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Types and purposes of constellations

Classification of satellite constellations:

• Global or local coverage

• Symmetric or asymmetric configuration

• Types of orbits (circular/elliptical, identical or different 

inclinations and semimajor axes, etc.)

Two main applications of global coverage constellations: 

• Communication (at least 1-fold continuous coverage required)

• Global navigation (at least 4-fold continuous coverage required)
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Earth and Moon constellations: 
what’s the difference?

• Far more expensive to deploy a GPS-like 

or Iridium-like constellation

• Cheap small satellites could help, but 

much lower orbits are needed due to 

antenna power constraints

• Dynamical environment is much more 

complicated despite the Moon has no 

atmosphere
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What perturbations to be included?

4/13

For low and medium lunar 

orbits (h < 2R☾ ≈ 3500 km), 

the following perturbations 

dictate the orbital evolution:

• Nonsphericity of lunar 

gravitational potential

• Third-body gravitational 

perturbations (Earth, Sun)

• Solar radiation pressure



Practical approach to choose a degree 
of the spherical harmonics model
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Lunar frozen orbits: unified definition

А frozen orbit is such an orbit that 
the eccentricity vector components 
𝑒𝑥 = 𝑒 cos𝜔, 𝑒𝑦 = 𝑒 sin𝜔 are nearly 
constant (relatively small variations 
are only allowed in the 𝑒𝑥-𝑒𝑦 plane) 
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One-year evolution of the eccentricity vector 

for 5 spacecraft with uniformly distributed 

(in terms of RAAN) orbital planes 𝑖 = 40°

Special case of perturbations: J2+J3 
harmonics of gravitational potential

cos2 𝑖 = 1/5, usually 𝜔 = 90° or 270°

Special case of perturbations: gravity 
due to a third body in a circular orbit

cos2 𝑖 = 3/5 ∙ 1 − 𝑒2 , 𝜔 = 90° or 270°



Frozen orbit design: Bayesian 
optimization approach

To generate a (quasi-)frozen orbit with given inclination and 

RAAN values, the following optimization problem is posed:
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𝐽 = 𝑒𝑓 − 𝑒0
2
+ cos𝜔𝑓 − cos𝜔0

2
+ sin𝜔𝑓 − sin𝜔0

2
minimize

s.t. 𝑎0 − 𝑅
☾
= ℎref ± 10% 𝑒0 ∈ 0, 𝑒maxover 𝑎0, 𝑒0, 𝜔0 and

The spacecraft trajectory is propagated for 𝑡𝑓 − 𝑡0 = 365 days 

by MATLAB’s ode113 solver.

Algorithm parameters: MaxObjectiveEvaluations = 300, stopping criteria  𝐽 < 𝜀 = 10−4

The Bayesian optimizer (MATLAB’s bayesopt) is used.



Practically stable (quasi-frozen) orbits
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One-year evolution of the eccentricity vector 

for 15 spacecraft with uniformly distributed 

(in terms of RAAN) orbital planes 𝑖 = 80°

One-year evolution of the eccentricity vector 

for the most stable (almost perfectly frozen)

6 orbits out of 15 orbits from the left figure



Coverage geometry: beam width, 
footprint size, elevation angle

The antenna beam width 𝛼 defines 

the minimum elevation angle 𝛽:
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For an omnidirectional/hemispherical 

antenna, the footprint half-size 𝜑 is 

obtained from the constraint 𝛽 ≥ 5°:

sin
𝛼

2
=

𝑅

𝑅 + ℎ
cos𝛽

𝜑 = 85° − sin−1
𝑅

𝑅 + ℎ
cos 5°



Quasi-uniform surface grid
for global coverage analysis

To generate a (quasi-)uniform surface grid 

of 𝑛 points for global coverage analysis, we 

use the interior-point optimization method 

(MATLAB’s fmincon) to find a minimum of 

the functional
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*Lee, S. & Mortari, D. Quasi-equal area subdivision algorithm for uniform points on a sphere with application 

to any geographical data distribution // Computers & Geosciences, 2017, Vol. 103, pp. 142–151

𝐽 =  

1≤𝑖<𝑗≤𝑛

log
1

𝒓𝑖 − 𝒓𝑗

which choice was inspired by the paper of Lee

and Mortari*

𝑛 = 1200 points

Boguslawsky crater

Manzinus 

crater



Global coverage constellation
in near-polar quasi-frozen orbits

For a LLO constellation 

(ℎref = 132 km, 𝑖 = 80°), 

the minimum number 

of orbital planes is
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𝑁𝑝 =   
180

2𝜑
= 6

𝑁𝑠 =   
360

2𝜑
= 11

with minimum number 

of satellites in each plane



Navigation constellation
in near-polar quasi-frozen orbits
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>300 satellites in a LLO constellation 

required to achieve an N-fold 𝑁 ≥ 4

continuous lunar coverage 

High collision risk: 540 m minimum 

intersatellite distance if 10 satellites 

are uniformly distributed in each of 

30 orbital planes

However, for navigation in lunar polar 

regions, significantly lower number of 

satellites – as well as orbital planes –

are enough for a reliable fix

Number of satellites visible from Boguslawsky 
crater among 180 satellites of near-polar LLO 
constellation (15 planes, 12 satellites in each)



Conclusions

• (Quasi-)frozen low and medium lunar orbits are the only 

viable option for placing a constellation of small satellites 

with no or limited resources for long-term station-keeping

• Near-polar frozen LLOs are suitable for almost continuous 

global coverage with a constellation of <100 CubeSat-type 

satellites with a low-power omnidirectional/hemispherical 

antenna (could be augmented with several s/c in MLOs)

• For navigation purposes in lunar polar regions, it is enough 

to place <150 satellites in near-polar frozen LLOs

• More details on the frozen orbit design are put in the paper

13/13The study is supported by the Russian Science Foundation (RSF) grant 19-11-00256.
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Gravitational potential expansion
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Effects due to second zonal harmonic J2

Orbital elements are no longer constants: the orbital semi-major axis, 

inclination, and eccentricity start oscillating around their mean values 

with a (relative) amplitude of the order of J2.
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