Lie bracket [Xi, Xj ] = XiXj −XjXi.

Table 1: Commutator table

[Xi, Xj ] X1 X2 X3 X4

X1 0 0 0 X1

X2 0 0 0 X2
3

X3 0 0 0 −X3
3

X4 −X1 −X2
3

X3
3 0

This admitted Lie algebra L4 is the A
− 1

3
, 1
3

4,5 algebra in the Patera et al. classification.

Now any element of L4 can be written as

X = a1X1 + a2X2 + a3X3 + a4X4, ai ∈ R. (2.2)

As there is an infinite number of one-dimensional subalgebras for various values of ai, it
is important to identify all the equivalent subalgebras (here one-dimensional) in one class and
choose a representative for each class. This results in the optimal system constutuing of the
representative from each class which are mutually inequivalent.

Two subalgebras Li and Lj of L4 are quivalent under the adjoint representation if

Li = Ad g(Lj), g ∈ G
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where (1.1) is invariant under the Lie group of point transformations G. The adjoint represen-
atation of the underlying group G given in Table 2 is constructed using the Lie series

Ad(eεXi)(Xj) = Xj − ε[Xi, Xj ] +
1

2!
ε2[Xi, [Xi, Xj ]] + ... (2.3)

Table 2: Adjoint representation table

Ad X1 X2 X3 X4

X1 X1 X2 X3 X4 − εX1

X2 X1 X2 X3 X4 − εX2
3

X3 X1 X2 X3 X4 + εX3
3

X4 eεX1 e
ε
3X2 e−

ε
3X3 X4

2.1 Construction of adjoint transformation matrix A

Now we calculate the general adjoint transformation matrix A. It is the product of the ma-
trices A1, A2, A3, A4 (taken in any order) which represents the seperate adjoint actions of
X1, X2, X3, and X4 to X respectively. The adjoint action of X1 to X is given by

Ad(eε1X1)(X) = (a1 − a4ε1)X1 + a2X2 + a3X3 + a4X4

= [(a1 − a4ε1), a2, a3, a4]


X1

X2

X3

X4



= [a1, a2, a3, a4]


1 0 0 0
0 1 0 0
0 0 1 0
−ε1 0 0 1



X1

X2

X3

X4


= [a1, a2, a3, a4]A1[X1, X2, X3, X4]

T . (2.4)

In a similar manner, we calculate the matrices A2, A3 and A4, which are given by

A2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 − ε2

3 0 1

 , A3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 ε3

3 1

 ,

A4 =


eε4 0 0 0

0 e
ε4
3 0 0

0 0 e−
ε4
3 0

0 0 0 1

 .
Therefore the general adjoint transformation matrix A, which is the product of the matrices of
the separate adjoint actions A1, A2, A3, A4 is given by

A =


eε4 0 0 0

0 e
ε4
3 0 0

0 0 e−
ε4
3 0

−ε1eε4 −ε2e
ε4
3

3
ε3e
−ε4
3

3 1

 (2.5)
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The adjoint transformation equation for (1.1) is,

(ã1, ã2, ã3, ã4) = (a1, a2, a3, a4)A

where A is the the general adjoint transformation matrix A. This results in a system of equations:

ã1 = a1e
ε4 − a4ε1eε4

ã2 = a2e
ε4
3 − a4

ε2e
ε4
3

3

ã3 = a3e
−ε4
3 + a4

ε3e
−ε4
3

3
ã4 = a4

(2.6)

If the above system has a solution, then X is equivalent to X̃ = ã1X1 + ã2X2 + ã3X3 + ã4X4.

2.2 Calculation of the invariants

A real function φ on the Lie algebra L is called an invariant [4] if

φ(Adg(v)) = φ(v), ∀v ∈ L and ∀g ∈ G.

Finding such an invariant, as Olver [4] stated, is essential because it restricts the amount of
simplification that may be expected for X. Now the adjoint action of w =

∑n
i=1 biXi to v =∑n

j=1 ajXj is given by

Ad(eεw)(v) = v − ε[w, v] +
ε2

2!
[w, [w, v]] + ...

= (a1v1 + a2v2 + ...+ anvn)− ε(Θ1v1 + Θ2v2 + ...+ Θnvn) +O(ε2).

(2.7)

To determine the invariant φ, expanding the RHS of (2.7), we get

φ(a1 − εΘ1, a2 − εΘ2, ...an − εΘn +O(ε2))

= φ(a1, a2, ..., an)− ε(Θ1
∂φ

∂a1
+ ...+ Θn

∂φ

∂an
) +O(ε2)

(2.8)

and we require,

Θ1
∂φ

∂a1
+ ...+ Θn

∂φ

∂an
= 0 (2.9)

for any bi. Extracting the coefficients of all bi, N(≤ n) linear differential equations of φ are
obtained. Now (2.9) can also be written as

4∑
j=1

cki,jaj
∂φ

∂ak
= 0, i = 1, 2, 3, 4 (2.10)

where [Xi, Xj ] = cki,jXk. For i = 1, the L.H.S. of (2.10) is given by,

4∑
j=1

ck1,jaj
∂φ

∂ak
= ck1,1a1

∂φ

∂ak
+ ck1,2a2

∂φ

∂ak
+ ck1,3a3

∂φ

∂ak
+ ck1,4a4

∂φ

∂ak

∴ a4
∂φ

∂a1
= 0. (2.11)
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Therefore we have a system of PDEs,

a4
∂φ

∂a1
= 0,

a4
3

∂φ

∂a2
= 0,

−a4
3

∂φ

∂a3
= 0,

−a1
∂φ

∂a1
− a2

3

∂φ

∂a2
+
a3
3

∂φ

∂a3
= 0.

(2.12)

Solving the above equations, we get the invariant function

φ(a1, a2, a3, a4) = F (a4). (2.13)

We discuss two cases a4 6= 0 and a4 = 0. Next, we consider an element of L given by

X = a1X1 + a2X2 + a3X3 + a4X4

and simplify as many as coefficients by the application of adjoint maps.
Case 1. a4 6= 0. Assume a4 = 1. Consider

X̃ = Ad(eε4X4)Ad(eε3X3)Ad(eε2X2)Ad(eε1X1)X

= Ad(eε4X4)Ad(eε3X3)Ad(eε2X2)(Ad(eε1X1)(a1X1 + a2X2 + a3X3 +X4))

= Ad(eε4X4)Ad(eε3X3)Ad(eε2X2) ((a1 − ε1)X1 + a2X2 + a3X3 +X4)

∴ X̃ =
(

(a1 − ε1)X1 + (a2 −
ε2
3

)X2 + (a3 +
ε3
3

)X3 +X4

)
(2.14)

We choose ã1 = 0, ã2 = 0, ã3 = 0 and ε4 = 0. So the first representative element is X4.
Case 2. a4 = 0, a3 6= 0. Let a3 = 1 Then,

X = a1X1 + a2X2 +X3

X̃ = Ad(eε4X4)Ad(eε3X3)Ad(eε2X2)Ad(eε1X1)X

= a1e
ε4X1 + a2e

ε4
3 X2 + e

−ε4
3 X3. (2.15)

With ε4 = 0, we have the next representative element,

a1X1 + a2X2 +X3.

Case 3. a4 = 0, a3 = 0, a2 6= 0. Let a2 = 1 Then,

X = a1X1 +X2

X̃ = Ad(eε4X4)Ad(eε3X3)Ad(eε2X2)Ad(eε1X1)X

= a1e
ε4X1 + e

ε4
3 X2. (2.16)

With ε4 = 0, we have the next representative element,

a1X1 +X2.

Case 4. a4 = 0, a3 = 0, a2 = 0, a1 6= 0. Let a1 = 1 Then we have the next representative
element,

X1.

Thus the one-dimensional optimal system of subalgebras is given by,

X4, a1X1 + a2X2 +X3, a1X1 +X2, X1.
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3 Similarity-reductions

The similarity variable and the corresponding solution form with respect to each symmetry in
the optimal system are presented below.

Symmetry Similarity Variable Similarity Solution

X4 γ = x

t
1
3

u(x, t) = v(γ)

t
1
3

aX1 + bX2 +X3 γ = x− b
a t u(x, t) = v(γ) + t

cX1 +X2, , c 6= 0 γ = x− kt, k = 1
c u(x, t) = v(γ)

X1 γ = x u(x, t) = v(γ)

It is to be noted that the reductions using the symmetriesX4, cX1+X2, X1 and the corresponding
solutions has been given by the authors in [1]. So we discuss only the following case:

Reduction using aX1 + bX2 +X3:

a(av′′′′′′ + 5(3av′ + b)v′′′′) + 5(3a2v′′′ + 9a2v′
2

+ 6abv′ − b2 − 3a)v′′ = 0 (3.1)

For a 6= 0 and b = 0, we get the following reduction using aX1 +X3:

a(v′′′′′′ + 15v′′′′v′) + 15(av′′′ + 3av′
2 − 1)v′′ = 0, (3.2)

where u(x, t) = v(x) +
t

a
.

Equations (3.1) and (3.2) have two symmetries namely ∂
∂v and ∂

∂ν . Using these symmetries,
the subsequent reduction leads to a nonlinear fourth-order ODE which has no point symmetries.

However equation (3.1) and (3.2) is analogous to the symmetry-reduced equation obtained
using cX1+X2 in which the solutions is analysed in [1] using improved (G

′

G )−expansion method.
For b 6= 0 and a = 0, we get the following reduction using bX2 +X3:

v′′ = 0, (3.3)

where u(x, t) = v(t) +
x

b
.

4 Conclusion

We have derived the one-dimensional optimal system of subalgebras of the Ramani equation. It
is seen that the symmetries in the optimal system derived by the authors in [2] to be equivalent
to one of the symmetry in the system derived in this paper. Thus all details corresponding to the
symmetry-reductions with respect to each member of the optimal system and possible solution
have been presented. This includes some new reductions and also explicit invariant solution in
one of the cases which was not reported in [1].
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1 Introduction

The Vlasov equation is a differential equation describing the time evolution of the distribution
function of a plasma composed of charged particles with long-range interactions such as Coulomb
ones. A. Vlasov first proposed this equation to describe the plasma in 1938 [1] and later discussed
it in detail in his monograph [2].

The Vlasov equation has many connections with other equations. It is an important type
of dynamical equations which can be used to describe physical phenomena, such as the motion
of nebulae and the evolution of plasma. Because this equation has a very important position
in dynamics, it not only attracted the attention of many physicists, but also prompted a large
number of mathematicians to engage in research in this area.

The sufficient stability conditions for exact stationary solutions to the kinetic Vlasov-Poisson
equations have already been found previously, as indicated in the following publications [3–7].
As far as we are aware, these conditions have not been reversed until now (neither for small
perturbations, nor, in particular, for finite ones) [4]. A new transition from the kinetic Vlasov-
Poisson equations to the gas-dynamic equations is found in [8]. For the last equations, there are
methods to reverse sufficient stability conditions (at least, in the linear approximation) [9]. By
utilizing the direct Lyapunov method in the present paper, we demonstrate that the spherically
symmetrical states of dynamic equilibrium of the boundless collisionless self-gravitating Vlasov-
Poisson gas are absolutely unstable with regard to small perturbations of the same symmetry [9].

V. Antonov conducted in-depth study on self-gravitating systems. In [6], he studied the
stellar system with an isotropic velocity distribution and Emden’s polytropic density by applying
a criterion previously derived by him in [5]. He assumed too that the velocity diagram is
spherically symmetrical at any distance from the center. As a result, V. Antonov proved that
the stellar system, in which the phase density is a decreasing function of the energy integral, is
stable.

Unexpectedly, Antonov’s conclusion [6] runs counter to the basic findings in our study on
instability. The explanation for this is that his conclusion is conditional and valid for some
incomplete unclosed subclass of small spherically symmetrical perturbations. More consideration
will also be given to Antonov’s article [5].

2 The kinetic Vlasov-Poisson equations

In the spherically symmetrical space, the self-gravitating Vlasov-Poisson gas is described by
kinetic equations shown below [10,11]

∂f

∂t
+ v

∂f

∂r
− ∂ϕ

∂r

∂f

∂v
= 0

1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
= 16π2

(∫ ∞
0

f(r, v, t)v2 dv − ng
)

(2.1)

f(r, v, t) = f0(r, v)

where f = f(r, v, t) ≥ 0 is the distribution function of gas particles (for simplicity of being used,
the mass of particles is set equal to unity); t ∈ [0,∞) denotes time; r, v ∈ [0,∞) are coordinates
and velocities of gas particles respectively; ϕ = ϕ(r, t) denotes the potential of a self-consistent
gravitating field; ng ≡ const > 0 is the gas density in some spherically symmetrical static state
of global thermodynamic equilibrium; f0(r, v) denotes the initial data for distribution function
f . We suppose that f → 0 when v → ∞, and the functions f, ϕ → 0 or are periodic when
r →∞.
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The following integrals are preserved on the exact evolutionary solutions to system (2.1)

E ≡ 8π2
∫∫ ∞

0
fv4r2 drdv − 1

2

∫ ∞
0

(
r
∂ϕ

∂r

)2

dr = const (2.2)

C ≡ 16π2
∫ ∞
0

Φ(f)v2r2 drdv = const.

Here, E denotes the functional of full energy, C is the integral of motion, Φ = Φ(f) denotes an
arbitrary function of its argument.

It is assumed that kinetic system (2.1) has the exact stationary solutions

f = f0(v), ϕ = ϕ0 ≡ const (2.3)

which satisfy the following stationary equation∫ ∞
0

f0(v)v2 dv = ng. (2.4)

Solutions (2.3), (2.4) correspond to some spherically symmetrical dynamic state of local ther-
modynamic equilibria.

These exact stationary solutions will be investigated for stability with respect to small spheri-
cally symmetrical perturbations. For such purpose, system (2.1) is linearized near solutions (2.3),
(2.4) and has the form

∂f ′

∂t
+ v

∂f ′

∂r
− ∂ϕ′

∂r

df0

dv
= 0

1

r2
∂

∂r

(
r2
∂ϕ′

∂r

)
= 16π2

∫ ∞
0

f ′(r, v, t)v2 dv (2.5)

f ′(r, v, 0) = f ′0(r, v)

where, according to the linearization procedure, the sought functions are represented in the form
f(r, v, t) = f0(v) + f ′(r, v, t) and ϕ(r, t) = ϕ0 + ϕ′(r, t); f ′, ϕ′ denote the small perturbations;
f ′0(r, v) is the initial data for perturbed distribution function f ′.

Let I ≡ E + C (see (2.2)). The first variation of functional I is calculated as

δI = 16π2
∫∫ ∞

0

[
v2 + ϕ0

2
+
dΦ

df

(
f0
)]
δfv2r2 drdv.

Here, δf denotes the first variation of distribution function f . The condition is written out when
the integral δI is equal to zero:

v2 + ϕ0

2
= −dΦ

df

(
f0
)
.

The second variation of functional I is calculated as

δ2I = 8π2
∫∫ ∞

0

d2Φ

df2
(
f0
)

(δf)2 v2r2 drdv − 1

2

∫ ∞
0

(
r
∂δϕ

∂r

)2

dr (2.6)

where δϕ is the first variation for potential ϕ of self-consistent gravitating field.
If the first variations δf and δϕ are replaced by small perturbations f ′ and ϕ′, then second

variation δ2I (2.6) of the integral I will turn into a linear analogue E1 of the full energy functional
E

E1 = 8π2
∫∫ ∞

0

d2Φ

df2
(
f0
)
f ′2v2r2 drdv − 1

2

∫ ∞
0

(
r
∂ϕ′

∂r

)2

dr
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which will be preserved on the evolutionary solutions to system (2.5). It can be seen directly
that the inequality

d2Φ

df2
(
f0
)
≤ 0

or, equivalently,

1

v

df0

dv
≥ 0 (2.7)

is the sufficient condition for linear stability of exact stationary solutions (2.3), (2.4) to kinetic
system (2.1) with regard to spherically symmetrical perturbations f ′, ϕ′ (2.5).

However, any function f0 is decreasing in accordance with the boundary conditions for system
(2.1). So, inequality (2.7) cannot hold in principle. Hence, there is no stationary distribution
functions f0 (2.3), (2.4) which satisfy sufficient condition (2.7).

This means that the integral E1 can be non-negative for decreasing functions f0 if and only if
the first term of functional E1 is not less than its second term. In [6], V. Antonov obtained such
condition for small spherically symmetrical perturbations in the form of normal modes – the
well-known Antonov criterion [5]. However, for linear partial differential equations with variable
coefficients, normal modes do not represent a complete closed system of functions. Thus, the
Antonov criterion [5,6] for linear stability is formal: it is valid just for some incomplete unclosed
subclass of small spherically symmetrical perturbations.

According to the Antonov criterion’s conditional nature, we can provide a hypothesis about
the absolute instability for exact stationary solutions (2.3), (2.4) to kinetic system (2.1) with
respect to small spherically symmetrical perturbations f ′, ϕ′ (2.5).

To verify this hypothesis, it is convenient to perform two non-degenerate changes of indepen-
dent variables – the so-called hydrodynamic substitutions [8, 11]. So, we make two transitions
from the Eulerian independent variables r, v, t to the mixed Eulerian-Lagrangian independent
variables r, ν, t, where, according to the definition of Lagrangian coordinates, dν/dt = 0. Specif-
ically,

v = u(r, ν, t), v2r2f(r, v, t) = ρ1(r, ν, t)

[
∂u

∂ν
(r, ν, t)

]−1
(2.8)

and

v = u(r, ν, t), f(r, v, t) = ρ2(r, ν, t)

[
∂u

∂ν
(r, ν, t)

]−1
. (2.9)

Hence, kinetic equations (2.1) are transformed, and we can write two systems of the gas-
dynamic type equations for vortex shallow water in the Boussinesq approximation

∂u

∂t
+ u

∂u

∂r
= −∂ϕ

∂r
,

∂ρ1
∂t

+
∂ (uρ1)

∂r
= 0

∂

∂r

(
r2
∂ϕ

∂r

)
= 16π2

(∫ ∞
0

ρ1(r, ν, t) dν − r2ng
)

(2.10)

u(r, ν, 0) = u0(r, ν), ρ1(r, ν, 0) = ρ10(r, ν)

and
∂u

∂t
+ u

∂u

∂r
= −∂ϕ

∂r
,

∂ρ2
∂t

+
∂ (uρ2)

∂r
= 0

∂

∂r

(
r2
∂ϕ

∂r

)
= 16π2r2

(∫ ∞
0

ρ2(r, ν, t)u
2 dν − ng

)
(2.11)
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u(r, ν, 0) = u0(r, ν), ρ(r, ν, 0) = ρ20(r, ν).

Here, u, ρ1, and ρ2 denote the velocity and two density fields of gas particles respectively with
the initial data u0, ρ10, and ρ20. We suppose that the functions u, ρ1, and ρ2 approach zero as
ν →∞ and, together with the function ϕ, are periodic on r or approach zero as r →∞.

At the exact evolutionary solutions to gas-dynamic system (2.10) for the first hydrodynamic
substitution (2.8), the following functionals are preserved

E2 ≡ 8π2
∫∫ ∞

0
ρ1u

2 dνdr − 1

2

∫ ∞
0

(
∂ϕ

∂r

)2

r2 dr = const (2.12)

C1 ≡ 16π2
∫∫ ∞

0
Φ1(κ1)

∂u

∂ν
dνdr = const; κ1 ≡ ρ1

(
∂u

∂ν

)−1
:
∂κ1
∂t

+ u
∂κ1
∂r

= 0

where E2 is the integral of full energy, C1 denotes the functional of motion, Φ1 = Φ1(κ1) is an
arbitrary function of its argument, and κ1 denotes the reverse vorticity.

The last relation for function κ1 from (2.12) guarantees the mutual uniqueness for replace-
ment (2.8) of independent variables. Indeed, if ∂u/∂ν 6= 0 at t = 0, then, in accordance with
the equation for κ1 in (2.12), it will remain nonzero at all t > 0.

It is assumed that system (2.10) for hydrodynamic substitution (2.8) has the exact stationary
solutions

u = u0(r, ν), ρ1 = ρ01(r, ν), ϕ = ϕ0(r) (2.13)

which satisfy the following stationary equations

u0
∂u0

∂r
= −dϕ

0

dr
,
∂

∂r

(
ρ01u

0
)

= 0 (2.14)

d

dr

(
r2
dϕ0

dr

)
= 16π2

(∫ ∞
0

ρ01(r, ν)dν − r2ng
)
.

It is supposed also that gas-dynamic system (2.11) for the second hydrodynamic substitution
(2.9) has such exact stationary solutions:

u = u0(ν), ρ2 = ρ02(ν), ϕ = ϕ0 ≡ const. (2.15)

Here, the functions u0 and ρ02 satisfy the following stationary equation∫ ∞
0

ρ02(ν)u02 dν = ng. (2.16)

Solutions (2.13), (2.14) and (2.15), (2.16) are equivalent to exact stationary solutions (2.3), (2.4)
to kinetic system (2.1).

Next, these exact stationary solutions will be studied for linear stability with regard to
spherically symmetrical perturbations.

To achieve such purpose, system (2.10) for hydrodynamic substitution (2.8) is linearized near
exact stationary solutions (2.13), (2.14) and is written as

∂u′

∂t
+ u′

∂u0

∂r
+ u0

∂u′

∂r
= −∂ϕ

′

∂r

∂ρ′1
∂t

+
∂

∂r

(
ρ01u
′ + u0ρ′1

)
= 0,

∂

∂r

(
r2
∂ϕ′

∂r

)
= 16π2

∫ ∞
0

ρ′1 dν (2.17)
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u′(r, ν, 0) = u′0(r, ν), ρ′1(r, ν, 0) = ρ′10(r, ν).

In addition, gas-dynamic system (2.11) for hydrodynamic substitution (2.9) is linearized in the
vicinity of exact stationary solutions (2.15), (2.16) and is written as

∂u′

∂t
+ u0

∂u′

∂r
= −∂ϕ

′

∂r
,
∂ρ′2
∂t

+ ρ02
∂u′

∂r
+ u0

∂ρ′2
∂r

= 0

∂

∂r

(
r2
∂ϕ′

∂r

)
= 16π2r2

∫ ∞
0

u0
(
ρ′2u

0 + 2u′ρ02
)
dν (2.18)

u′(r, ν, 0) = u′0(r, ν), ρ′2(r, ν, 0) = ρ′20(r, ν)

where u′ = u′(r, ν, t), ρ′1 = ρ′1(r, ν, t), and ρ′2 = ρ′2(r, ν, t) are the small spherically symmetrical
perturbations; u′0(r, ν), ρ′10(r, ν), and ρ′20(r, ν) denote the initial data for perturbed velocity u′,
two density ρ′1 and ρ′2 fields of gas particles respectively.

Let I1 ≡ E2+C1 (see (2.12)). The first variation δI1 of integral I1 is calculated; the condition
is written out

u02

2
+ ϕ0 = −dΦ1

dκ1

(
κ01
)

under which the functional δI1 is equal to zero (κ01 is the stationary reverse vorticity). The
second variation of integral I1 is calculated as

δ2I1 = 8π2
∫∫ ∞

0

[
2u0δuδρ1 + ρ01(δu)2 +

d2Φ1

dκ21
(κ01)(δκ1)

2∂u
0

∂ν

]
dνdr−

−1

2

∫ ∞
0

(
r
∂δϕ

∂r

)2

dr. (2.19)

Here, δu, δρ1, and δκ1 denote the first variations of velocity, density, and reverse vorticity fields
of gas particles respectively.

If the first variations δu, δρ1, δκ1 and δϕ are replaced by small spherically symmetrical
perturbations u′, ρ′1, κ

′
1 and ϕ′, then second variation δ2I1 (2.19) of functional I1 will turn into

a linear analogue E3 of full energy integral E2 (2.12)

E3 = 8π2
∫∫ ∞

0

[
2u0u′ρ′1 + ρ01u

′2 +
d2Φ1

dκ21
(κ01)κ

′2
1

∂u0

∂ν

]
dνdr − 1

2

∫ ∞
0

(
r
∂ϕ′

∂r

)2

dr (2.20)

which will be preserved on the evolutionary solutions to linearized system (2.17) for hydrody-
namic substitution (2.8).

Unfortunately, according to the Sylvester criterion [12], there is no condition for exact sta-
tionary solutions (2.13), (2.14) to gas-dynamic system (2.10) so that the functional E3 is not
positive or negative with respect to small spherically symmetrical perturbations u′, ρ′1, and ϕ′

(2.17). Therefore, the Antonov criterion [5,6] for linear stability is formal: it holds only for some
incomplete unclosed subclass of these small perturbations.

3 A priori exponential lower estimates

We will prove the absolute instability for exact stationary solutions (2.13), (2.14) and (2.15),
(2.16) with regard to such subclasses of the corresponding small spherically symmetrical pertur-
bations (2.17) and (2.18), which are determined by the relations

∂ξ

∂t
= u′ + ξ

∂u0

∂r
− u0∂ξ

∂r
(3.1)



82 Yu. Gubarev and S. Sun

and

∂ξ

∂t
= u′ − u0∂ξ

∂r
(3.2)

where ξ = ξ(r, ν, t) is the field of Lagrangian displacements [13].
The linearized systems of gas-dynamic equations (2.17) and (2.18) can be rewritten in terms

of the fields of Lagrangian displacements ξ (3.1) and (3.2) as follows

∂2ξ

∂t2
+ 2u0

∂2ξ

∂r∂t
+ u0

∂

∂r

(
u0
∂ξ

∂r

)
− ξ ∂

∂r

(
u0
∂u0

∂r

)
= −∂ϕ

′

∂r

ρ′1 = − ∂

∂r

(
ξρ01
)
,
∂

∂r

(
r2
∂ϕ′

∂r

)
= −16π2

∫ ∞
0

∂

∂r

(
ξρ01
)
dν (3.3)

ξ(r, ν, 0) = ξ0(r, ν),
∂ξ

∂t
(r, ν, 0) =

(
∂ξ

∂t

)
0

(r, ν)

and
∂2ξ

∂t2
+ 2u0

∂2ξ

∂r∂t
+ u02

∂2ξ

∂r2
= −∂ϕ

′

∂r

ρ′2 = −ρ02
∂ξ

∂r
,
∂

∂r

(
r2
∂ϕ′

∂r

)
= 16π2r2

∫ ∞
0

u0ρ02

(
2
∂ξ

∂t
+ u0

∂ξ

∂r

)
dν (3.4)

ξ(r, ν, 0) = ξ0(r, ν),
∂ξ

∂t
(r, ν, 0) =

(
∂ξ

∂t

)
0

(r, ν).

For small spherically symmetrical perturbations (3.1), (3.3) with the asymptotics∫ ∞
0

[(
u0κ01u

′2) ∣∣∣∣
ν→∞

−
(
u0κ01u

′2) ∣∣∣∣
ν→0

]
dr → 0 (3.5)

that imposes upper limit on allowable values of the kinetic energy for individual gas particles,
linear analog E3 (2.20) of full energy integral E2 (2.12) takes the form

E3 = −8π2
∫∫ ∞

0
u0
dκ01
dν

(
∂ξ

∂t
− ξ ∂u

0

∂r
+ u0

∂ξ

∂r

)2

dνdr − 1

2

∫ ∞
0

(
r
∂ϕ′

∂r

)2

dr. (3.6)

It follows that the inequality

u0
dκ01
dν
≥ 0 (3.7)

is the condition of definiteness in sign for functional E3 (3.6) with respect to small spherically
symmetrical perturbations (3.1), (3.3), and (3.5). This inequality is equivalent to condition (2.7).
So, analogously, inequality (3.7) does not hold in principle: the functions κ01 are decreasing in
accordance with the boundary conditions for system of gas-dynamic type equations (2.10) in
vortex shallow water and the Boussinesq approximations. Therefore, there is no stationary
reverse vorticities κ01 satisfying condition (3.7).

This means again that the integral E3 can be non-negative for decreasing functions κ01 only
due to the Antonov criterion [5, 6] when the first positive term of functional E3 (3.6) is no less
than the second negative one. However, the Antonov criterion for linear stability is formal: it is
valid only for some incomplete unclosed subclass of small spherically symmetrical perturbations
(3.1), (3.3).
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Let us introduce the integrals M [8, 9, 11] – the Lyapunov functionals in our case:

M ≡ 16π2
∫∫ ∞

0
ρ0i ξ

2dνdr; i = 1, 2. (3.8)

The first and second derivatives of the integrals M with regard to time t are calculated along
the corresponding evolutionary solutions to systems (3.1), (3.3) and (3.2), (3.4) (i = 1, 2):

dM

dt
= 32π2

∫∫ ∞
0

ρ0i ξ
∂ξ

∂t
dνdr,

d2M

dt2
= 32π2

∫∫ ∞
0

ρ0i

[(
∂ξ

∂t

)2

+ ξ
∂2ξ

∂t2

]
dνdr. (3.9)

By the relations (3.1)–(3.4), (3.8), (3.9), the following differential inequalities for the functionals
M [9] hold:

d2M

dt2
− 2λ

dM

dt
+ 2

(
λ2 + αi

)
M ≥ 0; i = 1, 2. (3.10)

Here, λ denotes a constant, α1 and α2 are the known positive constant values.
Notice that the relation (3.10) is deduced for system of equations (3.2), (3.4) when the

solutions ξ and ϕ′ to this system are determined as ξ = g(t)h(r, ν) and ϕ′ = g(t)ϕ0(r), where
g(t), h(r, ν), and ϕ0(r) denote some functions of their arguments. It is important that such
definition of the solutions ξ and ϕ′ to system of equations (3.2), (3.4) is not accompanied by a
loss of generality in any way.

If λ > 0, then, according to the Chaplygin method [8, 9, 11], the inequalities (3.10) supple-
mented by the countable set of conditions [9]

M

(
πn

2
√
λ2 + 2αi

)
> 0;n = 0, 1, 2, . . . ; i = 1, 2

dM

dt

(
πn

2
√
λ2 + 2αi

)
≥ 2

(
λ+

αi
λ

)
M

(
πn

2
√
λ2 + 2αi

)

M

(
πn

2
√
λ2 + 2αi

)
≡M(0) exp

(
λπn

2
√
λ2 + 2αi

)
(3.11)

dM

dt

(
πn

2
√
λ2 + 2αi

)
≡ dM

dt
(0) exp

(
λπn

2
√
λ2 + 2αi

)
M(0) > 0,

dM

dt
(0) ≥ 2

(
λ+

αi
λ

)
M(0)

imply the a priori exponential lower estimates [9]

M(t) ≥ C0i exp(λt); i = 1, 2. (3.12)

Here, C0i are the known positive constants.
Since we have obtained lower estimates (3.12) without any restrictions on corresponding

exact stationary solutions (2.13), (2.14) and (2.15), (2.16) to systems (2.10) and (2.11), these
solutions are absolutely unstable with respect to small spherically symmetrical perturbations
(3.1), (3.3), (3.11) and (3.2), (3.4), (3.11) [8,9,11]. Then the Antonov criterion [5,6] really plays
the role of necessary and sufficient condition for linear stability of exact stationary solutions
(2.3), (2.4) to kinetic system (2.1) with regard to small spherically symmetrical perturbations
(2.17) and (2.18) from incomplete unclosed subclasses (3.1), (3.3), (3.11) and (3.2), (3.4), (3.11).

Note that the first two inequalities of (3.11) are the sufficient conditions for practical (at finite
time intervals) instability of exact stationary solutions (2.13), (2.14) and (2.15), (2.16) to gas-
dynamic systems (2.10) and (2.11) with respect to small spherically symmetrical perturbations
(3.1), (3.3), (3.11) and (3.2), (3.4), (3.11). The same inequalities play the role of criterion
for linear practical instability of exact stationary solutions (2.13), (2.14) and (2.15), (2.16) to
systems (2.10) and (2.11) with regard to small spherically symmetrical perturbations (3.1), (3.3),
(3.11) and (3.2), (3.4), (3.11) presented in the form of normal modes [8, 9].



84 Yu. Gubarev and S. Sun

4 Example for the gas-dynamic system (2.11)

For exact stationary solutions (2.15) that satisfy equation (2.16), according to the Euler-Poisson
integral [14], we can find

u0(ν) = ν, ρ02(ν) =
4ng√
π
e−ν

2
, ϕ0 ≡ const. (4.1)

We need ξ →∞ when t→∞. So, let

ξ(r, ν, t) = h(r, ν)eβt (β ≡ const > 0), ϕ′(t) = ϕ1e
βt (ϕ1 ≡ const) (4.2)

where we take the function g(t) (see comments after inequality (3.10)) as exp(βt). Substituting
(4.1), (4.2) into system (3.4), we get

h(r, ν) =

(
−4ν

β
+

r

ν2

)
exp

(
−β r

ν
− ν2

)
.

Here, ξ(r, ν, t) is redefined by continuity as follows(
ξ|t=0, r=0

)∣∣∣
ν=0

= 0.

Thus, an analytical example of small spherically symmetrical perturbations (3.2), (3.4) in
the form of normal modes (4.2) that are superimposed on decreasing stationary density field
ρ02 (2.15), (2.16), (4.1), but, meanwhile, are growing with time is constructed. The example
describes a change in the distribution function due to the spread of gas particles from the vicinity
of reference point (the sphere center) to infinity, so that the value of distribution function remains
unchanged at the point of reference, decreases in the vicinity of reference point, and increases
at infinity. Also, this example is a counterexample to the Antonov criterion [5,6]. The reason is
that small spherically symmetrical perturbations (3.2), (3.4), (4.2) fall out of the applicability
scope for this criterion.

5 Conclusion

The results of this work are consistent with the classic Earnshaw instability theorem. This
theorem states that any equilibrium configuration of point electric charges is unstable if, besides
its own Coulomb forces of attraction and repulsion, no other forces act on them.

The field of application for the Earnshaw theorem is extended from electrostatics to kinetics,
that is, to the boundless collisionless self-gravitating Vlasov-Poisson gas of neutral particles.

Constructiveness is inherent in the sufficient conditions (see the first two inequalities of
(3.11)) for linear practical instability established in this work, which enables them to be used as
a testing and control mechanism for physical experiments and numerical calculations.

Since the differential inequality (3.10) is a very common relation, we expect it to be applied
to other mathematical models of liquids, gases, and plasma.

Finally, the algorithm for constructing of the growing over time Lyapunov functional will be
helpful in linear problems of both theoretical (at semi-infinite time intervals) and practical (at
finite time intervals) stability of either gas-dynamic or kinetic type.
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