

72nd International Astronautical Congress 2021 25-29 October 2021, Dubai, United Arab Emirates

Magnetically controllable attitude trajectory constructed using the particle swarm optimization method

Anna Okhitina, Dmitry Roldugin, Stepan Tkachev

okhitina@phystech.edu

Introduction

Problem:

ensuring spacecraft 3-axis stabilization using magnetic attitude control system only

Restriction:

direction of magnetic torque, it cannot be applied along the geomagnetic induction vector

 $M_{magn} = \mathbf{m} \times \mathbf{B}_{magn}$ is the control torque where

m is the satellite dipole moment

 \mathbf{B}_{magn} is the geomagnetic induction vector

Solution:

construction of an optimal magnetically controllable attitude trajectory using PSO algorithm

https://www.discovermagazine.com/environment/earths-magnetic-field-iprobably-i-isnt-reversing

the non-gradient biologically inspired global optimization method

Optimization problem:

 $\min_{\mathbf{x} \in \mathbb{U}} \Phi(\mathbf{x})$ $\Phi(\mathbf{x}) \text{ is the cost function}$ $\mathbb{U} \text{ is the search space}$

the non-gradient biologically inspired global optimization method

Optimization problem:

 $\min_{\mathbf{x}\in\mathbb{U}} \Phi(\mathbf{x})$ $\Phi(\mathbf{x}) \text{ is the cost function}$ $\mathbb{U} \text{ is the search space}$

Swarm characteristics:

- P is the number of particles in the swarm
- \mathbf{x}_p is the particle position
- v_p is the particle velocity
- G is the number of generations

the non-gradient biologically inspired global optimization method

Optimization problem:

 $\min_{\mathbf{x} \in \mathbb{U}} \Phi(\mathbf{x})$ $\Phi(\mathbf{x}) \text{ is the cost function}$ $\mathbb{U} \text{ is the search space}$

Swarm characteristics:

P is the number of particles in the swarm \mathbf{x}_p is the particle position v_p is the particle velocity G is the number of generations

Position and velocity change:

 $\mathbf{x}_{p}(i+1) = \mathbf{x}_{p}(i) + \mathbf{v}_{p}(i+1)$ $\mathbf{v}_{p}(i+1) = c_{in}\mathbf{v}_{p}(i) + c_{cog}[\mathbf{x}_{p,best}(i) - \mathbf{x}_{p}(i)] + c_{soc}[\mathbf{x}_{best}(i) - \mathbf{x}_{p}(i)]$ *i* is the current generation number

the non-gradient biologically inspired global optimization method

Optimization problem:

 $\min_{\mathbf{x}\in\mathbb{U}}\Phi(\mathbf{x})$ $\Phi(\mathbf{x})$ is the cost function \mathbb{U} is the search space

Swarm characteristics:

P is the number of particles in the swarm \mathbf{x}_{p} is the particle position v_{p} is the particle velocity G is the number of generations

Position and velocity change:

 $\mathbf{x}_{p}(i+1) = \mathbf{x}_{p}(i) + \mathbf{v}_{p}(i+1)$ $\mathbf{v}_{p}(i+1) \neq c_{in}\mathbf{v}_{p}(i) + c_{cog}[\mathbf{x}_{p,best}(i) - \mathbf{x}_{p}(i)] + c_{soc}[\mathbf{x}_{best}(i) - \mathbf{x}_{p}(i)]$ *i* is the current generation number **The inertial component** it is responsible for the search continuation in the same direction

the non-gradient biologically inspired global optimization method

Optimization problem:

 $\min_{\mathbf{x}\in\mathbb{U}} \Phi(\mathbf{x})$ $\Phi(\mathbf{x}) \text{ is the cost function}$ $\mathbb{U} \text{ is the search space}$

Swarm characteristics:

P is the number of particles in the swarm \mathbf{x}_p is the particle position v_p is the particle velocity G is the number of generations

Position and velocity change:

the non-gradient biologically inspired global optimization method

Optimization problem:

 $\min_{\mathbf{x} \in \mathbb{U}} \Phi(\mathbf{x})$ $\Phi(\mathbf{x}) \text{ is the cost function}$ $\mathbb{U} \text{ is the search space}$

Swarm characteristics:

P is the number of particles in the swarm \mathbf{x}_p is the particle position v_p is the particle velocity G is the number of generations

Position and velocity change:

 $\mathbf{x}_{p}(i+1) = \mathbf{x}_{p}(i) + \mathbf{v}_{p}(i+1)$ $\mathbf{v}_{p}(i+1) = c_{in}\mathbf{v}_{p}(i) + c_{cog}[\mathbf{x}_{p,best}(i) - \mathbf{x}_{p}(i)] + c_{soc}[\mathbf{x}_{best}(i) - \mathbf{x}_{p}(i)]$ *i* is the current generation number $\mathbf{The \ social \ component}$ *representing striving for a better position found in the particle vicinity*

the non-gradient biologically inspired global optimization method

Optimization problem:

 $\min_{\mathbf{x} \in \mathbb{U}} \Phi(\mathbf{x})$ $\Phi(\mathbf{x}) \text{ is the cost function}$ $\mathbb{U} \text{ is the search space}$

Swarm characteristics:

P is the number of particles in the swarm \mathbf{x}_p is the particle position v_p is the particle velocity G is the number of generations

Position and velocity change:

$$\mathbf{x}_{p}(i+1) = \mathbf{x}_{p}(i) + \mathbf{v}_{p}(i+1)$$
$$\mathbf{v}_{p}(i+1) = c_{in}\mathbf{v}_{p}(i) + c_{cog}[\mathbf{x}_{p,best}(i) - \mathbf{x}_{p}(i)] + c_{soc}[\mathbf{x}_{best}(i) - \mathbf{x}_{p}(i)]$$

i is the current generation number

Search stop criteria:

the cost function derivative is small (<u>cost function stagnation</u>)
 all particles are falling into some neighborhood of the best position (<u>swarm stagnation</u>)

Example

[1/100] $C_{in} = 0.8$, $C_{cog} = 2.0$, $C_{soc} = 2.0$

Motion model

Orbit parameters:

h = 550 km - attitude $i = 57^{\circ} - \text{inclination}$ $T_{\circ} \approx 1.58 \text{ h} - \text{orbital period}$

Satellite parameters:

 $10 \times 20 \times 30$ cm - shape (parallelepiped) c = (0, 1, 0) cm - center of mass displacement J = diag(0.15, 0.13, 0.11) kg·m² - inertia tensor

Reference frames:

Equations of motion:

$$\begin{cases} \dot{\omega}_{abs} = J^{-1}(M_{ctrl} + M_{grav} + M_{aero} + M_{dist} - \omega_{abs} \times J\omega_{abs}) \\ + M_{dist} - \omega_{abs} \times J\omega_{abs}) \\ \dot{q}_{o} = -0.5 \, q^{T} \omega, \\ \dot{q} = 0.5(q_{o} \omega + q \times \omega) \end{cases}$$

Stage 1

search for a trajectory on which the projection of the control torque onto the Earth's geomagnetic induction vector is minimal

Attitude trajectory:

Cost function:

$$\alpha(t) = a_{1} \sin \omega_{0} t + a_{2} \cos \omega_{0} t + a_{3} \sin 2\omega_{0} t + a_{4} \cos 2\omega_{0} t,$$

$$\beta(t) = b_{1} \sin \omega_{0} t + b_{2} \cos \omega_{0} t + b_{3} \sin 2\omega_{0} t + b_{4} \cos 2\omega_{0} t,$$

$$\gamma(t) = g_{1} \sin \omega_{0} t + g_{2} \cos \omega_{0} t + g_{3} \sin 2\omega_{0} t + g_{4} \cos 2\omega_{0} t,$$

$$\omega_{0} - \text{ orbital angular velocity}$$

$$W = \left\{a_{k}, b_{k}, g_{k} \in (-3.5 \cdot 10^{-2}, 3.5 \cdot 10^{-2}) \text{ rad}, k = \overline{1,4}\right\}$$

$$Required control torque:$$

$$M_{ctrl}(\alpha, \beta, \gamma) = J\dot{\omega}_{abs}(\alpha, \beta, \gamma) + \omega_{abs}(\alpha, \beta, \gamma) \times J\omega_{abs}(\alpha, \beta, \gamma) - M_{grav}(\alpha, \beta, \gamma) - M_{aero}(\alpha, \beta, \gamma)$$

Stage 1

search for a trajectory on which the projection of the control torque onto the Earth's geomagnetic induction vector is minimal

Attitude trajectory parameters finding by PSO:

$$a_1 = 1.016 \cdot 10^{-2}$$
 rad, $b_1 = -4.028 \cdot 10^{-3}$ rad, $g_1 = 8.067 \cdot 10^{-3}$ rad,
 $a_2 = 2.545 \cdot 10^{-2}$ rad, $b_2 = -9.717 \cdot 10^{-3}$ rad, $g_2 = -4.127 \cdot 10^{-3}$ rad,
 $a_3 = 1.449 \cdot 10^{-3}$ rad, $b_3 = -4.841 \cdot 10^{-5}$ rad, $g_3 = -2.433 \cdot 10^{-2}$ rad,
 $a_4 = 1.124 \cdot 10^{-3}$ rad, $b_4 = 2.231 \cdot 10^{-4}$ rad, $g_4 = -4.637 \cdot 10^{-4}$ rad.

Stage 1

search for a trajectory on which the projection of the control torque onto the Earth's geomagnetic induction vector is minimal

Control torque projection onto the geomagnetic induction vector

14/22

Stage 2

construct a magnetic control that provides convergence

Control gains finding by PSO:

 $k_{\omega} = 1.119 \cdot 10^{-4}$ Nms, $k_a = 6.578 \cdot 10^{-8}$ Nm

* To prove the **asymptotic stability** of the resulting motion, we linearize the equations of motion and use the **Floquet theory**. The norm of eigenvalues of the obtained monodromy matrix (**characteristic multipliers**, ρ) lie inside the unit circle: $|\rho| < 1$

Stage 2 construct a magnetic control that provides convergence

Reference trajectory deviation

17/22 IAC 2021, 25-29 October 2021, Dubai, United Arab Emirates

M_{ctrl}, Nm

The difference between the required $_{\times 10^{-10}}\,$ control torque and realized one $\Delta M_{ctrl,1}$ $\Delta \mathrm{M}_{\mathrm{ctrl},2}$ $\Delta M_{ctrl,3}$ 1.4 1.6 1.8

18/22

IAC 2021, 25-29 October 2021, Dubai, United Arab Emirates

Numerical example

Parameters for numerical simulation

Simulation time	T = 20T₀ ≈ 33 h
SC initial angular velocity	$\omega = [1,2,3] \cdot 10^{-4} \text{ rad/s}$
SC initial orientation	$\alpha = 11.5^{\circ} \cdot \frac{\pi}{180^{\circ}} \approx 0.2 \text{rad}$
	$\beta = 9.5^{\circ} \cdot \frac{\pi}{180^{\circ}} \approx 0.165 \text{rad}$
	$\gamma = 9.7^{\circ} \cdot \frac{\pi}{180^{\circ}} \approx 0.17 \text{rad}$
Magnetic field model	inclined dipole
Inaccuracy of knowledge of the density of the atmosphere	20%
External random disturbances	$M_{dist} \sim 10^{-9} Nm$

Numerical example

Reference and real trajectory

Reference trajectory deviation

^{20/22} IAC 2021, 25-29 October 2021, Dubai, United Arab Emirates

Numerical example

[,] IAC 2021, 25-29 October 2021, Dubai, United Arab Emirates

Conclusion

- a method for constructing an attitude trajectory is proposed
- the **particle swarm optimization** (PSO) method is applied to find the

optimal trajectory coefficients and optimal control gains

- the magnetic attitude control system fully maintains the trajectory
- **numerical example** is given
- the orientation **accuracy** is about **2 degrees**

Thank you for listening!