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Abstract 

The paper considers the rigid satellite with a set of flexible elements attached to its body. The flexible motion 

determination along with attitude motion of the main body is estimated in real time using measurements of the star 

tracker and angular velocity sensor only. The damping of the oscillations and attitude stabilization in the orbital 

reference frame is performed by reaction wheels installed on the main body. The dependence of the flexible motion 

determination accuracy on the number of estimated vibration modes is studied. A set of control algorithms based on 

LQR are proposed in the paper. Its convergence rate and final stabilization accuracy taking into account inaccuracy 

in motion estimation and unknown disturbances are studied. The problem of the isolated vibration modes that have 

small influence on the main body motion is discussed. 

 

 

1. Introduction 

Satellites with flexible elements are used to solve 

a variety of applied problems. Such satellites includes 

telecommunication satellites with large-sized antennas, 

deep-space research satellites with solar sails, and 

satellites with robotic manipulators and external rods. 

During orbital and angular satellite maneuvering the 

vibrations inevitably excite due to the large dimensions 

of flexible elements, which are often made of light 

materials. These vibrations can not only degrade the 

accuracy of attitude of the entire satellites, but even lead 

to instability of the required motion [1,2]. The 

installation of special damping actuators is desirable for 

damping low-frequency oscillations in the flexible 

elements. Usually piezoelectric devices installed on the 

non-rigid elements are used for this task. However, the 

case when the satellite is controlled using only the 

ADCS located on the main satellite body is of practical 

interest [3]. 

The attitude control problem of satellite with 

flexible elements is usually solved using standard 

approaches (for example, proportional-differential (PD) 

or proportional-integral-differential controllers, linear-

quadratic regulator (LQR), robust control, etc.), but 

taking into account the features of dynamic spacecraft 

models with flexible elements. These features can be 

taken into account either in the synthesis of the control 

algorithm, or in estimation of the stabilization accuracy, 

but, as a rule, both options are considered. One of the 

most common approaches to the synthesis of the attitude 

stabilization algorithm is not to take into account the 

flexibility of the structure and form a control law based 

on the dynamics of a solid body. Such an approach is 
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considered, for example, in [4], where a linear PD 

controller with a gyroscopic term is proposed. In [5] a 

PID controller is used. In [6] stability issues are 

considered and it is shown that if the system is stable as 

a solid body, then the presence of flexibility cannot 

make it unstable. In [7] control is based on a linear-

quadratic controller. The motion of the satellite with a 

122-meter antenna in a geostationary orbit in the 

vicinity of the position when the antenna is directed to 

nadir is considered. In [8] attitude control is carried out 

using an algorithm based on the sliding mode, and 

vibration damping is carried out using piezoelectric 

actuators. The work [9] is devoted to the synthesis of 

robust control, which is implemented using reaction 

wheels. Each of these approaches can be applied both to 

controlling only the attitude of the main body, and in 

conjunction with actuators located directly on flexible 

elements. As a rule, external disturbances are not 

included in the control loop, and the considered control 

algorithms are sufficiently rude with respect to external 

disturbances. In [10,11] an approach is developed to the 

analysis of the quality of the stabilization system work 

in the presence of disturbances. In [12] the influence of 

external disturbances on the stabilization accuracy of a 

space shuttle with an antenna extended on a long rod is 

studied. 

The current work primarily solves the problem of 

the state vector determination of a spacecraft with 

flexible elements. It is necessary to determine the 

current attitude and angular velocity of the satellite body 

and vector of deviations of flexible elements and its 

derivatives to use it for calculation of the control. The 

problem of state vector estimation in real time is solved 

using extended Kalman filter. Star tracker and angular 

velocity sensors installed on the main satellite body are 

used for this task. Satellite with flexible elements is 

controlled by reaction wheels. So, attitude determination 

and control system of the satellite main rigid body is 

used for the whole flexible system stabilization in the 

orbital reference frame only. Developed control 

algorithm is based on a linear-quadratic controller and 

its modification - reduced LQR. 

 

 

2. Satellite with solar panel and antenna motion 

equations 

Consider a satellite consisting of a solid body and 

two flexible elements – a solar panel attached to the 

body with a one axis hinge, and an antenna has fixed 

connection (Fig. 1). 

 

 
Fig. 1. Scheme of satelllite with flexible elements 

 

In Fig. 1 
pir , 

air  are radius-vectors of i-th point of 

panel and antenna relative to the body-fixed reference 

frame with origins indicated in Fig.1; 
iu  is deviation of 

the i-th points from equilibrium positions caused by 

flexible motion. 

The motion equations are derived using approach 

described in [13–15]. Equations for absolute angular 

velocity ω , amplitudes of antenna and panel 
aq , 

pq  

are as follows: 

s s a a p p

a a a

p p p

   
         
   

     
       

ω ω J ω T N f N f

S q f N

q f N

. (1) 

Here matrix S  is definitely-positive symmetric, which 

depends on system parameters and phase variables [15], 

sT  is the sum of the external torques acting on the 

satellite relative to the center of mass of rigid body of 

satellites (including control torque), 
sJ  is the inertia 

tensor, values 
aN , 

pN , 
aN , 

pN  are nonlinearly 

dependent of system parameters and phase variables 

terms, 
af , 

pf , 
af , 

pf  are determined by the forces 

acting on the satellite. 

These equations are supplemented by kinematic 

relations for the quaternion 
0[ ]  λ : 

 

 

0
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    (2) 

This equations does not include the equation for the 

variable that defines the angular position of the panel, 

since it is assumed that the rotation of this element is set 

independently. The described nonlinear model is used 

for modeling. The control is based on the model 

linearized in the vicinity of the required position of the 

model: 

 x Ax Bu .     (3) 

Here 
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Two sources of disturbances are considered: the 

gravitational torque and a constant torque of magnitude 

8∙10-4 N∙m, which can appears due to the operation of 

the low-thrust propulsion and the torque of solar 

pressure forces. 

 

3. Control algorithms 

The control algorithms are based on the linear-

quadratic control. They provide the asymptotic stability 

of the required motions and at the same time, they can 

limit the control by the proper selection of the 

algorithms parameters. The control is derived using a 

linearized unperturbed model. Note that the problem of 

satellite with flexible elements attitude after preliminary 

angular velocity damping is considered. The 

gravitational torque in the control calculation is not 

taken into account, since the motion of the satellite in a 

geostationary orbit is considered where it is rather small 

with respect to the control effort. 

Linear-quadratic regulator minimizes the following 

cost function 

 
0

T T dt



 J x Qx u Ru . 

The algorithm allows to minimize a state vector 

deviation from required one x  and control actuation 

value u  as well. Positive-definite matrices Q  and R  

are the parameters of the algorithm. The control is 

calculated as follows: 
1 T u R B Px ,    (4) 

where P  is the solution of the algebraic Ricсatti 

equation 
1 0T Т   A P PA PBR B P Q . 

Control algorithm (4) provides asymptotical stability 

of the zero point taking into account flexible variables 

and it allows to limit the control values by choosing 

matrix R . Main disadvantage of this control approach 

is demanding of the linear approximation, i.e. the 

algorithm effectively works with linear system only. 

However, in the case of the system under consideration, 

this is acceptable assumption, since it is assumed that 

the initial angular velocity is small and dynamic 

equations (1) are actually linear. 

Considered algorithm required the knowledge of 

current flexible amplitudes. This information usually is 

difficult to obtain. That is why a modification of LQR is 

considered. Equations (1) can be written in the 

following form [16,17]: 

,

,

q

qq q

    

 

y A y A z B u

z A z B u
   (5) 

where variable y is set by satellite body attitude motion, 

z  characterizes flexible motion. The functional of 

system is written in the following form: 

 
0

T T T

z dt



   y
J y Q y z Q z u Ru  

The equations (5) allows to construct the control that 

minimizes the flexible modes excitement. To do that 

consider the following: 

0 qq q  z A z B u . 

When this condition is satisfied, the equations take 

the form 

 1

q qq q  


  y A y B A A B u , 

and a term is added to the functional that is responsible 

for minimizing the effect on the vibration modes (the 

second term in the second part): 

   1 1

0

T
T T

qq q z qq q dt



    y
J y Q y u R A B Q A B u . 

Let us designate 

 1 1
T

x qq q z qq q

  R R A B Q A B ,  

1

x q qq q 


 B B A A B ,  

then the reduced LQR is obtained: 
1 Т

х x

 u R B Py , 

where P  is the Riccatti equiation solution: 
1

0
T Т

x x x y 


   A P PA PB R B P Q  

With constant matrices of the system A  and 

control 
xB , it is enough to solve the Riccati equation 

once. If the matrices change quasi-stationary, as in the 

case under consideration, then it is possible to have 

several matrix values P  for different panel rotation 

angles. 
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4. State vector estimation 

To estimate the state vector in real time, a star 

tracker and angular velocity sensor are used. The 

processing of its measurements in real time is carried 

out using the extended Kalman filter, which gives the 

best estimate of the state vector by the mean square 

criterion [18,19]. The extended Kalman filter can be 

used for nonlinear dynamic system and the 

measurement model. The measurement frequency is 4 

Hz in this paper. Measurement errors are modeled as an 

unbiased normally distributed random variable with 

standard deviations for the star tracker angular velocity 

sensor 52 10
  and 41 10

  deg / s, 

respectively. The dynamical model is described by (1) 

and (2). And the measurement model in the case is as 

follows: 

.k k k z Hx r  

where 
T

T T   z λ ω  is the measurement vector, H  is 

the measurement matrix of the following form:  

3x3 3xn 3x3 3xn

3x3 3xn 3x3 3xn

0 0 0

0 0 0

 
  
 

E
H

E
. 

It is assumed that perturbations are present in the 

motion model, i.e. the motion model is not accurate. Let 

disturbances act both on the satellite body and the 

flexible elements. As a perturbation model a random 

normally distributed unbiased value with the following 

standard deviations is used: 
8 2 4

1 10 deg/ s , 1 10 ,q  
     

where 
  is the mean square deviation of disturbances 

acting on the satellite body, 
q  is mean square 

deviation acting on flexible elements.  

Note that when conducting a numerical study, the 

number of estimated vibration modes is inevitably 

limited. For objective reasons the dynamics of the 

system taking into account a large number of modes 

cannot be implemented in on-board satellite computer. 

Therefore only senior modes are considered that have 

the greatest influence on the motion of the satellite body 

and have, as a rule, a low natural damping decrement. 

The influence of higher-frequency modes on the motion 

of a spacecraft with a flexible elements can be 

considered as a perturbation, but this approach will 

increase the errors in the estimates of the state vector. 

On the other hand, a decrease in the dimension of the 

estimated state vector will reduce the computational 

cost for the satellite on-board computer. Moreover, it 

turns out that the addition of extra measurements for the 

flexible satellite state vector estimation, for example, 

measurements from camera abserving the antenna, does 

not necessarily have a positive effect on the overall 

determination accuracy. This is due to the fact that 

flexible motion observations are correspond to the 

complete model with an “infinite” number of flexible 

modes. In the determination algorithm, however, only a 

few low frequency modes are taken into account. As a 

result, the algorithm attempts to attribute the observed 

flexible elements deviations to the modes in state vector 

only, which increases the error. 

 

5. Numerical study 

Joint modeling of control algorithms and state 

determination is carried out for the LQR-based control 

algorithm. For reduced LQR, measurements of the star 

sensor and angular velocity sensor are used directly. 

The conditions for modeling are set as follows: 

 0.02 0.01 0.03ω deg/s, 

 0.5 0.5 0.5 0.5 Λ  

x1 0.1
aa nq  e ,  

x1 0.1
pp nq  e , 

where 
an  and 

pn  are number of flexible modes in 

antenna and panel. The numerical simulation is carried 

out with 0.125 s time step. 

 

5.1. LQR-based control algorithm 

As it was mentioned earlier, the control law (4) 

requires the determination of both the attitude motion of 

satellite body and the flexible motion of the vibration 

modes. To solve this problem, an extended Kalman 

filter is used. In this case, a closed-loop control loop is 

simulated in the case when the number of modes in the 

system model is equal to 7an  , 2pn  , whereas 

when evaluated in the Kalman filter, it is implied 

5an  , 1pn  . That is, the case of partial knowledge of 

the vibration modes is considered, and for a panel that is 

more rigid, only one main vibration mode is taken into 

account. The simulation results are shown in Fig. 2-5.  

 
Fig. 2. Attitude quaternion of the satellite body, star 

tracker measurements (upper right) and estimation of 

EKF (lower right) 
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Fig. 2 shows three components of the vector part of 

the attitude quaternion of satellite body. In the upper 

right part for the component 
3q  the accuracy of the final 

stabilization in more detail is presented (about 10-5 in 

the vector part of the quaternion, i.e. 4 arc seconds) and 

the accuracy of the readings of the star sensor. In the 

lower right part of the figure an estimation error of 

quaternion using the Kalman filter is shown. It can be 

seen that its use can reduce the error by about ten times. 

However, the readings of the star sensor are accurate 

enough to be used directly without processing, which is 

considered when application of the reduced LQR. The 

stabilization accuracy achieves 3∙10-5 s-1 in angular 

velocity. In Fig.3 also presented angular velocity sensor 

measurements in right upper part and EKF estimations 

in lower right part. 

 

 

 
Fig. 3. Angular velocity of the satellite body, angular 

velocity sensor measurements (upper right) and 

estimation of EKF (lower right) 

 

Fig. 4 and 5 show that the full damping of the natural 

vibrations of the antenna and panel takes a long time, 

but in general the attitude control system copes with the 

problem. It is interesting to note that the determination 

of the deviations of the panel and antenna, depicted for 

example in detail in Fig. 4 and 5 in upper right part for 

one of the modes, has a high accuracy. 

An important result of the algorithm implementation 

is the control torque limitation. The control algorithm is 

turned on after reaching a predetermined error value of 

Kalman filter estimations only, and the control 

coefficients are selected using an iterative procedure 

depending on the initial conditions. In this case, only the 

matrix R  changes: when the allowable control is 

exceeded, its diagonal elements increase by 10 times. 

Due to this procedure, a restriction on the value of the 

control of reation wheels of 0.4 N∙m is achieved. 

 

Fig. 4. Deviations of antenna modes and estimation of 

EKF for one of the mode (upper right) 

 

Fig. 5. Deviations of panel modes and estimation of 

EKF for one of the mode (upper right) 

 

5.2. Reduced LQR-based control algorithm 

 

According to the results in Fig. 2 the measurements 

of the star sensor and angular velocity sensor is derectly 

used for reduced LQR. The simulation results are 

presented in Fig. 6-8 for an satellite having 7 modes of 

antenna vibrations and 2 modes of panel vibrations (the 

satellite has information about 5 and 1 mode only, 

respectively). 

 



70th International Astronautical Congress (IAC), Washington, USA, 21-25 October 2019.  

Copyright ©2019 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-19-C1.5.9                           Page 6 of 7 

 
Fig. 6. Attitude quaternion of the satellite body 

 

Comparison of Fig. 2 and Fig. 6 shows that in 

comparison with to the conventional LQR stabilization 

time is significantly increased. The accuracy of the final 

stabilization is also high and is 2.5∙10-4 for one of the 

components. Note that stabilization accuracy could be 

improved. The error is caused primarily by a constant 

disturbing torque, in this case acting along one axis (it is 

along this axis that the attitude error is greater). 

Moreover, in the simulation, the value of the elements 

of the weight matrix changed, reflecting the penalty for 

the attitude error. At the beginning, their value is 

reduced to provide a limit on the magnitude of the 

control torque, then, after ensuring stabilization of the 

satellite and flexible modes, the contribution of the 

attitude error to the functional increases to achieve the 

desired attitude with high accuracy. 

 

Fig. 7. Deviations of antenna modes  

 

Fig. 8. Deviations of antenna modes 

Comparison Fig. 4 and 7 shows that damping the 

oscillations of the antenna is slower when using reduced 

LQR. The same applies to Fig. 5 and 8, showing 

damping panel vibrations. In general, the stabilization 

problem is solved by reduced LQR, but its performance 

is worse. An important advantage of this approach is a 

significant reduction in computational complexity 

compared to the conventional LQR, since, firstly, the 

dimension of the phase vector is smaller and, as a result, 

the matrix in the Riccati equation has a size of 6x6 

(instead of 18x18), and, secondly, there is no need to 

use estimation algorithm, which significantly reduces 

computational costs. Comparative calculations show 

that the function that implements the extended Kalman 

filter works for about 300 seconds when modeling on an 

interval of 2000 seconds, while LQR works for about 30 

seconds. In the case of reduced LQR, the control 

function works for about 20 seconds, and measurements 

are submitted directly. Thus, LQR with a extended 

Kalman filter requires 16.5 times more computational 

time than reduced LQR. 

 

Conclusions  

The paper considers algorithms for the state vector 

determination and the attitude motion control of a 

satellite with two flexible elements – a rotating solar 

panel and a large-sized antenna. It is shown that 

stabilization of the satellite with damping of its own 

vibrations of flexible structures using sensors and 

actuators installed only on the satellite body is possible. 

In this case, a zero decrement of damping of the natural 

vibrations of the structure is assumed. The control 

algorithm that does not require state estimation and does 

not excite vibrations is proposed. The latter, providing 

less accuracy and more attitude stabilization time, 

significantly reduces the computational cost for the on-

board computer. 
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