Magnetically controllable attitude trajectory constructed using the particle swarm optimization method

Anna Okhitina, Dmitry Roldugin, Stepan Tkachev

Keldysh Institute of Applied Mathematics, Moscow, Russia
okhitina@phystech.edu

Introduction

Problem:

ensuring spacecraft 3-axis stabilization using magnetic attitude control system only

Restriction:

direction of magnetic torque, it cannot be applied along the geomagnetic induction vector
$M_{\text {magn }}=m \times B_{\text {magn }}$ is the control torque where
m is the satellite dipole moment
$B_{\text {magn }}$ is the geomagnetic induction vector

Solution:

construction of an optimal magnetically controllable attitude trajectory using PSO algorithm

Particle swarm optimization (PSO)

the non-gradient biologically inspired global optimization method

Optimization problem:

$\min _{x \in \mathbb{U}} \Phi(x)$
$\Phi(\mathrm{x})$ is the cost function
\mathbb{U} is the search space

Particle swarm optimization (PSO)

the non-gradient biologically inspired global optimization method

Optimization problem:
$\min _{x \in \mathbb{U}} \Phi(x)$
$\Phi(x)$ is the cost function
\mathbb{U} is the search space

Swarm characteristics:
P is the number of particles in the swarm
X_{p} is the particle position
v_{p} is the particle velocity
G is the number of generations

Particle swarm optimization (PSO)

the non-gradient biologically inspired global optimization method

Optimization problem:
$\min _{x \in \mathbb{U}} \Phi(x)$
$\Phi(x)$ is the cost function
\mathbb{U} is the search space

Swarm characteristics:
P is the number of particles in the swarm
X_{p} is the particle position
v_{p} is the particle velocity
G is the number of generations

Position and velocity change:

$$
\begin{aligned}
& x_{p}(i+1)=x_{p}(i)+v_{p}(i+1) \\
& \mathbf{v}_{p}(i+1)=c_{i n} v_{p}(i)+c_{\text {cog }}\left[x_{p, \text { best }}(i)-x_{p}(i)\right]+c_{\text {soc }}\left[x_{\text {best }}(i)-x_{p}(i)\right]
\end{aligned}
$$

i is the current generation number

Particle swarm optimization (PSO)

the non-gradient biologically inspired global optimization method

Optimization problem:
$\min _{x \in \mathbb{U}} \Phi(x)$
$\Phi(x)$ is the cost function
\mathbb{U} is the search space

Swarm characteristics:
P is the number of particles in the swarm
X_{p} is the particle position
v_{p} is the particle velocity
G is the number of generations

Position and velocity change:

$$
x_{p}(i+1)=x_{p}(i)+v_{p}(i+1)
$$

$$
v_{p}(i+1)=c_{\text {in }} v_{p}(i)-c_{\text {cog }}\left[x_{p, \text { best }}(i)-x_{p}(i)\right]+c_{\text {soc }}\left[x_{\text {best }}(i)-x_{p}(i)\right]
$$

i is the curr nt generation number

The inertial component it is responsible for the search continuation in the same direction

Particle swarm optimization (PSO)

the non-gradient biologically inspired global optimization method

Optimization problem:
$\min _{x \in \mathbb{U}} \Phi(x)$
$\Phi(x)$ is the cost function
\mathbb{U} is the search space

Swarm characteristics:
P is the number of particles in the swarm
X_{p} is the particle position
v_{p} is the particle velocity
G is the number of generations

Position and velocity change:

$$
x_{p}(i+1)=x_{p}(i)+v_{p}(i+1)
$$

$v_{p}(i+1)=c_{\text {in }} v_{p}(i)+c_{\text {cog }}\left[x_{p, \text { best }}(i)-x_{p}(i)\right]+c_{\text {soc }}\left[x_{\text {best }}(i)-x_{p}(i)\right]$
i is the current generation humber
The cognitive component
the desire to return to its own better position found earlier

Particle swarm optimization (PSO)

the non-gradient biologically inspired global optimization method

Optimization problem:
$\min _{x \in \mathbb{U}} \Phi(x)$
$\Phi(x)$ is the cost function
\mathbb{U} is the search space

Swarm characteristics:

P is the number of particles in the swarm
X_{p} is the particle position
v_{p} is the particle velocity
G is the number of generations

Position and velocity change:

$$
x_{p}(i+1)=x_{p}(i)+v_{p}(i+1)
$$

$v_{p}(i+1)=c_{i n} v_{p}(i)+c_{c o g}\left[x_{p, \text { best }}(i)-x_{p}(i)\right]$
i is the current generation number

The social component representing striving for a better position found in the particle vicinity

Particle swarm optimization (PSO)

the non-gradient biologically inspired global optimization method

Optimization problem:
$\min _{x \in \mathbb{U}} \Phi(x)$
$\Phi(x)$ is the cost function
\mathbb{U} is the search space

Swarm characteristics:

P is the number of particles in the swarm
X_{p} is the particle position
v_{p} is the particle velocity
G is the number of generations

Position and velocity change:

$$
\begin{aligned}
& x_{p}(i+1)=x_{p}(i)+v_{p}(i+1) \\
& \mathbf{v}_{p}(i+1)=c_{i n} v_{p}(i)+c_{\text {cog }}\left[x_{p, \text { best }}(i)-x_{p}(i)\right]+c_{\text {soc }}\left[x_{\text {best }}(i)-x_{p}(i)\right]
\end{aligned}
$$

i is the current generation number

Search stop criteria:

1) the cost function derivative is small (cost function stagnation)
2) all particles are falling into some neighborhood of the best position (swarm stagnation)

Example

$$
[1 / 100] c_{\text {in }}=0.8, \quad c_{\text {cog }}=2.0, \quad c_{\text {soc }}=2.0
$$

Motion model

Orbit parameters:

$$
\begin{aligned}
& h=550 \mathrm{~km}-\text { attitude } \\
& i=57^{\circ}-\text { inclination } \\
& T_{0} \approx 1.58 \mathrm{~h}-\text { orbital period }
\end{aligned}
$$

Equations of motion:

$$
\left\{\begin{array}{l}
\begin{array}{l}
\dot{\omega}_{a b s}=J^{-1}\left(M_{c t r l}+M_{\text {grav }}+\right. \\
\\
\\
\\
\\
\dot{q}_{0}=-0.5 M_{\text {aro }}+ \\
\dot{q} \omega, \\
\dot{q}=0.5\left(q_{0} \omega+\omega_{a b s} \times J \times \omega\right)
\end{array}
\end{array}\right.
$$

Satellite parameters:

$$
\begin{aligned}
& 10 \times 20 \times 30 \mathrm{~cm}-\text { shape (parallelepiped) } \\
& \mathrm{c}=(0,1,0) \mathrm{cm}-\text { center of mass displacement } \\
& \mathrm{J}=\operatorname{diag}(0.15,0.13,0.11) \mathrm{kg} \cdot \mathrm{~m}^{2}-\text { inertia tensor }
\end{aligned}
$$

Reference frames:

Trajectory construction

Stage 1

search for a trajectory on which the projection of the control torque onto the Earth's geomagnetic induction vector is minimal

Attitude trajectory:

$$
\begin{gathered}
\alpha(t)=a_{1} \sin \omega_{0} t+a_{2} \cos \omega_{0} t+a_{3} \sin 2 \omega_{0} t+a_{4} \cos 2 \omega_{0} t, \\
b(t)=b_{1} \sin \omega_{0} t+b_{2} \cos \omega_{0} t+b_{3} \sin 2 \omega_{0} t+b_{4} \cos 2 \omega_{0} t, \\
\gamma(t)=g_{1} \sin \omega_{0} t+g_{2} \cos \omega_{0} t+g_{3} \sin 2 \omega_{0} t+g_{4} \cos 2 \omega_{0} t, \\
\omega_{0}-\text { orbital angular velocity }
\end{gathered}
$$

Cost function:

$$
\begin{gathered}
\Phi_{1}=\frac{d t}{T_{0}} \sqrt{\sum_{t_{0}=o}^{T_{0}}\left(\frac{M_{c t r I}(t)}{\mid M_{c t r I}(t)}, \frac{B_{\text {magn }}(t)}{\left|B_{\text {magn }}(t)\right|}\right)^{2}} \rightarrow \min \\
\mathbb{U}=\left\{a_{k}, b_{k}, g_{k} \in\left(-3.5 \cdot 10^{-2}, 3.5 \cdot 10^{-2}\right) \mathrm{rad}, k=\overline{1,4}\right\}
\end{gathered}
$$

Required control torque:

$$
M_{c t r l}(\alpha, \beta, \gamma)=J \dot{\omega}_{a b s}(\alpha, \beta, \gamma)+\omega_{a b s}(\alpha, \beta, \gamma) \times J \omega_{a b s}(\alpha, \beta, \gamma)-M_{\text {grav }}(\alpha, \beta, \gamma)-M_{\text {aero }}(\alpha, \beta, \gamma)
$$

Trajectory construction

Stage 1

search for a trajectory on which the projection of the control torque onto the Earth's geomagnetic induction vector is minimal

Attitude trajectory parameters finding by PSO:

$$
\begin{array}{lll}
a_{1}=1.016 \cdot 10^{-2} \mathrm{rad}, & b_{1}=-4.028 \cdot 10^{-3} \mathrm{rad}, & g_{1}=8.067 \cdot 10^{-3} \mathrm{rad} \\
a_{2}=2.545 \cdot 10^{-2} \mathrm{rad}, & b_{2}=-9.717 \cdot 10^{-3} \mathrm{rad}, & g_{2}=-4.127 \cdot 10^{-3} \mathrm{rad} \\
a_{3}=1.449 \cdot 10^{-3} \mathrm{rad}, & b_{3}=-4.841 \cdot 10^{-5} \mathrm{rad}, & g_{3}=-2.433 \cdot 10^{-2} \mathrm{rad} \\
a_{4}=1.124 \cdot 10^{-3} \mathrm{rad}, & b_{4}=2.231 \cdot 10^{-4} \mathrm{rad}, & g_{4}=-4.637 \cdot 10^{-4} \mathrm{rad}
\end{array}
$$

Trajectory construction

Stage 1

search for a trajectory on which the projection of the control torque onto the Earth's geomagnetic induction vector is minimal

Reference trajectory

Control torque projection onto the geomagnetic induction vector

Trajectory construction

Stage 2

construct a magnetic control that provides convergence

Required control torque (using Lyapunov function):

$$
\begin{aligned}
M_{c t r l}= & -k_{\omega} \omega_{r e l}-k_{a} S+\omega_{a b s} \times J \omega_{a b s}+ \\
& +J \dot{A}\left(\omega_{0}+\omega_{r e f}\right)+J A \dot{\omega_{r e f}}-M_{\text {grav }}-M_{a e r o}
\end{aligned}
$$

Cost function:

$$
\begin{gathered}
\Phi_{2}=\left(\sum_{t_{0}=0}^{T_{0}}\left(\left(\omega_{\text {rel }}^{\top} B_{\text {magn }}\right) \cdot\left(M_{c t r \mid}^{\top} B_{\text {magn }}\right)\right)^{2}+\sum_{t_{0}=0}^{T_{0}}\left(\left(S^{\top} B_{\text {magn }}\right) \cdot\left(M_{\text {ctr| }}^{\top} B_{\text {magn }}\right)\right)^{2}\right) \rightarrow \text { min } \\
\mathbb{U}=\left\{k_{\omega} \in\left(5 \cdot 10^{-5}, 10^{-2}\right) \mathrm{Nms}, k_{a} \in\left(10^{-8}, 5 \cdot 10^{-5}\right) \mathrm{Nm}\right\}
\end{gathered}
$$

$$
M_{\operatorname{magn}}=m \times B_{\operatorname{magn}}=\frac{B_{\operatorname{magn}} \times M_{c t r l} \times B_{\operatorname{magn}}}{B_{\operatorname{magn}}{ }^{2}}
$$

Trajectory construction

Stage 2

construct a magnetic control that provides convergence

Control gains finding by PSO:

$$
k_{\omega}=1.119 \cdot 10^{-4} \mathrm{Nms}, k_{a}=6.578 \cdot 10^{-8} \mathrm{Nm}
$$

* To prove the asymptotic stability of the resulting motion, we linearize the equations of motion and use the Floquet theory. The norm of eigenvalues of the obtained monodromy matrix (characteristic multipliers, ρ) lie inside the unit circle: $|\rho|<1$

Trajectory construction

Stage 2

construct a magnetic control that provides convergence

Reference and real trajectory

Reference trajectory deviation

Trajectory construction

Stage 2

construct a magnetic control that provides convergence

The difference between the required

Numerical example

Parameters for numerical simulation

Simulation time	$T=20 T_{0} \approx 33 \mathrm{~h}$
SC initial angular velocity	$\omega=[1,2,3] \cdot 10^{-4} \mathrm{rad} / \mathrm{s}$
SC initial orientation	$\alpha=11.5^{\circ} \cdot \frac{\pi}{180^{\circ}} \approx 0.2 \mathrm{rad}$
	$\beta=9.5^{\circ} \cdot \frac{\pi}{180^{\circ}} \approx 0.165 \mathrm{rad}$
	$\gamma=9.7^{\circ} \cdot \frac{\pi}{180^{\circ}} \approx 0.17 \mathrm{rad}$
Magnetic field model	inclined dipole
Inaccuracy of knowledge of the density of the atmosphere	20%
External random disturbances	$\mathrm{M}_{\text {dist }} \sim 10^{-9} \mathrm{Nm}$

Numerical example

Reference and real trajectory

Reference trajectory deviation

Numerical example

Required and real (magnetic) control torque

The difference between the required control torque and realized one

Conclusion

- a method for constructing an attitude trajectory is proposed
- the particle swarm optimization (PSO) method is applied to find the optimal trajectory coefficients and optimal control gains
- the magnetic attitude control system fully maintains the trajectory
- numerical example is given
- the orientation accuracy is about 2 degrees

