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GEOMETRIC APPROACH TO THE DESIGN
OF LUNAR-GRAVITY-ASSISTED LOW-ENERGY

EARTH-MOON TRANSFERS

Anastasia Tselousova∗, Sergey Trofimov†, Maksim Shirobokov‡,
and Denis Perepukhov§¶

Based on the previously obtained database of planar ballistic lunar transfer tra-
jectories in the bicircular four-body problem (BR4BP) model, we apply several
conventional analytical tools for the design of high-energy gravity-assist maneu-
vers in order to map the required (i.e., corresponding to a certain ballistic transfer)
conditions on the boundary of the region of prevalence (an analog of the sphere
of influence concept in the BR4BP) to the parking orbit departure parameters pro-
viding an intermediate lunar flyby to achieve such conditions. Obtained analytical
estimates enable avoiding dependence on a specific near-Earth parking orbit in
the early stages of mission design and represent the departure parameters corre-
sponding to lunar-gravity-assisted ballistic transfer trajectories within the frame-
work of the patched conic approximation model. These parameters are subse-
quently refined when adapting a trajectory to more complex models of motion by
the multiple-shooting procedure.

INTRODUCTION

In recent years, much attention has been paid to the exploration of the Moon and circumlunar
space. In particular, all the world’s major space agencies are jointly involved in the development
of a habitable lunar orbital station called the Lunar Orbital Platform-Gateway (LOP-G).1 In this
context, the issue of searching for fuel-efficient transfers to transport materials to circumlunar orbits
has become a topic of increasing attention. One of the most attractive transportation options are
low-energy trajectories. It is a class of efficient transfer trajectories characterized by the property of
ballistic capture when the spacecraft’s Keplerian energy with respect to the Moon becomes negative
from initially positive values without an additional impulse. Ballistic capture is temporary and is
also referred to as weak. Compared to traditional high-energy transfers with the injection and final
orbit insertion impulsive maneuvers, low-energy trajectories provide considerable fuel savings and
larger launch windows, although the time of flight is significantly increased. Charles Conley was
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the first to rigorously prove the existence of low-energy transfers in the frame of circular restricted
three-body problem model and revealed the effect of ballistic capture.2 The term ballistic capture
was, however, coined later by Edward Belbruno.3 Subsequently, various numerical methods of low-
energy Earth-Moon trajectories design have been developed based on the dynamical properties of
the three- and four-body systems.4–11

Low-energy Earth-Moon transfer trajectories that benefit from the Sun’s gravitational perturba-
tion are called weak stability boundary (WSB) trajectories or ballistic lunar transfers (BLT). When
designed with the proper geometry, a WSB trajectory first departs far away from the Earth-Moon
system, where the solar gravity pulls its perigee from the altitude of the initial near-Earth parking or-
bit up to the radius of the Moon’s orbit, and then, a spacecraft heads toward the Moon to be captured
ballistically. Such transfers were used in the Hiten12 (JAXA, 1991) and GRAIL13 (NASA, 2011)
missions. According to a recent study, WSB trajectories have the maximum fuel efficiency among
two-impulse transfers in the Earth-Moon-Sun planar bicircular four-boby problem (BR4BP) model,
especially with lunar flybys included.14 A lunar flyby in that case allows reducing the launch energy
C3 and the transfer delta-v cost, along with assisting in the change of the inclination if required.15

Existing methods of designing lunar-gravity-assisted WSB transfers rely on numerical optimiza-
tion techniques without intentionally targeting a certain flyby.14–18 At the same time, there are
several conventional analytical tools for the high-energy gravity assist analysis in the framework of
the patched conics model that could potentially be applied to the design of an intermediate high-
energy lunar flyby along low-energy trajectories. First, the B-plane can be mentioned. It is a plane
passing through the gravity-assist body center perpendicular to the asymptote of the incoming hy-
perbolic trajectory.19 The coordinates on the plane uniquely determine the lunar flyby parameters
and the subsequent trajectory around the central body; therefore, the B-plane points can be targeted
on the preliminary stages of the gravity assist design.20 A useful tool for the design of near-coplanar
multiple gravity-assist trajectories is the Tisserand graph. This graph represents the v∞ contours on
the plane of the orbital parameters (e.g., the orbital period vs. the periapse distance) with respect
to the central body.21 Each point on the plot corresponds to an orbit around the central body, and
that orbit can be modified by flying by some celestial body orbiting the central one while moving
along the corresponding v∞ contour.21 When designing non-coplanar gravity-assist maneuvers, the
v∞ globe is especially valuable. It is a sphere formed by all the v∞ vectors of the same magnitude.
Thus, the points on the surface of the v∞ globe correspond to all possible incoming/outgoing hy-
perbolas with a given v∞ magnitude.22 To target specific geocentric parameters (the orbital period,
the inclination, etc.) after a lunar flyby, it is convenient to draw contour lines on the v∞ globe or its
map projection.23

This work is aimed at incorporating similar analytical tools in the design and analysis of low-
energy trajectories with lunar flybys in the planar BR4BP model. Using the analytical formulas from
the patched conic approximation model and the previously obtained dataset of planar lunar-gravity-
assisted WSB transfers in the BR4BP model of motion,24 the authors analytically estimate the
departure parameters that ensure a lunar flyby providing a desired WSB transfer. For this, we map
the characteristics of the desired WSB trajectories on the boundary of the region of prevalence25 (an
analog of the sphere of influence concept in the BR4BP model) and target them. These parameters
are subsequently refined when adapting the trajectory to more complex models of motion by the
multiple-shooting procedure.

The structure of the paper is as follows. First, we outline the models of motion used. Then the
brief description of the numerical algorithm for the design of planar WSB transfers in the BR4BP
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model is presented. After that, we analyze the properties of lunar-gravity-assisted WSB transfers
obtained in the planar BR4BP and give a description of the targeting algorithm. As an example, we
consider WSB transfers from the 200 km circular near-Earth parking orbit to the near-Moon orbits
of the same size as the near-rectilinear resonant halo orbit 9:2, the main candidate for the location
of the LOP-G. Then the accuracy of the presented targeting algorithm is examined.

DYNAMICAL MODELS

Patched Conic Approximation

The patched conic approximation is one of the simplest analytical models when designing tra-
jectories in a multiple-body environment. Within the framework of this model, at each moment of
time, the spacecraft moves under the central gravitational field of only one primary, which corre-
sponds to the classical two-body problem model. In this case, to define the dominant gravitating
body, the concept of the sphere of influence (SOI)26 is used. For the Earth-Moon system, it is a
closed surface that limits the volume around the Moon, where the ratio of gravitational perturbation
from the Earth to the Moon’s gravity (if the Moon is considered as the central body) is less than the
ratio of gravitational perturbation from the Moon to the Earth’s gravity (here the Earth is defined as
the central body). The boundary of the volume is approximated by a sphere with a radius

rSOI = RM (mM/mE)2/5 ≈ 66194 km.

We denote by mE and mM the masses of the Earth and the Moon, respectively; RM is the mean
radius of the Moon. Thus, according to the patched conic approximation, inside the SOI, the Moon
is considered as the primary in the two-body problem model, whereas outside the SOI, the Earth
plays this role. When crossing the boundary of the SOI, the primary changes and the spacecraft’s
relative positions and velocities are recalculated.

Circular Restricted Three-body Problem

The circular restricted three-body problem (CR3BP) model is dynamically more complex than
the patched conic approximation. The CR3BP assumes that at any time the spacecraft moves simul-
taneously in the central gravitational fields of two primaries, the Earth and the Moon in our case.
The spacecraft is considered to be of negligible mass; the Earth and the Moon revolve in circular
orbits around their center of mass C. It is convenient to write the equations of motion of the CR3BP
in the standard rotating coordinate frame (see Figure 1, a) with the origin atC, the x-axis connecting
the masses mE and mM towards mM , the z-axis directed along the angular velocity of the orbital
motion of mM around mE , and the y-axis completing the right-handed system.

It is also convenient to use a dimensionless system of units in which 1) masses are normalized
so that mE = 1 − µ and mM = µ where µ = mM/(mE + mM ), 2) the angular velocity of the
rotating frame is normalized to one, and 3) the distance between mE and mM is normalized to one.
Thus, the dimensionless universal gravitational constant G is also identically equal to one. For the
Earth-Moon system, the corresponding units of distance, velocity and time are the following:

DU = 384402 km,

VU = 1.024544182251307 km/s,

TU = 4.342513772754916 days,

(1)
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a) b)

Figure 1. Rotating reference frames in the Earth-Moon circular restricted three-body
problem (a) and the Earth-Moon-Sun planar bicircular four-body problem (b).

and the mass parameter µ = 0.012150584460351. In this system of units, mE and mM are at fixed
positions at [−µ, 0, 0] and [1 − µ, 0, 0] along the x-axis, respectively. The equations of motion are
expressed in the nondimensional form as

ẍ− 2ẏ =
∂Ω3

∂x
, ÿ + 2ẋ =

∂Ω3

∂y
, z̈ =

∂Ω3

∂z
, (2)

where

Ω3(x, y, z) =
x2 + y2

2
+

1− µ
r1

+
µ

r2
+
µ(1− µ)

2

is the effective potential. The distances to mE and mM are given by the equalities

r21 = (x+ µ)2 + y2 + z2,

r22 = (x− 1 + µ)2 + y2 + z2.

The system (2) has an integral of motion, the Jacobi integral,

J(x, y, z, ẋ, ẏ, ż) = 2Ω3(x, y, z)− (ẋ2 + ẏ2 + ż2),

and, thus, all the solutions of Eq. (2) at any time lie on the manifold J (JEM ) = {[x, y, z, ẋ, ẏ, ż] ∈
R6|J(x, y, z, ẋ, ẏ, ż) = JEM} for some energy level JEM . A planar motion can be obtained by
setting z ≡ 0.

Bicircular Restricted Four-Body Problem

The bicircular restricted four-body problem incorporates the perturbation of the third primary.
When constructing Earth-Moon WSB transfers, the gravitational perturbations from the Sun play a
key role. Thus, in this context, it is reasonable to consider the Earth-Moon-Sun BR4BP. The Sun
is assumed to revolve in a circular orbit of radius L � 1 around the Earth-Moon center of mass in
the same plane (see Figure 1, b). The direction to the Sun in the CR3BP rotating reference frame is
determined by θ — the phase of the Sun.
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In order to obtain the BR4BP equations of motion in the nondimentional form from the CR3BP
ones, it is enough to replace the effective potential by

Ω4(x, y, z) = Ω3(x, y, z) + Ω4b(x, y, z, t) = Ω3(x, y, z) +
GmS

r3(t)
− GmS

L2
(x cos θ(t) + y sin θ(t)),

where r3(t) =
√

(x− L cos θ(t))2 + (y − L sin θ(t))2 + z2 is the distance from the spacecraft to
the Sun, GmS = 3.289005596145305 × 105 is the dimensionless gravitational parameter of the
Sun, and the phase of the Sun linearly grows over time:

θ(t) = θ0 + wS(t− t0). (3)

For L = 389.17, which corresponds to 1 astronomical unit, the orbital velocity of the Sun is deter-

mined as follows: wS =

√
1 +mS

L3
− 1 ≈ −0.9253.

A planar case of BR4BP is obtained when z ≡ 0.

Earth-Moon Region of Prevalence

By analogy with the patched conic approximation, it is possible to specify a volume around the
Earth-Moon system in the framework of the BR4BP model where the Sun’s gravitational perturba-
tion can be neglected and the Earth-Moon CR3BP is accurate to model the spacecraft’s motion. In a
planar case, for this purpose, the concept of the region of prevalence (RoP) can be used.25 Accord-
ing to Castelli, the boundary of the Earth-Moon RoP consists of points in the configuration space
where the error in the right-hand side of the spacecraft’s equations of motion would have the same
magnitude independently of what body–the Moon or the Sun–we neglect in the Earth-Moon-Sun
system.

Although the boundary of the RoP depends on the value of the phase of the Sun θ, it can be
mean-square approximated by an ellipse in the Earth-Moon rotating reference frame (see Figure 2).
In Figure 2 the boundaries of the Earth-Moon RoP, depending on θ, are shown by colored closed
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Figure 2. Earth-Moon RoP boundaries for different Sun phase angles and the orange
elliptical boundary of the mean-square averaged RoP.
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curves, while the averaged elliptic boundary is illustrated by orange line. In the dimensionless
system of units specified in Eq. (1), the elliptic boundary satisfies the equation

(x+ c)2

a2
+
y2

b2
= 1, (4)

where a = 1.44, b = 1.05, c = −0.25. Further, the region of prevalence is understood as the area
with the boundary given by Eq. (4).

DESIGN OF PLANAR WSB TRANSFERS

In this paper, planar WSB trajectories are constructed in two stages. At the first stage, a ballistic
lunar trajectory is divided into the three legs: the arriving and departing, lying inside the RoP and
calculated in the planar Earth-Moon circular restricted three-body problem, and the exterior leg,
designed in the Earth-Moon-Sun planar BR4BP. To obtain a whole trajectory, it is enough to patch
the segments on the boundary of the RoP. As will be shown below, upon elegantly parametrizing
the departing and arriving legs, the process of designing such a planar WSB trajectory is reduced
to solving a nonlinear equation. At the second stage, the trajectories obtained at the first stage are
adapted to the planar BR4BP by the multiple shooting technique.

Earth Collision Trajectories

To avoid dependence on a specific near-Earth orbit where a trans-lunar injection impulse (TLI) is
applied, collision trajectories that pass through the center of the Earth can be used at the preliminary
stages of WSB trajectory design.24 Subsequently, such a trajectory can be numerically adapted
so that it starts on a desired near-Earth orbit. Furthermore, after the Levi-Chivita regularization24

(u, v) ↔ (x, y) and transition to a new independent variable — fictitious time τ , the spacecraft’s
velocity (u′, v′) at the center of the Earth for a given JEM can be parametrized with one angle
ϕ ∈ [0;π]:

u′ =

√
1− µ

2
cosϕ, v′ =

√
1− µ

2
sinϕ,

where u′ = du/dτ , v′ = dv/dτ . The angle ϕ varies within such limits because between the planes
(u, v) and (x, y) is a one-to-two correspondence. Thus, any collision trajectory depends on only
two parameters: an ejection angle ϕ and a Jacobi constant JEM .

Targeting of arriving legs with specified parameters

What concerns the arriving leg, it is also possible to avoid the strict dependence on a specific
near-Moon final orbit. As it is well known, for a planar trajectory to be transit (i.e., passing inside
the lunar Hill sphere), it should belong to the interior of the stable manifold tube of the L2 planar
Lyapunov orbit with the corresponding Jacobi integral level.

In the (x, ẋ) plane, a bunch of the manifold trajectories, when propagated backward in time,
forms a closed curve on the boundary of the RoP, the L2 lunar gateway (orange line in Figure 3).
We denote a set of inner points of the gateway by P . For any (xP , ẋP ) ∈ P , the corresponding
coordinate yP may be found from the condition of belonging to the boundary of the RoP, while
ẏP is specified by the energy relation J(xP , yP , ẋP , ẏP ) = JEM . The propagation of the initial
condition xP = [xP , yP , ẋP , ẏP ] in the CR3BP will give a trajectory passing inside the Hill sphere
of the Moon. Each specific xP corresponds to an arriving trajectory with a certain value of the
perilune distance rp and the argument of perilune ωp, which allows targeting a desired trajectory.
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Figure 3. L2 lunar gateway for JEM = 3.06 (orange closed curve) and the perilune
altitude contour line corresponding to the perilune altitude value 1403 km. The color
of contour line points indicates the argument of perilune (the angle between the Earth-
Moon line and the direction to the perilune of a transit trajectory). A certain point of
the gateway is marked by xP .

Figure 3 shows the gradient-colored contour line rp = 3141 km on the L2 gateway corresponding
to JEM = 3.06. Such values of the Jacobi integral and perilune distance coincide with the values
for the near-rectilinear resonant halo orbit 9:2. The color of the contour line points indicates the
ωp value of the approaching trajectory. Consequently, to obtain the arriving leg with specified rp
and ωp values, the corresponding point of P should be targeted when the exterior leg of a WSB
trajectory is designed. However, not all points are equally convenient for WSB trajectories to pass
through.

It is worth noting that the L2 lunar gateway collapses to a point when JEM ≈ 3.18, there-
fore getting the entire WSB trajectory to lunar orbits with JEM > 3.18 may become problem-
atic, and such transfers require additional LOI impulse. For almost Keplerian orbits around the
Moon, JEM ≈ 3 + Wz − 2E, where Wz is the z-component of the orbital momentum of a space-
craft, and E is the Keplerian energy in the spacecraft-Moon two-body system. In the planar case,
this expression can be rewritten in terms of the distance to the perilune rp and perilune veloc-
ity vp as JEM = 3 + rpvp − v2p + 2µ/rp. Thus, the required lunar orbit insertion (LOI) impulse
at the perilune of the arriving trajectory can be estimated as a solution of the quadratic equation
∆JEM ≈ ∆v2 + 2v∆v. However, in order to avoid additional problems arising when JEM is too
close to the gateway closing threshold, it is preferable to target points of the gateways with the
values of the Jacobi integral JEM in the range 3.05 . . . 3.15.

Designing planar WSB transfers

Let us briefly describe the methodology by which the planar WSB trajectories are calculated. At
the first stage, we obtain a whole trajectory by patching its legs on the boundary of the RoP. For a
given point xP = [xP , yP , ẋP , ẏP ] of the gateway P with a certain value of the Jacobi integral (see
Fig. 3), the phase of the Sun θP specifies a certain exterior leg outside the RoP when propagating xP
in the BR4BP backward in time. If, for some value of θP , the corresponding exterior leg intersect the
boundary of the RoP at some point xBP = xBP (xP , θP ), we try to retrieve an Earth collision trajectory
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of the required value of the Jacobi integral JBEM = JEM (xBP ) which provides a zero residue with
xBP by varying the departure trajectory angle ϕ. Let xBE = xBE(JBEM , ϕ) be used to denote the
spacecraft state vector obtained by the intersection of the collision trajectory corresponding to JBEM
and ϕ with the RoP. Thus, for a given xP and some θP , the WSB trajectory design is reduced to
solving the following nonlinear equation:

F (ϕ) = |xBE(ϕ)− xBP | = 0. (5)

This equation can be easily solved numerically.24 Different values of θP determine different solu-
tions of the equation. These solutions represent WSB trajectories passing through a fixed point xP ,
and xP defines an arriving leg with certain values of rp and ωp. If we iterate all points xP of the
gateway P with some value of the Jacobi integral, then a set of planar WSB trajectories correspond-
ing to different values of rp and ωp will be obtained. To get arriving trajectories with other values
of the Jacobi integral, it is necessary to work with the relevant gateways.

Trajectories calculated at the first stage can then be easily adapted to the trajectories in the planar
BR4BP departing from a specific near-Earth parking orbit by the multiple shooting method (for
details of the shooting procedure see the Appendix section). This is the second stage of WSB
trajectory construction. It is worth noting that in order to get a larger number of WSB trajectories,
a small discrepancy (1e-4 in this work) can be allowed in Eq. (5). This discrepancy will then
be smoothed by the multiple shooting procedure. The above-described two-stage algorithm was
readily implemented using MATLAB’s fsolve and fmincon functions. The convergence of the
numerical procedures was rapid and straightforward. As a result, a database of planar WSB transfers
to different orbits around the Moon was obtained in the BR4BP model. Trajectories from this
database represent a good initial guess for the subsequent adaptation to the real three-dimensional
WSB transfers.24 It is also worth noting that the database contains, among others, transfers with
lunar flybys.

Further, we consider planar WSB transfers from the circular near-Earth parking orbit with an
altitude of 200 km to the near-Moon orbits with JEM = 3.06 and the perilune altitude value of
1403 km. For the analysis of planar WSB trajectories, it is convenient to introduce a new rotating
reference frame Cx′y′ with the x-axis directed along the line connecting the Sun and the barycenter
of the Earth-Moon system (see Figure 4). For all WSB trajectories, its apogees are located in the
second or fourth quadrant of the Cx′y′ system. Under this condition, the gravitational perturbation
from the Sun provides ∆JEM > 0 along along the exterior leg, which is a necessary condition
for subsequent ballistic capture. This well-known result of the WSB theory, previously numer-
ically discovered by many researchers, has been analytically explained in the framework of the
BR4BP model.24 Figure 5 shows an example of WSB trajectory obtained at the first stage and the
corresponding trajectory after the multiple shooting procedure in the Cx′y′ reference frame. The
departure and arriving legs of the initial-guess trajectory are drawn in light blue and green, respec-
tively. The exterior leg has a purple hue. The yellow curve represents the circular orbit of the Moon.
The resulting WSB trajectory in the BR4BP model is represented in blue. The arriving near-Moon
orbit for both trajectories corresponds to the point xP indicated by black ’∗’ in Figure 3. The time
of flight is equal to 115 days. For the Earth collision orbit, C3 = −1.52 km2/s2 and ϕ = 34◦. The
initial phase of the Sun θ0 is 56◦. For the adapted trajectory, the TLI impulse ∆VTLI = 3.173 km/s,
with almost zero correction and insertion impulses (∆VTCM + ∆VLOI = 4.22 m/s).
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Figure 4. The Earth-Moon rotating reference frame Cxy and the Sun-barycenter
rotating reference frameCx′y′. In the Sun-barycenter coordinate system, the space-
craft radius vector is described by the polar angle α.

Planar WSB Trajectories with a Lunar Flyby

The lunar-gravity-assisted WSB transfers are grouped by the exit point from the Earth-Moon
RoP. It appeared that it is convenient to display their characteristics on the boundary of RoP on
the (y, γ) plane, where γ is the angle between the spacecraft’s radius vector and velocity. Figure 6
describes the set of 453 trajectories including an intermediate lunar flyby after the departure from
the circular near-Earth parking orbit with an altitude of 200 km and arriving to the near-Moon orbits
with JEM = 3.06 and the perilune altitude of 1403 km. The figure shows that such transfers are
grouped in a rather narrow range from −320 to −240 thousand km in y and from 55◦ to 58.5◦ in γ.

As for the characteristics of the presented lunar-gravity-assisted trajectories, the launch energy
C3 varies from−1.2 to−2 km2/s2 (see Figure 6, a), which corresponds to the TLI impulses ∆VTLI
applied in the 200 km circular near-Earth orbit in the range from 3.15 to 3.19 km/s (Figure 6,
b). The time of flight for the obtained trajectories varies from 80 to 220 days (see Figure 6, c).
In addition, Figure 6, d confirms the fulfillment of the property of the second/fourth quadrant of
the Cx′y′ reference frame. The RoP exit points are grouped near two values of the angle α ≈
≈ 130◦ (the second quadrant) and α ≈ 310◦ (the fourth quadrant). Using such colored plots, it is
possible to display many other properties of the trajectories. Subsequently, when designing lunar-
gravity-assisted transfers with desired characteristics, the corresponding points of the plane (y, γ)
are convenient to be targeted.

TARGETING WSB TRAJECTORIES WITH A LUNAR FLYBY

Targeting Algorithm

It would be desirable to analytically target a certain WSB trajectory with a lunar flyby. It means
that knowing exiting parameters on the boundary of the RoP, we need to determine the parameters
of a TLI impulse that results in the desired trajectory with a gravity-assist maneuver near the Moon.
To tackle this problem, we use the patched conic approximation. Further, we imply that all the
parameters are expressed in the dimensionless system of units introduced by Eq. (1).
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Figure 5. An initial-guess planar WSB trajectory consisting of the depart-
ing (light blue), exterior (purple) and arriving (green) legs, and the corre-
sponding adapted trajectory departing from the 200 km near-Earth parking or-
bit in the BR4BP model. The time of flight is 115 days. The TLI impulse
∆VTLI = 3.173 km/s, the sum of trajectory correction and lunar orbit insertion im-
pulses ∆VTCM + ∆VLOI = 4.22 m/s.
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Figure 6. Lunar-gravity-assisted planar WSB transfers parameters when crossing the
boundary of the Earth-Moon RoP. The angle between the spacecraft’s radius vector
and velocity counted clockwise is denoted by γ. The color bars describe different
characteristics of WSB trajectories. The α angles are given at the moment of crossing
the RoP boundary and grouped around two values in the second and fourth quadrant.
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Let us suppose that a spacecraft is orbiting the Earth in a circular orbit with a given altitude, and
at some time moment t0 a departure TLI impulse ∆VTLI directed along the spacecraft’s velocity
is applied. Characteristics of the TLI impulse fully determine the post-impulse geocentric orbit
parameters. The TLI impulse epoch t0 relates to the spacecraft’s argument of perigee ψπ with
respect to some axis of the geocentric inertial frame (see Figure 7), while the magnitude of the
impulse ∆VTLI determines the focal parameter p and the eccentricity e. The position of the Moon
is assumed to be defined by angle φ called the lunar phase; at the moment when the impulse is
applied, the lunar phase is denoted as φ0. The spacecraft’s true anomaly is denoted by ν.

Figure 7. Interior leg of WSB trajectory in the Earth-centered inertial reference
frame. B-plane is exploited to calculate the flyby characteristics.

First, having all the parameters of the spacecraft’s orbit after the TLI impulse, we can find the
moment tin when the spacecraft enters the lunar SOI. The condition of entering the SOI is

|rsc − rM |2 = r2SOI , (6)

where rsc is the radius vector from the Earth to the spacecraft, rM is the radius vector from the
Earth to the Moon. These vectors can be written in terms of the parameters of the spacecraft’s orbit
and the angle φ:

rsc =
p

1 + e cos ν
[cos (ν + ψπ), sin (ν + ψπ)],

rM = [cosφ, sinφ].
(7)

We assume that we know the lunar phase at tin and denote it as φin. We also denote the true
anomaly at this moment as νin. Then we substitute Eq. (7) into the entering condition given by
Eq. (6). Upon defining ψ = ψπ − φin and κ = 1 + e cos νin and assuming νin ∈ [0; π], (i.e.,
sin νin =

√
1− cos2 νin), we obtain

κ2δ2 − 2κ
δ1
e

(κ − 1) cosψ + 1 = −2κδ1

√
1− (κ − 1)2

e2
sinψ, (8)

where
δ1 =

1

p
,

δ2 =
1− r2SOI

p2
.
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When squared, Eq. (8) is transformed into

a4κ4 + a3κ3 + a2κ2 + a1κ + a0 = 0, (9)

where

a4 = δ22 −
4δ1δ2 cosψ

e
+

4δ21
e2
,

a3 = −8δ21
e2

+
4δ1δ2 cosψ

e
,

a2 = 4δ21

(
1

e2
− sin2 ψ

)
− 4δ1 cosψ

e
+ 2δ2,

a1 =
4δ1 cosψ

e
,

a0 = 1.

Equation (9) can be solved analytically using Ferrari’s method, so we assume that up to four solu-
tions are known. Then these solutions must be checked for satisfying Eq. (8), because Eq. (9) allows
solutions with νin ∈ [π; 2π]. Among the remaining solutions (if they exist), the least νin is chosen.
This procedure provides us with the solution νin(φin) of Eq. (6).

Now it is time to relate φin with φ0. The epoch tin when the spacecraft enters the SOI can be
calculated from Kepler’s equation

tin − t0 =

√
p3

µE(1− e2)3
(Ein − e sinEin) ,

Ein = 2 arctan

√
1− e
1 + e

tan
νin
2
,

(10)

where µE is the Earth’s gravitational parameter, µE = 398600.4356 km3/s2. Knowing the time of
the flight, we can easily find φin:

φin = φ0 + (tin − t0). (11)

Equations (8), (9), (10), (11) together form a nonlinear equation that can be solved iteratively (using
the simple-iteration method) for φin from which νin can be calculated with Eq. (9). Thus we obtain
the true anomaly and the lunar phase at the epoch of entering the SOI.

The next step is the analysis of the spacecraft’s lunar flyby. It can be performed by utilizing the
B-plane.20 From νin and φin, we can obtain rsc and rM using Eq. (7), while the spacecraft’s and
Moon’s velocities vsc, vM are calculated by the formulas

vsc =

√
µE
p

[− sin (ν + ψπ)− e sinψπ, cos (ν + ψπ) + e cosψπ],

vM = [− sinφ, cosφ].

(12)

Having these vectors, we calculate the spacecraft’s position and velocity relative to the Moon at the
epoch of entering the SOI

rin = rsc (νin)− rM (φin) ,

vin = vsc (νin)− vM (φin) ,

12



and the B-vector (see Figure 7)
bin = rin −

vin · rin
|vin|2

vin.

Using vin and bin, it is possible to retrieve the parameters of the spacecraft’s hyperbolic celenocen-
tric orbit

Ch = |bin| |vin| ,

hh = |vin|2 −
2µM
rSOI

,

ph =
C2
h

µM
,

eh =

√
1 + hh

C2
h

µ2M
,

rπ,h =
ph

1 + eh
,

where µM is the gravitational parameter of the Moon, µM = 4902.8001 km3/s2. The selenocentric
distance and speed when the spacecraft leaves the SOI are bound to be equal to respective values at
the moment the spacecraft enters the SOI:

|vout| = |vin| ,
|bout| = |bin| ,

|rout| = |rin| = rSOI .

Thus, to determine the spacecraft’s geocentric orbit after the flyby, we only have to know how vout
and bout are directed and how much time it takes the spacecraft to leave the SOI. To determine the
vectors directions, we calculate the bending angle20 taking into account that the spacecraft’s lunar
flyby actually starts and ends at the SOI boundary, not at the infinity:

δ = δ∞ − 2∆,

where
δ∞ = 2 arcsin

1

1 + rπ,h

(
|vin|2

µM
− 2

rSOI

) ,

∆ = − arccos
1

eh
+ arccos

 1

eh

√√√√√√√e2h −
(

1− ph
rSOI

)2

e2h + 2
ph
rSOI

− 1

 .

Having calculated δ, we can find vout, bout and rout:

vout =

(
cos δ

vin
|vin|

− sin δ
bin
|bin|

)
|vin| ,

bout =

(
cos δ

bin
|bin|

+ sin δ
vin
|vin|

)
|bin| ,

rout = bout +
vout
|vin|

√
r2SOI − |bin|

2.

13



The time the spacecraft spends in the SOI is obtained using Kepler’s equation

th = 2

√
p3h

µM
(
e2h − 1

) (e sinhH ′ −H ′
)
,

H ′ = 2 arctanh

(√
eh − 1

eh + 1
tan

ν ′

2

)
,

ν ′ = arccos

(
1

eh

(
ph
rSOI

− 1

))
.

Hence, we are able to determine the lunar phase at the moment the spacecraft leaves the SOI

φout = φin + th,

tout = tin + th, and the geocentric orbit parameters after the flyby pout, eout, ψπ,out are calculated
as follows:26

rsc,out = rout + rM (φout),

vsc,out = vout + vM (φout).

The last step is the determination of the spacecraft’s exiting point on the RoP boundary, which
is defined by Eq. (4) in the rotating frame. Since in this chapter we use the Earth-centered inertial
frame, we have to rewrite the RoP boundary equation in the following form

(x− xc)2

a2
+
y2

b2
= 1, (13)

where (x, y) are coordinates in the Earth-centered rotating frame and

xc = −c+ µ = 0.25 + µ.

Let us suppose that we know the lunar phase at the moment tend when the spacecraft reaches the
RoP boundary and denote it as φend. For the spacecraft’s true anomaly on the RoP boundary νend,
we further denote cos νend as ρ and assume νend ∈ [0; π], (i.e., sin νend =

√
1− cos2 νend). Sub-

stituting spacecraft’s coordinates obtained from Eq. (7) into Eq. (13) yields(
α1ρ+ α2

√
1− ρ2 + α0 (1 + eoutρ))

)2
a2

+

(
−α2ρ+ α1

√
1− ρ2

)2
b2

=
(1 + eoutρ)2

p2out
, (14)

where
α0 = − xc

pout
,

α1 = cos (ψπ,out − φend),
α2 = sin (−ψπ,out + φend).

Equation (14) can be rewritten as

β2ρ
2 + β1ρ+ β0 = −

√
1− ρ2

(
β′1ρ+ β′0

)
, (15)
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where

β0 =
α2
0 + α2

2

a2
+
α2
1

b2
− 1

p2out
,

β′0 = 2
α0α2

a2
,

β1 = 2
α0 (α1 + eoutα0)

a2
− 2

eout
p2out

,

β′1 = 2α2

(
α1 + eoutα0

a2
− α1

b2

)
,

β2 =
(α1 + eoutα0)

2 − α2
2

a2
+
α2
2 − α2

1

b2
− e2out
p2out

.

Squaring Eq. (15), we get
γ4ρ

4 + γ3ρ
3 + γ2ρ

2 + γ1ρ+ γ0 = 0 (16)

where
γ4 = β22 + β′

2
1,

γ3 = 2
(
β1β2 + β′0β

′
1

)
,

γ2 = β′
2
0 + β21 − β′

2
1 + 2β0β2,

γ1 = 2
(
β0β1 − β′0β′1

)
,

γ0 = β20 − β′
2
0.

Similarly to Eq. (9), we have a fourth-order equation that can be solved using Ferrari’s method. It
provides up to four solutions, and each one should be checked for satisfying Eq. (15) because we
need only the solutions related to the positive sin νend, whereas Eq. (16) allows negative ones. After
that, we obtain from zero to two solutions for cos νend which we convert into values of νend and in
case of two solutions, we choose the one that is the closest to the νout.

Searching for νend, we again assumed that we know φend, but in fact they are mutually dependent.
The time the spacecraft flies to the RoP boundary after leaving the SOI can be calculated by means
of Kepler’s equation

tout−end =

√
p3out

µE(1− e2out)3
(Eend − Eout − e (sinEend − sinEout)) ,

Eout = 2 arctan

√
1− eout
1 + eout

tan
νout

2
,

Eend = 2 arctan

√
1− eout
1 + eout

tan
νend

2
,

(17)

so φend is expressed as
φend = φout + tout−end. (18)

Equations (15), (16), (17), (18) together can be interpreted as nonlinear equation on φend that can be
solved using iterative methods (e.g., the simple-iteration method). When φend and νend are found,
one can straightforwardly calculate rsc and vsc on the RoP boundary by Eq. (7) and Eq. (12). Based
on these vectors and the lunar phase, any other characteristics can be retrieve.

Following the procedure described in this chapter, one can calculate the parameters of exiting the
RoP based on the parameters of the TLI impulse or, vice versa, can get the departure parameters
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for a given point of the RoP boundary. The procedure does not require any numerical integration,
though needs a couple of nonlinear equations need to be solved numerically.

To determine the departure parameters for a given RoP exit point, an inverse problem should be
solved. It can be done using the same analytical tools. However, in our case, it is enough to go
through a set of the spacecraft’s departure parameters ∆VTLI and ψπ in order to generate a grid of
contour lines in the (y, γ) plane that can be used for visual assessment of the departure parameters
for the point desired.

Figure 8 shows the contour lines of the magnitude of the TLI impulse ∆VTLI (a) and the space-
craft’s initial argument of perigee ψπ (b) of the 200 km circular near-Earth parking orbit for the pairs
(y, γ) on the boundary of the RoP. These contour lines were calculated analytically from the patched
conic approximation by varying ∆VTLI from 3.15 km/s to 3.19 km/s and ψπ from 215◦ to 226◦.
The colored points correspond to the lunar-gravity-assisted WSB trajectories previously obtained
in the BR4BP model (see Figure 6, b). As seen from Figure 8, a, the analytical results quite accu-
rately conform to the numerical results obtained in the BR4BP model. Since the pair (∆VTLI , ψπ)
uniquely defines a specific trajectory with a lunar flyby in the patched conic approximation model,
the isolines in Figure 8, a-b, give an estimate of the required departure parameters that ensure the
pairs (y, γ) on the boundary of the RoP that correspond to WSB transfers. In other words, tar-
geting a certain lunar-gravity-assisted WSB transfer is carried out by defining the corresponding
∆VTLI and ψπ. Such analytical estimates make it possible to avoid any numerical optimization at
the preliminary stages of mission design.
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Figure 8. Contour lines of the magnitude of the TLI impulse ∆VTLI (a) and the
spacecraft’s initial argument of perigee ψπ (b) for the case of the 200 km circular
parking orbit analytically calculated from the patched conics model, WSB trajectories
characteristics on the RoP boundary obtained in the BR4BP model are shown by
colored dots.

It should also not be forgotten that in the BR4BP model, the exterior leg of the trajectory strongly
depends on the phase of the Sun at the epoch of crossing the boundary of the RoP. Since within
the framework of the patched conic approximation model the values of ∆VTLI and ψπ at the epoch
t0 uniquely determine the time of flight T from the parking orbit to the RoP boundary, a desired
phase θ0 at the epoch t0 can be simply calculated from a given phase of the Sun on the boundary
of the RoP using Eq. (3). So, in more complex models of motion, the epoch t0 can be selected in
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accordance with θ0.

Targeting Algorithm Validation

The obtained analytical estimates are quite accurate when switching to the planar BR4BP model.
If we take the initial parameters ∆VTLI and ψπ corresponding to a certain point (y1, γ1) from the
patched conic approximation model, determine the required phase of the Sun θ0, and based on these
values, propagate the spacecraft’s equation of motion in the BR4BP model until the intersection with
the RoP, the resulting point on the boundary of the RoP (y2, γ2) will be close enough to (y1, γ1).
As an example, in Figure 8, we mark by the black cross ’x’ a certain point (y1, γ1) and by the rose
’x’ the respective point (y2, γ2).

To get exactly the point (y1, γ1) in the BR4BP model, the initial parameters ∆VTLI and ψπ can
be slightly adjusted by the multiple shooting procedure (the details of the procedure can be found
in Appendix). For the points considered above, as a result of the multiple shooting adaptation, the
initial argument of perigee ψπ has been changed by 0.8◦, the TLI impulse ∆VTLI has been in-
creased by 3.6 m/s, and the additional correction impulse of 9.9 m/s on the boundary of the RoP
was introduced. Figure 9 shows the trajectory integrated in the BR4BP model with initial parame-
ters from the patched conic approximation (red-green dashed line) and the corresponding adjusted
trajectory after applying the multiple shooting algorithm (blue, almost covering the first trajectory)
in the Earth-Moon rotating reference frame. The black crosses are related to the trajectory in the
patched conic approximation model and correspond to the nodes of the multiple shooting method.
For different points of the plane (y, γ), the multiple shooting method converges straightforwardly
and rapidly, providing small corrections in the initial parameters. Therefore, the analytical solution
represents a good initial guess when targeting lunar-gravity-assisted WSB transfers in the planar
BR4BP model. The resulting planar transfers including a lunar flyby can then be used as an initial
guess for the subsequent adaptation to the realistic three-dimentional WSB transfers from a specific
near-Earth parking orbit with nonzero inclination to a desired lunar orbit.24
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-100
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100

200

Figure 9. An example of a trajectory integrated in the BR4BP with initial parameters
from the patched conic approximation (red-green dashed line) and the corresponding
adjusted trajectory after applying the multiple shooting algorithm (blue) in the Earth-
Moon rotating reference frame.
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CONCLUSION

The paper presented a set of analytical formulas that give a good estimate of the departure param-
eters (i.e., the magnitude of the TLI impulse and the point of its application) from the near-Earth
parking orbit providing a lunar flyby for a desired planar WSB transfer. The characteristics of planar
lunar-gravity-assisted WSB trajectories, previously constructed numerically in the BR4BP model,
are projected on the boundary of the RoP and targeted. It appeared that it is convenient to display
the characteristics on the (y, γ) plane, where γ is the angle between the spacecraft’s radius vector
and velocity. The lunar-gravity-assisted WSB transfers are grouped by the RoP exit point, which
narrows the targeting area. Typical values for a set of transfers from the circular near-Earth parking
orbit with an altitude of 200 km to the near-Moon orbits with JEM = 3.06 and the perilune altitude
value of 1403 km vary in a rather narrow range from −320 to −240 thousand km in y and from 55◦

to 58.5◦ in γ.

Using the obtained formulas for the points of the (y, γ) plane, it is possible to visually assess
the corresponding TLI impulses ∆VTLI and angles ψπ defining the initial position of the spacecraft
that provide a lunar-gravity-assisted trajectories ending at the desired points on the RoP boundary
within the framework of the patched conic approximation. These estimates are quite accurate when
switching to the planar BR4BP model. Nonetheless, the parameters can be refined when adapting
the trajectory by the multiple shooting method. For different points of the plane (y, γ) the multiple
shooting method convergence turned out to be straightforward and rapid with subtle corrections
being introduced.
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APPENDIX: MULTIPLE SHOOTING PROCEDURE

Let us consider the adaptation of WSB trajectories obtained in simplified models to the BR4BP
model so that it starts at a given circular near-Earth orbit of radius Rc at t0 and ends at a given point
in the phase space Xf at tf .

First, let us define the optimization variables. It is convenient to set the spacecraft’s position and
velocity in the initial near-Earth parking orbit using a certain angle related to the center of the Earth.
Here we set that the inertial coordinate system associated with the Earth Eξη and the standard
rotating reference frame of the Earth-Moon system centered at the Earth Exy coincide at the initial
epoch t = 0. Let us denote the angle measured from the Eξ-axis and defining the spacecraft’s
position at the epoch t0 by ψπ (see Figure 7). Thus, the spacecraft’s radius vector and velocity in
the inertial reference frame at t0 are determined as follows:

rine0 = Rc[cosψπ, sinψπ],

vine0 = Vc[cos(ψπ + π/2), sin(ψπ + π/2)],

where Vc = µE/Rc is the orbital velocity in a circular orbit with radius Rc. After the impulse is
applied

v
′ine
0 = vine0 (1 + ∆VTLI/v

ine
0 ),
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where vine0 = |vine0 |, ∆VTLI defines the initial trans lunar injection (TLI) impulse. Thus, in the
rotating reference frame Cxy

r′0 = Arine0 + [−µ, 0],

v′0 = Avine0 +

(
0 1
−1 0

)
r′0 − [0, µ],

A =

(
cos t0 sin t0
− sin t0 cost0

)
.

So, the initial phase vector X′0 = [r′0,v
′
0] is determined by the variable ψπ. The phase vectors in

the subsequent nodes of the multiple shooting method Xi = [ri,vi] and the corresponding epochs
ti, i = 1, N are also considered as the variables. The TLI impulse is determined only by its value
∆VTLI . The final lunar orbit insertion impulse we denote by ∆VLOI . In addition, we allow a small
trajectory correction maneuver (TCM) ∆VTCM at the trajectory apogee. Thus, ∆VTLI , ∆VLOI ,
∆VTCM are also the variables of the method.

Now let us define the constraints. Let Xt
0 defines the phase vector obtained by integration of the

BR4BP equations of motion from initial point X′0 on [t0, t1]. Thus, the following expression

Xt
0 −X1 = 0 (19)

represents the first equality constraint. Further, we denote as Xt
i the phase vector obtained by inte-

gration of the BR4BP equations of motion from Xi on the interval [ti, ti+1], i = 1, N − 1. If the
nodeNTCM corresponds to the node of the TCM-impulse applying, therefore, on [tNTCM

, tNTCM+1]
the BR4BP equations of motion should be integrated from X′NTCM

= [rNTCM
,vNTCM

+∆VTCM ].
So, we obtain N − 1 following equality constraints

Xt
i −Xi+1 = 0, i = 1, N − 1. (20)

In addition, two more constraints are met at the last point

X′N −Xf = 0,

tN − tf = 0,
(21)

where X′N = [rN ,vN + ∆VLOI ].

What concerns the inequality constraints, they are as follows:

t0 − t1 ≤ 0,

ti − t1+1 ≤ 0, i = 1, N − 1,

∆VTLI − V1 ≤ 0,

(22)

where V1 = 3.2 km/s.

Thus, we have a nonlinear programming problem with the equality constraints (19), (20) and
(21), and the inequality constraints (22). As a functional, we consider

∆V 2
TCM + ∆V 2

LOI → min.
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