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Abstract 

Gyroscopic attitude control systems such as reaction wheels (RW) can offer good accuracy and fast reorientation 

of the spacecraft. However, these systems have some drawbacks. One of them is a limited angular momentum that 

can be stored by RW, which leads to the necessity of additional actuators installation, e.g. magnetorquers or 

thrusters. The next drawback is the vibration that caused by so called disbalances. It is possible to distinguish static 

and dynamical disbalances. First one appears because RW center of mass does not located on its rotation axis. The 

dynamical disbalance is caused by misalignment of rotation axis and RW principal axis of inertia and/or asymmetry 

of RW tensor of inertia. Modern technologies allow us to install the set of reaction wheels even onboard small 

satellites, e.g. 3U or 6U Cubesats. For such kind of spacecrafts, the problem of disbalances have become more 

important: ratio between RW and typical Cubesat tensor of inertia grew much larger in comparison with the 

conventional spacecraft. Therefore, small satellites are utilized in mission that require high attitude and stabilization 

accuracy, e.g. for remote sensing, it is necessary to take the effect of disbalances into account. In this paper the 

satellite model of motion that includes both kinds of disbalances is presented. It allows us to model precise satellite 

motion, and demonstrates the effect of disbalances. In addition, the estimations of the attitude and stabilization 

accuracy that can be achieved by RW depending on the value of disbalance are presented. 

Keywords: reaction wheels, imbalance, attitude accuracy 

 

1. Introduction 

Modern small satellites are able to solve many 

scientific and applied problems, from conducting 

measurements of the Earth magnetosphere to remote 

sensing. Most of these problems require precise satellite 

pointing and stabilization, which is usually provided by 

gyroscopic attitude control, namely by Reaction Wheels 

(RW). However, for such systems there is a problem of 

vibrations affecting the spacecraft hardware, its flexible 

parts and overall dynamics [1,2], which might be crucial 

for some missions. 

One of the vibration sources is the RW imbalance. 

Typical angular rate of RW is several thousand rotations 

per minute, therefore even the small imperfections in 

their balancing might significantly affect the 

performance of the attitude control system. There are 

two types of imbalances that are usually distinguished. 

The first is the static one, which appears when the RW 

center of mass is not located at its rotation axis. The 

second is the dynamic imbalance, which corresponds to 

the misalignment between the RW principal axis of 

inertia and the rotation axis (see Figure 1). There are 

several approaches to deal with this problem, e.g. by 

installing special vibration isolation hardware [3–6]. 

However, such devices are unavailable for small 

satellites due to size and mass limitations.  

 

Fig. 1. RW imbalance: static (left) and dynamic (right) 

Main goal of this paper is to present fully coupled 

model of motion for the satellite equipped with several 

imbalanced RWs, and provide analytical estimation of 

attitude and stabilization accuracy for the case of 

satellite inertial stabilization.  

It must be noted that there are several papers that 

investigate the problem of RWs vibrations. For ex-

ample, in [7–12] the mathematical model and 

experimental results of RW at suspension are presented, 

although these papers do not study the effect of 

imbalances on attitude dynamics.  

The most thorough model of motion is derived in 

[13] which is based on the first-principle and takes into 

account static and dynamic imbalances. The validation 

of the model in [13] is carried out using kinetic energy 



72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.  

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-21-C1.9.12                           Page 2 of 11 

and angular momentum conservation laws. In this paper 

we present similar model, which, in our opinion, might 

be more suitable for the software adaptation. 

 

2. Model of motion 

The spacecraft consist of the main hull with several 

RWs attached. The hull and each RW are supposed to 

be rigid bodies with known mass and inertia properties. 

Satellite position is described by point O – it is the 

arbitrary fixed point of the hull. Each reaction wheel is 

described by point kO  (any point of the RW rotation 

axis) and axis of rotation ke  (see Figure 2). 

 

Fig. 2. Spacecraft and reaction wheel 

In order to derive the equations of motion the 

general equation of dynamics [14] for the system with 

ideal constraints is used:  

   0l l l

T

l

l

m   FR R   (1) 

Here the summation is for all points of the system 

(for rigid bodies summation is replaced by integration), 

l  is the system point index, lm  is the point mass, lR  is 

its acceleration, lF  is the total force affecting the point, 

lR  is the point virtual displacement.  

Every point of the hull iR  and RW kjR  is described 

by (see Fig.1) 

 
,

,
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where OR  is the satellite radius-vector, ir  is the vector 

from point O  to the hull point, k kOOρ , kjρ  is the 

radius-vector from point kO  to RW point. As was 

mentioned earlier, kO  is the arbitrary point of RW 

rotation axis. It is reasonable to choose it as the 

projection of RW center of mass at its rotation axis. In 

this case, if center of mass is on rotation axis (no static 

imbalance) kO  represents the RW center of mass. Index 

i  indicates the hull point and index kj  indicates the j-th 

point of the k-th RW. Virtual displacements of the 

system points are  
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Here ,O R θ  correspond to the hull virtual 

displacements, k  is the k- th RW infinitesimal 

rotation. Displacements , ,O k  R θ  are independent 

and correspond to 6N n   system degrees of freedom 

( n  is the RWs quantity, and 6 for translational and 

rotational degrees of freedom for rigid hull). 

Accelerations of each satellite and RW points are 
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where ω  is the satellite angular velocity with respect to 

the Inertial Frame, k k kΩ e  is the RW angular 

velocity with respect to the hull. Finally, (1) can be 

rewritten as follows: 
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Here int

kM  is the internal torque generated in the k-th 

RW axis that consists of the control and friction torques. 

All the terms near the same virtual displacements must 

be equal to zero. It allows us to derive equations of 

motion. Detailed derivation is presented in paper [15], 

here we just show final expressions. Let us introduce the 

following notation. Cross-product matrix is  

  
3 2

3 1

12

0

: 0 ,
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so  


 a b a b . The hull center of mass position with 

respect to the point O  is given by  

 , .
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s s i

s

i
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Similarly, the center of mass of k-th RW with respect to 

the point kO  is 
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Since the hull point O is arbitrary, it is convenient to 

choose it so 

 0s s k k

k

m m  ρr .  (2) 

Total satellite mass 
kksm m m  . Denote the hull 

tensor of inertia with respect to the point O 

    s i

i

i im
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and k-th RW tensor of inertia with respect to the point 

kO   
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j

kj j m
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Total tensor of inertia of the system with respect to the 

point O is  
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T

he total forces acting on the hull and RW are  

 , .k

j

i

i

k js   F F F F   

Torques of the forces affecting RW with respect to the 

attachment point kO  are  

 k k

j

kj j FM ρ  . 

Similarly, the torque affecting the hull with respect to 

the point O is  

 is

i

iM Fr  . 

To decrease the number of brackets in the equations the 

following rule is used:  

    1 2 1 2... . .. .. .n n      a a aa aa . 

Satellite dynamics is 
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The matrix S and vector N are defined as follows 
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Here  
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These equations are complemented by kinematics: 
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Obtained model allows us to simulate precise motion 

of the satellite equipped with reaction wheels, as well 

as take into account possible imbalances. 

3. Effect of imbalances on inertial stabilization 

In this section, we analyse the effect of the 

imbalances in the case of inertial stabilization when 

the satellite is in the specific attitude with zero 

angular velocity. Without loss of generality let the 

desired attitude be the identity 

quaternion  1 0 0 0
T

d Q . All the external 

torques, as well as RWs friction, are neglected during 

the analysis. In addition, we do not consider static 

imbalance, i.e. RWs centers of mass are located at 

their rotation axes. 

3.1. Effect of dynamic imbalances 

The dynamic imbalance appears when RW 

rotation axis is misaligned with principal axis of 

inertia, i.e. there are nondiagonal elements in the RW 

tensor of inertia kI . The magnitude of these elements 

d  (such that 
kjI d  for k j  ) is usually referred 

as dynamic imbalance value. It is rather small in 

comparison with the RW axial moment of inertia axI , 

therefore we can introduce small parameter  

axd I  . The RW tensor of inertia then is 

represented in the following way:  

 k k k I I I
  

where 1 , kI  is nominal RW tensor of inertia 

such that RW rotation axis ke  is its axis of dynamical 

symmetry, k I  is the imbalance additional term. 

Since kI  is axially symmetrical, it does not change in 

the Body Frame during the RW rotation. Total 

satellite tensor of inertia in the case of absent static 

imbalance (i.e. 0kc ρ ) is  
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Again, here J  is the nominal satellite full tensor of 

inertia, and 
k k  I  corresponds to the small 

deviations caused by imbalances.  

Since we consider the case of purely dynamic 

imbalances, equations of motion (3) can be 

simplified:   
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We do not consider the effect of external forces and 

torques on attitude dynamics, therefore orbital motion 

might be decoupled. Hence, the system to be analysed 

is  
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Small parameter in the left part of equations of 

motion might be eliminated (with the accuracy of 

 o  ) in the following way:  
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Let there are n RWs with identical nominal 

parameters are installed onboard the spacecraft. 

Introduce the following matrix  

  1, ... , nA e e , 

where ke  are the unit vectors along RWs axes of 

rotation. Then Lyapunov-based controller that ensures 

asymptotic stability of inertial stabilization is [15–17] 
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where I  is the nominal axial moment of inertia. 

Since this control law ensures asymptotic stability for 

balanced RWs, we can expect that resulting motion 

would be close to the desired one. Hence, it is 

possible to linearize equations of motion in the 

vicinity of 0, 0 ω q . In this case  
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We will look for the solution of the system (4) 

under control (5) in the power series: 
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After substitution in equations of motion we obtain 

equations of motion for zero approximation  
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and first order approximation  

 

 

 

0

0

0 0

0 0

1 1

3 3

1

0 0

1

2 k k

k k k k

qT

k k

k

T k

k k k

k

T T T

k k k

k

k

k

k k k

k

T

k

k

k k k k

k

k

qkk

k
I k

b b
I

I

I k k










   





 

 




 
     

 

 
   

 

   

 
 



 
 
 









ω ω

Ω Ω

ω ω ω ω

Ω Ω Ω Ω

J e e ω ω φ a

I e
e E e e

I I e e e e I e e

J e e qω

  

Zero approximation has an asymptotically stable 

solution 0 0, 0ω φ 0 . This leads to  
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. 

In addition, from the second equation of zero 

approximation we can see that 0

k const  . 

Therefore, the equations for the first approximation 

are simplified 

 

1 1 1
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2

qT

k k

k
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k
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k
I k
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  (6) 

Note that k I  is not constant in the Body Frame 

since the imbalanced RWs rotate. It can be 

represented in the Body Frame as follows  

 
BF T RW

k k k k  ID DI    

where  
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is the rotation matrix that corresponds to the current 

RW position, 0

kD  describes the rotation from the 

Body Frame to the k-th RW Frame in the initial 

moment, RW

k const I  is the RW imbalance in k-th 

RW Frame. Since 0

k  is constant in zero 

approximation, kD  describes constant rotation and 

(6) becomes the nonhomogeneous linear system of 

differential equations 

 

    

1

0 0 0 0

1 1

2

c sinos

q

k

k k k k k k

T

k k

k

k

k

t

I k

t



 

 
    

 

    





J e e φ

g

φ φ

f

(8) 

which can be solved analytically. Note that 0

k  is a 

constant initial phase. The value of the phase depends 

on the actual transient motion before the satellites 

settles near the required state. The solution of the 

homogeneous equation converges to zero 

asymptotically while the partial solution is  
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where  
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The angular velocity for the first approximation is  

    1 0 0 0 0 0sin cosk k k k kk k

k

t t      vω u . (9) 

Hence the attitude stabilization error can be 

estimated by  

    0 0 0 0 0sin cosk k k kk k

k

kt t         uω v

For each i-th component then  

 0 2 2

i k ki ki

k

u v       (10) 

This simple estimate might be utilized at the 

preliminary stage of a spacecraft design to determine 

the dynamic imbalance requirements for RWs. Each 

term in (10) is equivalent to 

 0

ik k d   

when 0

k  is large enough, here d  is the dynamic 

imbalance magnitude. 

3.2. Effect of static imbalances 

We apply the similar technique to the study the 

effect of static imbalance. Its value is usually higher 

than the one for the dynamic imbalance. In addition, 

it turns out that the stabilization accuracy in this case 

depends not only on the pure imbalance parameters. 

Using the same approach as in the Section 3.1, the 

following first order approximation equations are 

obtained (here kI  are supposed to be axially 

symmetrical) 
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 (11) 

Here kcρ  represents the vector from point kO  to 

the RW center of mass and depends on RW rotation 

angle 

 
BF RW

kc k kc  Dρ ρ , 

where kD  is determined by (7). The resulting 

equations are similar to (8), so the resulting equations 

of motion are also similar. 
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

 u

v

ω

 (12) 

Note that attitude stabilization accuracy depends 

on the RW position with respect to the system center 

of mass kρ , i.e. the farther RWs are placed from the 

system center of mass, the worse stabilization 

accuracy is. This result is especially useful as it allow 

us to reduce the effect of vibrations caused by static 

imbalance at the early stage of satellite design.  

4. Illustrative examples 

In order to show the feasibility of obtained 

estimations, we conduct a simulation of satellite 

motion. Satellite parameters are presented in Table 1. 

Simulation includes orbital dynamics, gravity 

gradient torque and RWs imbalances. 
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Table 1. System parameters 

Parameter Value 

Hull inertia tensor, 
sJ     2diag 0.027 0.03 0.01 kg m   

Hull mass, sm   3.2 kg  

RW static imbalance, s   
76.7 10 kg m   

RW dynamic imbalance, d   
9 21.8 10 kg m   

RW mass, km   0.119kg  

RW axis moment of inertia, 
axI   4 21.67 10 kg m   

RW equatorial moment of inertia, eqI   4 21.0 10 kg m   

Hull inertia tensor, sJ     2diag 0.027 0.03 0.01 kg m  

 

 

4.1. Dynamic imbalance 

Assume that each RW tensor of inertia in its own 

Frame is 
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where ,eq axI I  are the RWs equatorial and axial 

moments of inertia (all RW nominal values are 

supposed to be identical). Note that RW

kI  is 

symmetric, and all its components are considered 

small with respect to the axial moment of inertia.  

In RW Frame  
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Let for all RWs 13 0kI  ; and 13

k dI    is the 

dynamic imbalance. Small parameter is introduced as 

follows  

 axd I   . 

Let the nominal RWs axes of rotation coincide 

with J  principal axes of inertia. Then in the Body 

Frame 
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Matrices that describe the rotation from the RW 

Frame to the Body Frame are  
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Here 0 0

k k k t   , as in the previous section, 

corresponds to the current RW rotation angle. Finally, 

the right part of the equations (8) becomes 
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In this case vectors kf  and kg  in (8) are 
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For the illustration purpose consider the evolution 

of the angular velocity after the transient motion. So 

the satellite angular velocity is zero, quaternion is 

identical and almost all initial angular momentum is 

stored in the RWs. System parameters are presented 

in Table 1. The control parameters are 

0.01 N m sk    , 0.001 N mak   . The results are 

presented in Figures 3-5. The red curves in figures are 

the numerical solutions, the blue curves are the 

approximate solutions (9), the black horizontal lines 

are the estimations (10). In order to test more realistic 

scenario, we also include gravity gradient torque into 

simulation. This torque is rather small, so at 

considerably small time spans it would not affect the 

results. 

 

 

Figure 3. Evolution of 1  (red is numerical solution, 

blue is approximate solution, horizontal lines are the 

estimations). 

 

 

Figure 4. Evolution of 2  (red is numerical solution, 

blue is approximate solution, horizontal lines are the 

estimations). 

 

Figure 5. Evolution of 3   (red is numerical solution, 

blue is approximate solution, horizontal lines are the 

estimations). 

First of all, one can see from figures that 

estimations (10) are in good accordance with the 

numerical simulation: numerical results are within the 

estimation borders, and relative difference between 

the linearized model of motion and the full one is 

around 3%. These estimations are of the utmost 

practical interest since these values show the 

stabilization accuracy of the satellite. The evolution 

of the angular velocity components is also close to the 

numerical solution. However, it should be noted that 

for the first and second components (Fig. 6 and 7) the 

phase difference increases by the end of the time 

interval. This is due to the non-uniform evolution of 

the RWs angles of rotation. 

4.2. Static imbalance 

Consider the same illustrative example as in the 

Section 3.4. The following parameters are taken 

additionally: 
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Here s  is the static imbalance, see Table 1. All other 

parameters are the same (without dynamic 

imbalance). This leads to  
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In this case vector kf  and kg  in (8) are 
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The results of illustrative numerical simulation are 

presented in Figures 6-8. Black lines are the 

analytical estimations, red and blue lines are the 

numerical simulation results.  

The example shows that the expressions (12) are 

in a good accordance with numerical simulations. As 

we can see from insertions, the difference between 

analytical estimations and numerical simulation 

results is rather small and lies in the worst case within 

5%. The difference can be explained by the gravity 

gradient torque which is included in the numerical 

model but is not taken into account in the analytical 

study. 

 

 

Fig. 6. Evolution of 1  for static imbalance case (red 

is numerical solution, blue is approximate solution, 

horizontal lines are the estimations) 

 

Fig. 7. Evolution of 2  for static imbalance case (red 

is numerical solution, blue is approximate solution, 

horizontal lines are the estimations) 

 

Fig. 8. Evolution of 3  for static imbalance case (red 

is numerical solution, blue is approximate solution, 

horizontal lines are the estimations) 
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As one can see, both dynamic and static 

imbalances lead to the additional terms in the right 

parts of (8) and (11), which do not depend on satellite 

state vector components for the first order 

approximation, so the total stabilization accuracy is 

the sum of (9) and (12). 

5. Conclusion 

In the paper the satellite motion analysis is carried 

out. The model includes RWs static and dynamic 

imbalances and couples orbital and angular satellite 

motion with RW rotation. Software implementation 

of the model is validated using the momentum, 

angular momentum, and kinetic energy conservation 

laws. The simulations show that the integration step 

should be rather small due to the high values of 

typical RW angular velocities. This fact makes purely 

numerical analysis difficult. In order to solve this 

problem, the analytical approximations for the 

satellite stabilization accuracy are obtained in closed 

form for the static and dynamic imbalances presence 

in the inertial stabilization case. The comparison of 

the numerical simulation and approximate solution 

shows that they are in a good accordance (relative 

error is about several percent). The explicit 

expressions can easily be implemented and are useful 

during the preliminary satellite design stage. 

The estimations of the attitude accuracy are 

obtained for the case of the satellite Inertial 

Stabilization. The case of Orbital Stabilization is the 

main goal of future research. 
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