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Abstract 

A formation flying control algorithm using the Lorentz-force for Low-Earth Orbits to achieve a trajectory with 

required shape and size is proposed in the paper. The Lorentz force is produced as the result of interaction between 

the Earth's magnetic field and an electrically charged spacecraft. Achieving the required trajectories represents a 

challenge since the control is the variation of the satellite’s charge value. A Lyapunov-based control function is 

developed for elimination of the initial relative drift after launch; it aims at reaching a required relative trajectory 

with pre-defined shape and size. The Lyapunov-based control algorithm is constructed to correct different parameters 

of the relative trajectory at different relative positions. The required amplitudes for close relative trajectories for in-

plane and out-of-plane motion as well as the relative drift and shift of elliptical orbits are controllable using this 

Lorentz force algorithm. Due to the absence of full controllability, the algorithm is incapable to correct all the 

parameters of the relative trajectory. The proposed control allows to converge to the trajectory with required shape 

and size, though with some oscillating errors in the vicinity of the required trajectory parameters. Numerical 

simulation of the relative motion is used to study performance of the control algorithm for three cases – one 

controlled satellite, two controlled satellite and five satellites. It implements the model of the geomagnetic field as a 

co-rotating tilted dipole. The convergence time and final trajectory accuracy are evaluated for different algorithms 

and satellite parameters. 
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1. Introduction 

A satellite flying formation is defined as a set of 

satellites moving in close relative trajectories that can 

control their relative position and/or relative velocities, 

keeping close distances and solving a common problem. 

A charged particle, whose moving with a determined 

velocity relative to the Earth’s magnetic field, 

accelerates in a direction perpendicular to its velocity 

vector and the local magnetic field vector due to the 

Lorentz force [1]. The application of this force for a 

spacecraft formation flying control is a relatively new 

idea and, therefore a rather unstudied one. The first 

works about the Lorentz force effects on charged bodies 

were conducted by Schaffer and Burns who developed a 

model explaining the influence of the plasma 

environment on the dynamics of charged dust particles 

orbiting Jupiter and Saturn [2]. These studies proved 

that the orbital motion and dynamics are greatly 

influenced by the Lorentz force and that this magnetic 

force along with gravity effects, lunar perturbations, and 

solar pressure are responsible for the existence of gaps 

in either Jupiter’s and Saturn’s ring resonances. These 

works represented a valuable contribution to validating 

models concerning the charging of particles and the 

demonstration that Lorentz force effects lead to non-

Keplerian orbits. 

Following the work developed by Schaffer and 

Burns, Peck conducted a series of studies proposing the 

implementation of the Lorentz force for the 

development of a propellantless satellite technology. In 

paper [1] Peck explores the development of Lorentz 

Augmented Orbit (LAO) system which could be 

capable of using this effect for orbital control. It also 

provides a wide range of LAO systems that would be 

solutions for Earth escaping, drag compensation, 

formation flying control, inclination control, nodal 

precision control, new sun synchronous and even non-

Keplerian polar orbits. This Lorentz force effect is 

experienced individually by any charged spacecraft and, 

in contrast to Coulomb force, it in not resultant from the 

interaction between two charged spacecraft. Instead, this 

force is caused by a magnetic interaction between the 
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charged spacecraft’s relative velocity and the 

environments magnetic field. Both the direction and 

magnitude of the Lorentz force are a function of the 

satellite’s orbital motion (presenting different values for 

different orbital positions and therefore being sensible 

to the orbits geometry), being its direction always 

perpendicular to the spacecraft’s velocity and the local 

magnetic field vector. Peck [1] also presents a possible 

design for LAO system configurations. Although LAO 

system configurations does not involve the use of 

electrodynamic tethers, the operation physics of both 

devices are similar. For a LAO spacecraft, the body acts 

as a point charge which moves with a velocity of 

thousands of meters per second relatively to the planet 

magnetic field. The moving charge represents the 

current similar to the one acting in electrodynamic 

tethers [3]. 

LAO equipped spacecraft formations are not 

designed to control their motion via attractive or 

repulsive forces, in contrast to the systems described in 

[4] and [5] papers. In the paper [5] the authors examine 

the possibilities the Electromagnetic Formation Flying 

systems (EMFF) for nearby satellites inspection 

possibilities. These inspections would be performed by 

a group of three satellites, each one capable of 

controlling both their attitude and relative position, 

individually, inside the formation by driving a current 

through a set of three magnetic coils. Thus, the 

formation motion control is performed by this magnetic 

dipole creation enabling the relative state control of 

each formation element. This magnetic interaction 

offers increased control, guidance, and navigation 

capabilities. Another study that focused on the replacing 

of large fuel based systems by embracing a formation 

flying scheme is [4]. This study gives an alternative 

technology for NASA’s Terrestrial Planet Finder (TPF) 

mission, based on the application of a multiple 

spacecraft with electromagnetic control capabilities. 

Focusing on the elimination of secondary effects 

associated with propellant based systems, such as fuel 

depletion, optical contamination, or plume impingement, 

the authors develop an optimized electromagnetic 

system capable of replacing the more traditional fuel-

based control options. The application of 

electromagnetic forces, such as the Lorentz force, 

enables systems like TPF to control the relative 

translational motion and attitude, as well as the inertial 

rotation of the formation. As the authors concluded, 

EMFF system concepts represent the most attractive 

options for this type of mission, especially when long 

mission lifetimes are considered (in theory, the 

proposed EMFF system is able to operate indefinitely, 

or at least until the component failure). A characteristic 

that when allied with the propellantless possibilities 

reinforces the viability of EMFF mission concepts. 

Another major aspect to account when developing a 

LAO system, namely during the simulation of the 

system operation is the Earth’s tilted magnetic dipole 

feature. This Earth magnetic model is widely used in 

numerous studies involving the implementation of 

Lorentz control systems, including the study [6]. This 

paper goal is to examine the application of the Lorentz 

force as the mean orbital maneuvering control of a 

charged spacecraft, but also to demonstrate the 

utilization of such electromagnetic forces for the 

construction and reconfiguration of formation flying 

configurations. By studying and comparing the 

formation flying control considering a tilted and a 

nontilted dipole model, the authors conclude that 

without considering the tilted dipole feature it is not 

possible to use the Lorentz force as a mean for the 

formation motion control. Due to the geometric 

interaction between magnetic field and velocity vectors, 

the dipole’s rotation axis inclination feature, even if 

small, allows the control of the satellites relative motion 

in contrast to a situation where this feature is 

nonexistent. Thus, as proved by the simulation results in 

[6], the adoption of a tilted dipole model is a crucial step 

to obtain reliable and adequate results when simulating 

LAO systems. 

The Lorentz electromagnetic force has been widely 

studied for several applications, not only considering the 

formation flying control but also a set of satellite control 

problems, as in the case of [7] where the authors 

propose a Lorentz based control scheme for the attitude 

control of a spacecraft in LEO. In this paper, the authors 

goal is the development of a pitch and roll direction 

torques electromagnetic controller that could replace the 

traditional attitude control systems. However, the 

authors were forced to consider a elliptical orbit as a 

way of introducing a varying relative motion between 

the satellite and the Earth’s magnetosphere, once a 

nontilted dipole model was considered during the 

simulations [7]. Another example of a LAO controlled 

spacecraft development is the paper [8] case, presenting 

the development of a new propellantless orbital control 

system. By executing two different time varying studies, 

considering one day averaged and single orbit averaged 

approaches, the authors realise that after a 24 hour 

period a corrector must be applied to counter both J2 

and Lorentz influence on three of the six classical orbit 

elements. To perform these studies, a new model that 

bounds a Lorentz augmented orbit with a J2invariant 

perturbations models is successfully developed and 

simulated [8]. The orbital transfer case and the orbital 

maneuvering for single satellites as well as for satellite 

formations is also studied in [9], [10] and [6]. While 

opting for the development of a hybrid system (a 

Lorentz acceleration system allied with a thruster 

generated system) and a nonlinear dynamical model 

scheme for the maneuver control [6], the authors 
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proposed new control schemes that proved to be 

effective. The positive results were obtained not only 

for elliptical orbits cases but also for alternative Lorentz 

augmented relative orbital situations. This control 

scheme adaptive profile is also considered in the [10] 

study case, where the developed algorithm for a 

formation control situation is successfully applied for an 

orbital transfer. 

The purpose of the paper is to develop Lypunov-

based control algorithm using Lorenz force only in 

order to achieve the required trajectory of the defined 

size and shape. The phase angles of the in-plane and 

out-of-plane motion remained uncontrolled. The 

structure of the rest of the paper is as follows. In Section 

2 a problem statement is formulated, the motion 

equations are presented. In Section 3 the control 

algorithm is derived and its impelemtation using Lorenz 

force is described. In Section 4 the proposed algorithm 

is applied for a set of problems for formation flying 

consisting of two satellites and 5 satellites. In the last 

Section the results of the work are summarized. 

 

2. Problem Statement 

 

The problem statement of this work is as follows. 

Several satellites equipped with charging capable 

devices are considered to be in LEO. The Earth 

magnetic field is modelled as the tilted dipole model 

previously described in Chapter 3. The satellites are 

considered to be point masses, whose attitude motion is 

not considered throughout the work. Due to the 

influence of the Debye shielding in LEO orbits, 

intersatellite and Earth satellite electrostatic interaction 

is neglected. For simulation of controlled motion, the 

second harmonic of the geopotential J2 is taken into 

account as the only environmental perturbation. Once 

the satellites are considered to be point masses equipped 

with charging capable devices, there is no full 

controllability of the translational relative motion. Thus, 

the objectives of the control algorithm are to eliminate 

the formation relative drift, to achieve the required 

value for the relative shift as well as out-of-plane and 

in-plane relative trajectory amplitudes. The phase angles 

for the in-plane and out- of-plane relative motion remain 

uncontrolled. To achieve this goal, a Lyapunov based 

control algorithm is developed.  

It is also necessary to study the performance of the 

developed algorithm depending on a large variety of 

factors, such as charging capacity maximum value, 

orbital height, and the variation of the initial conditions. 

Through Monte Carlo simulations method is used to 

evaluate the influence of these parameters on the 

convergence time or the accuracy of the control 

algorithm. 

 

 

2.1 Motion equations 

 

The relative motion of two arbitrary satellites in 

formation can be described by the linear approximation 

equations named after the Hill-Clohessy-Wiltshire 

(HCW) [11]. Taking the Hill reference frame as in, 

Fig.1, the HCW model offers an analytic solution for 

the free motion of two or more satellites in an orbital 

system with a origin moving along the circular orbit in 

the central gravitational field. HCW equations offer a 

linear approximation for the relative orbital motion, 

equations that otherwise would be too complex for the 

analytical solution. However, this model can only be 

used in situations where the intersatellite distance is 

much smaller than the reference orbital point radius 

[10]. Several assumptions are applied while solving 

these sets of equations, to simplify the derivation 

processes, hence affecting the accuracy of the results. 

 
Fig. 1. LVLH reference frame 

 

The Hill-Clohessy-Wiltshire equations are utilized to 

describe the relative motion of two arbitrarily chosen 

satellites within the swarm [12], in a leader-follower 

system expressed in the rotating Local-Vertical-Local-

Horizontal reference frame (LVLH) designated as 

Oxyz . Its origin is located at a reference point moving 

along a circular orbit with radius 
0r , at an orbital 

angular velocity  . The z-axis points towards the radial 

direction, the y-axis is aligned with orbital momentum 

and the x-axis completes the right-handed orthogonal 

frame. These linearized ordinary differential equations 

of free motion can be solved analytically. A complete 

solution is the sum of the solution to the homogeneous 

equation, representing the effect of initial conditions, 

and a particular solution representing the effects of the 

applied forces, where the electromagnetic control force 

is considered. The equations are valid for small relative 

distances, therefore the relative distance between the 

leader and follower must be several orders of magnitude 

smaller than the orbital dimensions. 
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Let ( , , )i i i ix y zr  and ( , , )j j j jx y zr  be the 

vectors of the i-th and j-th satellites in the LVLH 

reference frame, , 1,..., , 1,..., ,i j i N j N    where N  

is the number of the satellites in the swarm. Then the 

components of the relative position vector 

( , , )ij j i ij ij ijx y z  r r r . 

Consider the controlled motion equations of the 

swarm, and assume that each i-th satellite is equipped 

with a motion control system able to produce the 

acceleration 
iu . The relative motion of two i-th and j-th 

satellites in the LVLH reference frame are as follows: 

 

2

2

2 ,

,

2 3 ,

x

ij ij ij

y

ij ij ij

z

ij ij ij ij

x z u

y y u

z x z u





 

 

 

  

 

 

where ( , , )
ij ij ij

ij j i x y zu u u  u u u  is the difference of the 

two control accelerations written in LVLH frame. Its 

solution in case of 0ij u  can be written as follows 

[13]: 
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where the parameters 
1 4 , ,B B    are the motion 

parameters. From the previous solutions it is possible to 

conclude that 
1B  is the parameter describing the instant 

ellipse drift, 
3B the responsible for the ellipse center 

shift, while 
2B  and 

4B  describe the ellipse in-plane and 

out-of-plane motion amplitude, respectively. It can be 

considered as osculating elements changing under the 

control according to the following differential equations  

 
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1
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 

 

 

2.2 Lorenz force 

 

This paper aims for the development of a viable 

propellantless formation flying control, thus, it is 

necessary to describe the technical aspects of the 

electromagnetic force used in this paper. Any charged 

particle, moving with a given velocity relative to a 

magnetic field, accelerates. This acceleration is directed 

along the normal vector of the plane formed by the 

velocity and magnetic field vectors. This effect is called 

the Lorentz force [35], [46]. This force is valid for any 

charge q  with a relative velocity v  in an electric and 

magnetic field, E  and B  respectively, and is given by 

 

 L q F v B . 

 

Charged spacecraft orbiting the Earth are affected by 

this force too, however unlike the Coulomb force 

effects, the Lorentz force is not resultant from the 

interaction between two charged satellites [8], [14]. The 

Lorentz force case, is caused by the interaction between 

the spacecraft’s velocity and the Earth’s rotating 

magnetic field. Note that both direction and magnitude 

of the Lorentz force depend on the satellite orbital 

motion. These Lorentz force vector is depicted in the 

Fig. 2. 

 

 
Fig. 2. Lorenz Force direction 

 

Another important factor is related to the Debye 

shielding whose effects, depending on the orbit’s 

altitude and geometry, may influence the orbiting 

charged satellite. Debye shielding is a concept 

responsible to quantify the response of the environment 

(in this case the plasma surrounding) to electrical fields 

when releasing charged particles. This effect is 

quantified through the Debye length, a measure of the 

electrostatic net effect of a charge carrier, and how far it 

persists. For the LEO the measured Debye length values 

are small (∼= 1cm ) , and the satellite velocities are 

much larger than the magnetic field rotational speed, 

which leads to the overlapping of the Lorentz force over 



72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.  

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-21- C1.1.12                           Page 5 of 15 

other electromagnetic forces such as the Coulomb force. 

Therefore, the existence of Debye shielding results in a 

functioning improvement in Lorentz capable spacecraft. 

The presence of this Debye effect enhances the charge 

storage capacity, hence enhancing LAO systems 

performance when in LEO [3]. With the rise of  orbital 

altitude comes a Debye length increase, which 

combined with the lower spacecraft’s relative velocity 

(to the magnetic field) results in the dominance of the 

Coulomb effects over the Lorentz force. Thus, at LEO, 

satellite formation control systems requiring Coulomb’s 

attractive and repulsive force based devices are not as 

effective as the those based on the Lorentz force.  

When considering LAO capable systems, there are 

some aspects relative to the system’s morphology that 

should be accounted in the design phase. The first one is 

the maximization q/m, once the Lorentz force reveals to 

be proportional to the charge. However, the charge 

losses rate to the environment should be a major 

concern, once this rate will be directly linked to the 

power required for the control system functioning, thus 

the design’s discharge susceptibility shall be closely 

examined. From studies such as [1] and [3], the best 

achieved design for a LAO spacecraft is with a surface 

of a conducting sphere, though this shape preludes 

charge concentrations that would otherwise encourage 

arcing and discharge into the plasma. To counter this 

phenomena, the authors propose the action of designing 

a surrounding conducting sphere, therefore establishing 

a Faraday cage that would completely protect the 

interior components from electrical discharge. 

 

2.3 Dipole Geomagnetic Field Model 

 

For the simulation of the Earth magnetosphere there 

are several models, with different precision values 

accordingly to the observation methods and to the 

correspondent period of measurements. Models like the 

International Geomagnetic Reference Field (IGRF), 

CHAOS7 or LCS1 are frequently used when a high 

degree of precision is needed in cases where the small 

variations of the Earth magnetic filed values could 

signify undesirable manifestations on the mission’s 

objective [15]. 

However, due to their high precision magnetic field 

variation data, these models take a large numerical 

calculation steps, which in the case of this study would 

mean a more complex simulation stage. Therefore, a 

simpler generic model was adopted, the Tilted Dipole 

Geomagnetic Model Fig. 3 [8]. Despite being 

considered a “raw” simulation of the real Earth 

Geosphere, this is rather easy to implement 

computationally and, although providing low precision 

data, it matches the precision needed for this technology 

validation study. 

 
Fig. 3. Earth’s geomagnetic model considered tilted 

dipole geomagnetic model 

 

Considering the propositions stated above, and based 

on the electrodynamics classical theory, the Earth’s 

magnetic model B and its Electric Field model E are 

defined as 

 0

3
ˆ ˆ3 i i

B

r
   
 

B N R R N  

 

where Ri corresponds to the spacecraft position unit 

vector and r its magnitude, B0 is the Earth magnetic 

dipole moment with the value of B0 = 8 × 106(T km3), 

and the ˆN parameter defining the dipole’s direction unit 

vector, which is not coincident with the Earth’s rotation 

axis, and expressed as 

 

ˆ
sin cos

ˆ ˆ sin sin

ˆ cos

x
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z

N
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 
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
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    
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with γ = 10.26◦ as the angle measured between the 

magnetic and geocentric north pole, and 
0G et    , 

where 
0G  is the Greenwich’s longitude and 

e  = 

4.1667 × 10−3(◦/s) is the Earth’s angular rotation rate. 

 

2. Control Algorithm 

 

The proposed control algorithm aim is to control and 

maintain a satellite formation after the orbital 

deployment. The direct Lyapunov method is applied for 

the development of the control algorithm. This method 

provides the stability of a body’s controlled motion [16]. 

Building the Lyapunov functions for a given automatic 

control system enables the estimation of the time and 

quality variation of the control. This method begins by 

defining an attraction region and, consequently, 

develops a state for the initial values. By giving a 

prevision of the area of the initial disturbance (which, 

over time, is not exceeded), this method provides a 

solution for the overcorrection problem [16]. 
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The purpose of the control algorithm is to achieve 

the required 
iB , i = 1, 2, 3, 4 parameters, the following 

parameters deviations are considered  

2 2 2

3 3 3

4 4 4

,

,

,

des

des

des

B B B

B B B

B B B

  

  

  

 

where the relative orbit ellipse is defined by the Bides 

elements, with the des index defining the desired 

parameters, and the 
iB  representing the instantaneous 

parameter values measured along the orbit track. The 

implementation purpose of these equations is to allow 

the formation to maintain the required relative orbit 

shape. Important to remark that being the main goal of 

the present work the elimination of the drift, the 

difference between the instantaneous 
1B  and the desired 

was not considered once it would result in a extra 

redundant step. 

The relative orbit control is divided into two stages: 

a first one with the objective of eliminating the drift and 

achieving the desired ellipse shift; and then a second 

one where the desired in-plane and out-of-plane motion 

amplitudes are obtained. 

 

3.1 Lyapunov-based control 

 

In order to set the relative drift 
1B  and the relative 

shift 
3B  to zero, the following Lyapunov function was 

developed for the first stage as in [13]: 

 

2 2

1 3

1 1
.

2 2
V B B    

 

Deriving the equation above with time, and 

substituting some of the terms for the simplifications 

result in the following: 
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In order to achieve 0V  and obtain the global 

asymptotic stability, when 
1B 1 0B   and 

3 0B  , is 

the following control should be applied 
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After reaching the desired values for 
1B  and 

3B , inside 

the convergence zone, the algorithm starts a second 

stage, in order to achieve both the in-plane and out-of-

plane required trajectory amplitude values. Thus, the 

following Lyapunov function used is 

 

2 2 2 2
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Its time derivative is the following 
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Consider the following control vector: 
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If this control is substituted into the derivative of 

Lyapunov function 
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The term 
1 33B B   could not be negative, but after 

the first control stage its value will be much smaller 

than the sum of the first three terms in this equation. 

Therefore, it is assumed that this term takes a rather 

insignificant impact on the Lyapunov function 

derivative. 

It should be noted that the calculated control may 

not be possible to implement considering the system’s 

charging capacity limits. Henceforth, it is required to 

take into account the implementation restrictions during 

the controlled motion simulation. This important issue is 

addressed in the next section. 

 

3.2 Control implementation using Lorenz-force 

 

As referred to in the previous paragraph, it is now 

necessary to implement the calculated control. In this 

section, the main features of the Lorentz force are taken 

into account to implement calculated control. 

Important to recall that the control force is produced 

as the result of the direct interaction between Earth’s 

magnetosphere and the satellites charged point of mass. 

The first step is to calculate the magnetic field vector for 

the current position of the satellite, according to the 

equation that is responsible to calculate the Lorentz 
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force and the satellite velocity vector. Since the Lorentz 

force direction vector is defined and the control source 

is the charge of the satellite (a scalar value), it is now 

possible to implement the calculated control vector at 

each time step. In order to implement each component 

of the calculated control, three different values of the 

satellite charge should be implemented.  

Throughout the explanation of the resultant control 

relations, it is possible to denote the presence of a k 

parameters in the functions. The key role of this k 

parameter is associated with the Lyapunov control 

convergence velocity. It always represents a positive 

number, whose value and magnitude may vary 

depending on the available control source. The 

Lyapunov controls described above are developed 

without any restrictions concerning the control system. 

It is then necessary to consider the possible 

implementation issues when using the Lorentz force. 

 

, , .
yx z

x y z

x y z

uu u
q q q

L L L
    

 

where x y z
u u u    are the control components 

enumerated in the previous chapter, and x y z
L L L    

are the Lorentz force vector components along the three 

reference frame axis. However, the charge of the 

satellite is a scalar value so there cannot be three distinct 

charges being applied simultaneously. Thus, the 

calculated control vector cannot be implemented as it is. 

So, to calculate the single charging value that is going to 

be applied it is required to calculate a Lorentz force 

value that is close to joint magnitude of the three 

calculated control vectors. In order to implement this 

idea, the following single charge calculation is proposed 

 

 
2 2 2

.
3

x y z

mean x y z

q q q
q sign q q q

 
    

 

In this equation a critical step is taken. After 

obtaining the three values for the required charges 

(measured along the axis dictated by the Hill reference 

frame), the main charging value is calculated. This 

value, 
meanq , is calculated as the magnitude of the 

required force and its direction is defined by the 

strongest component, or components (through the sign 

function). 

As referred to above in this section, during the 

calculation of the real charging value, the system’s 

charge limitations shall be accounted for. Thus, consider 

the device’s maximum charge value, that can be 

produced by the charging device, to be qmax. Then 

whenever the calculated control exceeds the value of 

qmax the following step is activated 

 

max max

max

( ), if ,

, if .

mean mean

mean

mean mean

q sign q q q
q

q q q

 
 


 

 

This formula represents a stage in the control 

algorithm, which is activated when the virtual charge 

value exceeds the limit.  

Also the limited charging rate is taken into account 

in the simulation process. So, while the charging device 

polarity altercation, the charge cannot vary more than 

charged , during the time interval corresponding to 

1n nt t  . The following formula is representative of the 

current value 
meanq  at the time step 

nt ,  

 

 

 

charge1 1

charge1

,

if .

mean mean mean meank k k k

mean meank k

q q d sign q q

q q d

 



  

 
 

 

The utilization of such a step is due to the fact that in 

reality the polar charge changing, i.e., the charge sign 

(or magnitude) altercation is not an instantaneous 

process. Therefore this step induces a smoother 

transition between charging polarization’s, providing 

closer to reality simulation results. 

So, the implemented vector of the current Lorentz 

force acting on the satellite charge is calculated using 

the following formula 

 

 L meanq F v B . 

 

Thus, this chapter defines the general control 

algorithm that is used for the relative motion control. 

Though the control strategies could depend on the 

number of satellites and on the satellites relations. These 

aspects are covered in the next section. 

 

3. Numerical study 

 

Consider a set of satellites in low Earth Orbit. In this 

section a performance of the proposed algorithm for two 

satellite formation flying case and for swarm relative 

motion is studied depending on the capabilities of the 

onboard charging device, required relative trajectory, 

orbital height and inclination. All the simulation 

parameters values are listed in Table 1. 
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Table 1. Simulation parameters 

 

Initial conditions 

Initial relative drift, 
1C  rand([-0.5;0.5]) m 

Initial relative position 

constants 2 6C C  

rand([5;5]) m 

Satellite parameters 

Mass of the satellites, 

m  

1 kg 

Maximum charge, maxq  10 µC 

Orbital parameters 

Orbit altitude, h  500 km 

Orbit inclination, i  o51.7  

Algorithms parameters 

Control gains 
ak ,

bk   6 410 , 10 
 

Control gains , ,x y zk k k  6 8 710 , 10 , 10  
 

Maximal charge change 

rate, /dq dt  

710 C/s
 

Required relative orbit 

parameters 1 4B B  

[0, 10, 10, 10] m  

Second stage algorithm 

threshold for 1B  and 3B  

0.05 m, 2.5 m 

 

The parameters are choose to obtain the best 

performance of the algorithm considering the 

convergence and the constants errors. The scheme of the 

simulation is presented in Fig. 4. 

 

 
Fig. 4. Scheme of Control Motion Simulation 

 

4.1. Free motion of two satellites 

 

Consider two satellites formation motion with 

random initial conditions defined above. No control is 

applied to the satellites. The resulted relative trajectory 

after simulation is presented in Fig. 5. Since the relative 

drift is not zero after the launch, relative trajectory is not 

closed, and the satellites are flying apart. It means that 

without control it is impossible to obtain close relative 

trajectories during the whole time of the mission. Even 

if initially the relative drift is zero, the perturbations 

lead to gradual drift increase. 

 
Fig. 5. Relative trajectories of the swarm free motion 

 

4.2. Case of study of one controlled satellite 

Consider an application of the proposed control 

algorithm for the same initial conditions as described for 

the example of free relative motion. The one of the 

satellites is considered passively moving along the orbit, 

the other is controlled using the proposed control 

algorithm based on Lorenz force. The time of the 

controlled motion simulation is 5 days. Fig. 6 presents 

an example of the relative motion. It can be seen that 

there was an initial drift that was stopped by the first 

stage of the algorithm. When the parameters relative 

drift and relative shift 1B  and 3B  entered the vicinity of 

the required values, the second stage started to change 

the trajectory amplitudes of the in-plane and out-of-

plane. Fig. 7-10 show the values 1 4B B of the 

controlled motion and the required ones. From the plots 

it can be concluded that the first stage of the algorithm 

took about 15 hours, when the relative shift and relative 

drift reached the required values. The second stage was 

also about 15 hours, during this period the trajectory 

amplitudes get to the vicinity of the required values. 

Starting from 30 hours from the simulation beginning 

the trajectory can be considered as converged to the 

trajectory with desired shape and size. The control 

errors caused by the constrains of the value and 

direction Lorenz force result in errors in trajectory 

parameters 1 4B B  during the station keeping of the 

required trajectory. The maximum deviation of the 
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relative drift is about 0.05m, and for the relative shift it 

is about 3m. The errors in the amplitudes 
2B  and 4B  

are no more than 1 m. 

 
Fig. 6. Relative trajectory under control 

 
Fig. 7. Relative drift 

 
Fig. 8. Relative shift 

 
Fig. 9. In-plane amplitude 

 
Fig. 10. Out-of-plane amplitude 

 

The value of the implemented charge of the 

satellite during the control is presented in Fig. 11 and 

12. It can be seen that the value of the charge is limited 

by 10 µC. In zoomed Fig. 12 the continuous change in 

the charge is demonstrated. The speed of charging is 

also limited. Even if the calculated value of the charge 

change the sign it takes time to reach the required value. 

In such a way the delays in the system are simulated and 

the limitation of the charging devices are taken into 

account. 
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Fig. 11. Satellite charge 

 
Fig. 12. Satellite charge (zoomed) 

 

The calculated control values according to the 

Lyapunov-based control algorithm are presented in Fig. 

13. The sudden high values for the required control 

along x direction are caused by transition to the second 

stage of the algorithm – the deviation of the 
2B  

amplitude was quite large and it required large control. 

Though the implemented control through Lorenz force 

differs significantly from the calculated control as one 

can see from Fig. 14. The value of the Lorenz force in 

the along-track direction is of one order smaller than the 

other components. Nevertheless, it was enough for drift 

stopping and for convergence to the required shift value. 

Since the only control parameter in case of Lorenz force 

is the charge, during implementation the 

implementation errors are inevitable. The direction of 

the Lorenz force is determined by the velocity vector 

and local magnetic field vector. By choosing the charge 

value only the most significant component of the 

required control vector is to be partly implemented 

while the others components are to be implemented with 

large errors. Though due to magnetic field vector 

rotation in the LVLH reference frame along the orbit, 

the errors of implementation are averaging and the 

trajectory is converging to the required one. From Fig. 

14 one can also note a sinusoidal behavior of the peaks 

of Lorenz forces with period of about 24 hours. It can be 

explained by the rotational motion of the tilted Earth 

magnetic dipole that cause the slight change in the 

possible direction of the Lorenz force. 

 
Fig. 13. Calculated control values 

 
Fig. 14. Applied Lorenz force 

 

The performance of the control algorithm is strongly 

depend on a set of parameters including the initial 

conditions. Using Monte-Carlo simulations with random 

initial conditions described in Table 1 the convergence 

time and the errors of the obtained trajectory parameters 

are studied. The convergence time is strongly depend on 

the initial relative drift 1B  value. For each random 

maximal initial relative drift where performed 50 

numerical simulations. The time of the convergence is 

defined at a time moment when all the parameters 

1 4B B  are in a certain vicinity of the required values. 

Fig. 15 demonstrates the box-plots of the results of the 

simulations. Inside the box are 50 % of the simulations 

results, below and under the box are 25 %, the red line 
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is a mean value. One can see that the more the initial 

drift, the larger the convergence time. 

 

 
Fig. 15. Convergence time depending on initial drift 1B  

 

It can be concluded that there is no sensible 

dependence of the errors in the trajectory parameters 

1 4B B  on the initial relative drift value. The errors on 

the relative drift are no more then 2 m, the errors in 2B  

are inside the 0.5 m. The most significant errors are in 

out-of-plane amplitudes and are about several meters. 

Since the control is based on the Lorenz force which 

is the result of the cross product of the local magnetic 

field and the velocity it is necessary for the ability to 

control that the magnetic field should change the 

direction in inertial reference frame along the orbit. 

However, if the satellite is in equatorial orbit the 

geomagnetic field vector is almost constant during the 

orbital motion. Also, if the satellite is in polar orbit the 

geomagnetic field vector has components only in orbital 

plane. These constraints on the geomagnetic field vector 

direction could influence the control algorithm 

performance. The Monte-Carlo simulations was 

performed for the fixed parameters presented in Table 1 

and different values of the orbit inclination. 

For the equatorial orbit the proposed Lorenz 

force control is not working as followed from the 

simulation results. It is caused by the almost fixed 

geomagnetic field vector along the orbit and as the 

result the only direction of the Lorenz force. The control 

algorithm started to achieve the required trajectory 

beginning from about 30 deg of inclination. The 

convergence time is less for the polar orbit since the 

geomagnetic field vector rotates almost in the orbital 

plane and more control force directions are available 

along the orbit. 

 

 

 

 

4.3 Cases of satellites swarm  

 

The proposed control can be applied for the 

formation flying consisting of multiple number of 

satellites. A swarm of satellites can be used as a spatial 

distributed measurement system in LEO. Consider a two 

examples of distributed swarm of nanosatellites 

controlled using the proposed control algorithm. First 

example is a formation consisting of N satellites with 

required zero drift and shift relative to the virtual central 

satellite but different size of the in-plane amplitude. 

Such a configuration could be useful for construction of 

the spatial measurement system in space. Second 

example is a train formation when all the satellite are 

distributed with the same relative distance in the along-

track direction in the orbit. This type of formation is 

required for Earth-remote sensing problems. 

 

Nested ellipses 

 

Consider a formation flying consisting of 5 

satellites. The number of satellites could be larger and 

the algorithm performance will be the same, though the 

resulting relative trajectory will be difficult to present. 

That is why in the case of study only 5 satellites are 

considered. The initial conditions are the same as in 

Table 1 except for the required trajectory constants. The 

required drift and shift is zero for all the satellites 

1 0B  , 
3 0B  . The out-of plane amplitude is also 

constant and 
4 10mB  . In order to construct the 

spatially distributed system the required in-plane 

amplitudes differs by 10m for each satellite. So, after 

the convergence the satellite trajectories are along the 

nested ellipses of different size. Fig. 16 shows the 

example of the relative trajectories of 5 satellites during 

the 120 hours of simulation, and Fig. 17 presents the 

resulting trajectories after convergence. As one can see 

the algorithm is successfully achieved the trajectory of 

the required size of the ellipses nested inside each other. 

Fig. 18 and 19 presents the relative drift and shift which 

are in the vicinity of the required zero value. Fig. 20 

shows the convergence of the in-plane amplitudes to the 

required values. The larger the amplitude the longer it 

takes to achieve its vicinity. For the 5th satellite it took 

almost 100 hours to get to the required value of 40 m. 

The errors in out-of-plane amplitudes are up to 4 m after 

convergence as one can see in Fig. 21. 

In the presented example the control was 

implemented using centralized approach when all the 

satellites are follow the motion of the chief satellite, in 

this case it is the first satellite that is in the center of the 

nested ellipses. Since the phase of the satellites are not 

controllable the position of the satellites on the ellipses 

are random and the planes of the ellipses do not 

coincide.  
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Fig. 16. Relative trajectories 

 
Fig. 17. Relative trajectories during the last 2 hours of 

simulation 

 

 
Fig. 18. Relative drift 

 
Fig. 19. Relative shift 

 

 
 

Fig. 20. In-plane amplitude 

 
Fig. 21. Out-of-plane amplitude 
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Train formation 

 

The train formation is used when the uniformly 

distributed measurements along the same orbit are 

required for the mission. To achieve such a 

configuration using the proposed control law the 

required shift values 
3B  should be different and the 

other parameters 
1 2 4, ,B B B  should tend to zero. 

Consider a formation consisting of 5 satellites, all the 

simulation parameters are the same as for the previous 

example. In this case the control can be implemented 

using decentralized approach. Each satellite tries to 

achieve the required value 
3B  of the shift relative to the 

neighbour satellite with smallest positive value of 
3B . 

Fig. 22 shows the example of the relative trajectories of 

5 satellites during the 120 hours of simulation, and Fig. 

23 presents the resulting trajectories after convergence. 

As one can see after a time all the satellites are lined up 

in along-track direction with separation of 10 m. The 

out-of-plane amplitudes are of about of 5 m in the end 

of simulation, and in-plane amplitudes are all around 

zero except for the second satellite which value of about 

0.8 m. 

Fig. 24-27 presents the  values of the parameters 

1 4B B . The relative drift is close to zero value. But the 

relative shifts are all at the required values with 10 m of 

difference. The train configuration the amplitudes 

should converge to a zero. The in-plane amplitudes are 

almost all converged to zero after 160 hours of 

simulation, but the out-of-plane convergence is even 

slower. After 160 hours of simulation there is the error 

of several meters. Fig. 28 demonstrates the charges of 

the satellites. All the values do not exceed the maximum 

value and after the convergence the values rarely 

achieve this constraint. 

 

 
Fig. 22. Relative trajectories 

 
Fig. 23. Relative trajectories during the last 2 hours of 

simulation 

 
Fig. 24. Relative drift 

 
Fig. 25. Relative shift 
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Fig. 26. In-plane amplitude 

 
Fig. 27. Out-of-plane amplitude 

 
Fig. 28. Charges of the satellites 

 

Thus, the examples of the proposed algorithm 

application for the construction and maintenance of the 

two configuration consisting of multiple satellites 

demonstrate the performance of the algorithm. All the 

trajectories converged to the required ones with final 

error of several meters. 

 

 

5. Conclusions  

A control algorithm based on the Lorenz force 

application is developed for the problems of the 

construction and maintenance of the small satellites 

formation flying relative motion. For application of the 

Lorenz force the onboard charging device capable to 

provide the required charge of satellite is considered. 

Since the Lorenz force direction is limited along the 

orbit and it is determined by the local geomagnetic filed 

and orbital velocity, only 4 of 6 elements of state vector 

is controllable. In terms of relative trajectory parameters 

the proposed Lyapunov-based control is aimed to 

achieve the required relative drift, relative shift and in-

plane and out-of-plane amplitudes. The phases of the in-

plane and out-of-plane are considered as uncontrollable. 

Thus, the required relative configuration, size and shape 

can be achieved by the proposed control. The numerical 

study showed that the best algorithm performance could 

be achieved at near polar orbit. The initial conditions 

and the maximum possible charge are affect the 

convergence time as well as the trajectory errors after 

the convergence. The errors in out-of-plane amplitude is 

the worst among the errors of the other parameters and 

could exceed several meters. The results of the 

application of the proposed algorithm is demonstrated in 

three cases: the case of one controlled satellite in two 

satellite formation flying, the case of the two controlled 

satellites and the two examples of multiple satellites 

formation flying in nested ellipses and train 

configurations. In all study cases the control algorithm 

successfully achieved the required trajectories with final 

errors of several meters. The proposed Lorenz force 

based control is perspective for the application onboard 

the small satellites since it does not require any fuel 

consumption. 
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