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The research paper studies the potential of frozen low lunar orbits to be used in the design of constellations
for global and regional communication/navigation. We introduce a novel two-stage approach to the robust
lunar frozen orbit design based on two non-gradient techniques, the Bayesian optimization and the Nelder-
Mead algorithm. The developed methodology allows revealing orbits with the eccentricity vector periodic
behavior over the one-year propagation interval in the full dynamical model. By leveraging the convenient
nomogram with basic constellation visibility parameters and lower bound coverage curves, several Walker-
type low-altitude configurations are identified and properly adjusted to be frozen. The frozenness condition
appears to be achievable without changing the orientation of orbital planes. Visibility and coverage metrics
(multiplicity of continuous coverage for specified sites, polar regions, or the whole surface; position dilution
of precision) of candidate constellations are analyzed. Several promising designs of frozen constellations in
near-circular low orbits are singled out. The frozen orbit stability and station-keeping cost are discussed.

I. INTRODUCTION

The steadily growing worldwide interest in lunar
exploration and numerous plans to establish a lunar
base encourage the study and development of multi-
spacecraft constellations around the Moon for com-
munication and navigation purposes. A low-altitude
constellation of cheap small spacecraft that provides
low signal latency and is well suited for both optical
and laser short-range intersatellite links, would be a
very attractive option. However, pursuing that way,
one should deal with the two key problems. The first
problem is the efficient constellation deployment. In
contrast to the case of Earth-orbiting constellations,
the multiple-launch deployment scheme implying at
least one dedicated launch followed by a high-energy
transfer for each of the orbital planes, appears to be
prohibitively expensive when dealing with large dis-
tributed systems around the Moon. Therefore, most
of the researchers have been so far focused primarily
on constellations in high lunar orbits [1,2] and even
more distant libration point orbits [3,4], with much
lower number of spacecraft and less costly launches.
A promising solution that potentially allows one not
to abandon the use of low lunar orbits (LLOs) seems
to be in leveraging a ballistic lunar transfer (BLT), a
special kind of low-energy lunar transfers exploiting
the solar gravitational perturbation. In the course of

a very long BLT, several groups of spacecraft can be
successively separated from a mothership by a small
impulse and then captured into orbits with different
right ascension of the ascending node values [5].

The second problem to be solved in order a small
satellite lunar constellation to be feasible is to select
long-term stable orbits that uniformly surround the
Moon. Its irregular gravity field substantially limits
the range of suitable lunar orbits—especially of low
altitude—with a reasonable lifetime. Due to the fact
that traditional approaches developed for the design
of Earth constellations were not aimed at exploiting
complex natural dynamics in the circumlunar space,
they require much propellant to reject gravitational
perturbations. For example, the operational lifetime
of the lunar constellation made of 3U CubeSats with
a standard monopropellant thruster does not exceed
100 days [6]. The only viable solution is represented
by frozen orbits, a special class of orbits with nearly
constant mean values of the eccentricity vector com-
ponents, ex = e cosω and ey = e sinω. Here e is the
eccentricity and ω is the argument of periapsis. The
Earth’s gravity is a dominant source of perturbation
in high lunar orbits, whereas in LLOs, the condition
of frozenness is fully dictated by the Moon’s gravity.
Medium lunar orbits experience both effects.

The present paper further develops and expands
the study of frozen orbit constellations begun in [7].
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A two-stage non-gradient optimization procedure is
devised to search for frozen LLOs. At the first stage,
a coarse global minimum search for eccentricity vec-
tor periodic behavior over the one-year time interval
is done by the robust Bayesian optimizer augmented
with the sequential domain reduction. After that, at
the second stage, the solution found is fine-tuned by
the Nelder-Mead method. Such an approach is quite
flexible; it permitted us to design lunar frozen orbits
so that their orbital elements meet user-defined box
constraints. A useful nomogram with basic visibility
parameters and lower bound global coverage curves,
first presented below, was successfully employed for
the assessment whether a given constellation design
is suitable for communication or navigation needs. If
so, a set of frozen orbits as much close to those from
the considered design as possible, is generated; their
coverage and stability characteristics are evaluated.

The paper has the following structure. The next
chapter introduces the dynamical model used in the
study, including a simple approximation rule of how
to truncate the lunar gravitational potential in case
of propagating low or medium orbits. Chapter III is
devoted to the non-gradient optimization procedure
and its implementation details. Then, the constella-
tion performance metrics monitored in this research
are summarized in Chapter IV. The analysis of some
candidate frozen constellations and the discussion of
their performance, globally and in polar regions, are
contained in Chapter V. Long-term stability issues
for frozen LLOs are also commented there; the cost
and optimal periodicity of orbital correction maneu-
vers are estimated.

II. DYNAMICAL MODEL

When dealing with the numerical propagation of
lunar orbits, two major perturbation sources are the
Moon’s gravity and the Earth’s gravity. In altitudes
up to 2000 km, the former dominates over the latter
(Fig. 1). The lunar gravitational potential is known
to be complex. It is of great importance to properly
truncate it in order to avoid excessive computations
while retaining high propagation accuracy. Perhaps,
the most systematic way to truncate the perturbing
acceleration stems from the philosophy of perturba-
tion theory: the truncated terms magnitude relative
to the central (Newtonian) part of the gravitational
acceleration should be bounded by some predefined
small parameter ε. In our previous work [7], we have
conducted a thorough examination of the maximum
magnitude of gravitational acceleration imparted by
spherical harmonics of various degree and order as a
function of the orbital altitude. Based on the results

of those numerical experiments, we proposed simple
approximating expressions for the maximum degree
and order of harmonics to be retained in the gravity
field model. In this research, the ε = 10−6 threshold
is used, and the sufficiently accurateN×N model of
lunar gravitational potential corresponds to

N =
⌈
(25/h)

0.8
⌉

with altitude hmeasured in thousands km. The half
square brackets in this formula denote, as usual, the
ceiling function. As can be seen from Fig. 2, such an
approximation is very accurate for low and medium
lunar orbits up to 3000 km.

Fig. 1: Relative magnitude of perturbations
as a function of the orbital altitude.

Fig. 2: Degree and order for the lunar potential
expansion sufficient to ensure the truncated
perturbing acceleration threshold ε = 10−6.

Apart from the Moon, the Earth and the Sun are
also taken into account as point gravitating sources.
The positions of celestial bodies have been retrieved
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from JPL’s DE430 ephemeris model [8]. Finally, the
solar radiation pressure effect is modeled. The area-
to-mass ratio of 0.02 m2/kg is assumed. Trajectories
are propagated numerically using the variable-order
Adams method (a Fortran routine similar to ode113
routine in MATLAB) in rectangular Cartesian coor-
dinates of the selenocentric celestial reference frame
(SCRF), centered at the Moon’s center of mass. The
SCRF axes are parallel to those of the International
Celestial Reference Frame [9].

III. DESIGN OF FROZEN ORBITS

The concept of a frozen orbit, an orbit with con-
stant average eccentricity and argument of periapsis
values, was first introduced for near-Earth orbits at
the dawn of the space era and has soon become asso-
ciated with an equilibrium of the averaged or doubly
averaged system [10]. Unlike the Earth or an Earth-
like oblate planet, the Moon has an irregular gravity
field with no single dominant harmonic. Asymptotic
expansions of the lunar orbiter perturbation theory,
mostly derived in simplified models with low-degree
harmonics and third-body attraction [11–13], fail to
represent an accurate approximation to low-altitude
frozen orbits, whereas more realistic models require
tedious and lengthy symbolic computations [14,15].
Not surprisingly, mission designers prefer numerical
techniques since they are much easier to understand
and implement. Along with the brute-force search in
the high-precision dynamical model [16,17], smarter
approaches are also developed that are based on the
numerical continuation of periodic orbit families via
different predictor-corrector schemes [18,19]. At the
same time, it is worth noticing that the condition of
periodicity in the synodic frame, which is equivalent
to having a repeating ground track [19], is formally
a stronger condition than the frozenness because the
latter assumes periodic behavior for the argument of
periapsis and the eccentricity only, not imposing the
constraint of synodic resonance on the altitude. It is
therefore essential to build a more flexible technique
of lunar frozen orbit design, capable of searching for
long-lived orbits under user-specified constraints on
their orbital elements. The equal spacing of circular
near-polar constellation orbits around the Moon is a
relevant example of such a constraint.

The major obstacle towards the robust design of
frozen LLOs is very high sensitivity when an initial-
guess orbit is propagated for a long time interval. It
deteriorates the local correction procedure by a gra-
dient method. So, we came up with a natural idea of
using non-gradient methods. The best performance,
among both gradient and non-gradient optimization

solvers, is demonstrated by the Bayesian algorithm,
one of the most powerful non-gradient techniques of
optimizing a function that is computationally costly
to evaluate [20]. In the earlier paper [7], MATLAB’s
bayesopt function was exploited. Currently, we use
the improved Python version of the algorithm based
on the open-source code developed by Nogueira [21].
This global optimization solver augmented with the
sequential domain reduction tool allows speeding up
the convergence process by adaptively squeezing the
search domain. Another source of computational ef-
ficiency is due to translating such low-level routines
as numerical integration to Fortran and then calling
them by the F2PY wrapper from the NumPy library.

Now it is time to give the technical details of the
posed optimization problem. The objective function
is defined as the Euclidean norm of the difference in
the eccentricity vector over the propagation interval√

(∆ex)2 + (∆ey)2 → min

where ∆ex = ex,f−ex,0 and ∆ey = ey,f−ey,0 stand
for the difference between the initial and final values
of the eccentricity vector components. To search for
Walker-type frozen constellations of a given altitude
h = href, we impose the box constraints

a0 ∈ [amin, amax]

ex,0 ∈ [−emax, emax]

ey,0 ∈ [−emax, emax]

on the optimized vector ξ = (a0, ex,0, ey,0), with the
bounds being set to emax = 0.02 for the eccentricity
and

amin = RM + href · 0.95

amax = RM + href · 1.05

for the semimajor axis. Here RM = 1737.4 km is the
mean radius of the Moon.

The initial values of the inclination and the right
ascension of the ascending node can be set fixed: we
found that they do not affect the iterative procedure
convergence. The choice of right ascension values, as
well as of the reference altitude, comprises the issue
of preliminary constellation design, which is covered
in the next chapter. What concerns the inclination,
it is assumed to be i0 = 84◦ for all the orbital planes
in any design considered. Such a value is close to one
of the four inclinations at which frozen LLOs can be
near-circular [15]. Suitable for observing lunar polar
regions, the i0 = 84◦ inclination is at the same time
more safe: strictly polar (i = 90◦) constellations are
more susceptible to the danger of collisions between
the constellation satellites at high latitudes.
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For definiteness, a spacecraft is assumed to start
orbiting from the ascending node and the initial mo-
ment of time t0 corresponds to the midnight of 1 Jan
2022. The propagation interval can be as long as one
year (further, we considered tf = t0+365 days). The
obvious initial guess a0 = RM+href, ex,0 = ey,0 = 0
appeared to be adequate in all the cases.

The sequential domain reduction option was ap-
plied as follows. Starting with the 20th iteration, the
search box size is multiplied by 0.95. The total num-
ber of Bayesian algorithm iterations is manually set
to 130, which is enough for deep capture in the basin
of attraction of a correct local minimum. After that,
to further decrease the objective function value to as
low as 10−4 and less, the Nelder-Mead non-gradient
solver from the SciPy library is advised to be started

from the point the Bayesian solver stopped with the
same box constraints. The stopping condition of the
Nelder-Mead solver was defined in terms of the op-
timized vector tolerance: |∆ξ| < xatol = 10−5.

To validate the suggested two-stage procedure of
frozen orbit design, we performed a lot of numerical
experiments for various orbital plane orientations in
space and different reference altitudes. Particularly,
we have reproduced two repeat ground track orbits
(RGT) from the paper of Russell and Lara [19]. The
eccentricity vector evolution for two RGTs, medium
(h ≈ 3308 km) and low (h ≈ 124 km), drawn in that
paper (reprinted for convenience in Figs. 3a and 4a),
very closely matches (almost coincides) with what is
observed in our simulations (see Fig. 3b and Fig. 4b,
respectively).

(a) retrieved from [19] (b) reproduced

Fig. 3: Eccentricity vector evolution for the 73-cycle RGT periodic orbit from [19].

(a) retrieved from [19] (b) reproduced

Fig. 4: Eccentricity vector evolution for the 328-cycle RGT periodic orbit from [19].
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Once a set of frozen orbits uniformly distributed
around the Moon is obtained, initial states for same-
plane satellites in a constellation may be assigned as
states along the reference frozen orbit equidistant in
time over the nominal orbital period.

A remark should be made that the lunar orbiter
elements are usually given with respect to the mean-
Earth/mean-rotation (MER) reference frame which
is employed to define the selenographic coordinates.
At the same time, the spherical harmonic expansion
of the selenopotential is given with respect to the so
called Principal Axes (PA) reference frame. Its axes
are very close to those of MER. The rotation matrix
for the MER–PA transformation can be found in [8].
As for the PA–SCRF transformation, its matrix can
be constructed using lunar libration angles included
in the ephemeris information.

IV. CONSTELLATION DESIGN AND
PERFORMANCE METRICS

The preliminary step in the design of frozen LLO
constellations is to select an orbital configuration we
subsequently attempt to make frozen. In this study,
we restrict ourselves to Walker–Mozhaev symmetric
constellations in identical circular orbits distributed
uniformly around the Moon. Four parameters are to
be defined for such a constellation:

1) N , the total number of satellites;

2) P , the number of orbital planes;

3) href, the reference altitude of all the planes;

4) the phase shift between the respective satellites
in adjacent planes.

The phase shift for a Walker–Mozhaev constellation
is usually characterized by integer F : it is expressed
through this integer as F ·360◦/N . Below we use the
standard notation i◦ : N/P/F . Specifically, constel-
lations 84◦ : N/P/1 are of our interest.

The design of symmetric constellations in identi-
cal circular orbits uniformly distributed around the
spherical celestial body has been widely studied in a
large number of papers since the pioneering works of
Walker [22] and Mozhaev [23,24]. If a satellite orbits
the body of radius R at altitude h, it covers the spot
with the central half-angle φ (referred to as the foot-
print size in the below text) such that

cosβ =
R+ h

R
sin

α

2
=

R+ h

R
cos (φ+ β)

where β is the minimum elevation angle at which an
orbiting satellite is still considered visible (Fig. 5).

Fig. 5: Relation between the minimum elevation
angle, the orbital altitude, and the footprint size.

Taking the value of β = 5◦ typically adopted for
atmosphereless bodies such as the Moon, we have

h

R
=

cos 5◦

cos (φ◦ + 5◦)
− 1

This gives a one-to-one correspondence between the
orbital altitude and the footprint size.

The other quantities uniquely determined by the
footprint size are the lower bound for the number of
orbital planes

Pmin =

⌈
180◦

2φ◦

⌉
and the minimum number of satellites in each plane

(N/P )min =

⌈
360◦

2φ◦

⌉
required for one-fold global continuous coverage. As
for the total number of satellites in a single-coverage
constellation, its static estimate from below

N1f = 2 +
60◦

60◦ − arctan
√
3 cosφ

is derived in the classical paper of Ballard [25]. Note
that a simpler, but very close estimate

N1f ≈ Pmin · (N/P )min = 162 ·

⌈(
10◦

φ◦

)2
⌉

can also be used. The lower bound estimate for four-
fold global continuous coverage byWalker–Mozhaev
constellations is much harder to get analytically. To
the best of our knowledge, it has not been published
yet. The simplified estimate

N4f = 4 ·N1f

derived for street-of-coverage constellations is there-
fore utilized, despite such an estimate being slightly
conservative for Walker–Mozhaev constellations.
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In order to compactly and conveniently visualize
the principal design parameters, we put forward the
idea of a single nomogram, with the x-axis being the
footprint size and the y-axis unified for the properly
normalized four parameters (see Fig. 6):

� Orbital altitude, expressed in body’s radii

� Free-space path loss (FSPL) of the signal power,
normalized to its value at the altitude of h = R;
it grows proportionally to the square of altitude

� Minimum number of satellites in a constellation
to provide 1-fold coverage (in hundreds)

� Minimum number of satellites in a constellation
to provide 4-fold coverage (in hundreds)

Moreover, the green color shades of the background
stripes indicate the corresponding number of orbital
planes at least required, starting with two planes for
the rightmost stripe.

Fig. 6: Nomogram for basic coverage parameters
as a function of the footprint size: the altitude of
orbits, in R (blue); the free-space path loss (red)
normalized to its value at h = R; the theoretical
minimum constellation size, in 100s of satellites,
for 1-fold (maroon) and 4-fold (violet) coverage.
The 5 deg minimum elevation angle is assumed.

The advantage of the developed nomogram is its
universality (i.e., validity for any particular celestial
body) and comprehensiveness, which makes it quite
convenient for the preliminary constellation design.

Leveraging the nomogram, we have selected two
footprint sizes, φ = 25◦ and φ = 35◦, corresponding
to the altitude values href = 0.15RM ≈ 261 km and
href = 0.3RM ≈ 522 km, as potentially appropriate

for candidate low-altitude lunar constellations: they
ensure the total number of satellites does not exceed
100 even for navigation purposes. As for the number
of orbital planes, our numerical analysis covers LLO
constellations containing at least two orbital planes,
no matter which of the two reference altitude values
is taken.

Among the performance metrics tracked, we are
most interested in median and minimum numbers of
visible spacecraft, globally and in lunar polar zones,
which we define as North and South polar caps with
latitudes higher than 70◦. Additionally, two craters,
Boguslawsky (72.9 S, 43.2 E) and Manzinus (67.7 S,
26.8 E), were of specific interest to us as the primary
and backup landing sites of Luna 25, the mission to
the Moon Russia is scheduled to launch in late 2022.
The constellation geometry quality for navigation is
often quantified by the position dilution of precision
(PDOP), a useful scalar metric that reflects how the
user equivalent range error (UERE) is amplified due
to poor configuration of visible satellites to result in
higher user position uncertainty. The 50% (median)
and 95% PDOP levels are tracked for both the poles
and the craters of interest.

To evaluate the above mentioned metrics, we use
a quasi-uniform grid on the Moon’s surface which is
generated as an outcome of the numerical optimiza-
tion procedure similar to the one introduced in [26].
Specifically, to generate a grid of n almost uniformly
distributed points on the unit sphere, one can search
for unit vectors ri ∈ R3, i = 1, . . . , n, that minimize
the objective function

J =
∑

1≤i<j≤n

log
1

|ri − rj |

For convenience, the first six vectors r1, . . . , r6 have
been fixed to (±1, 0, 0), (0,±1, 0), and (0, 0,±1), the
points on the MER frame axes, including North and
South poles. Moreover, we fix r7 and r8 at positions
of Boguslawsky and Manzinus craters. In this study,
n = 1200 is set. Unlike our previous paper [7], where
the optimization problem was solved by MATLAB’s
realization of the interior point algorithm, the trust-
region interior point method from the Python SciPy
library is exploited. The initial guess is generated as
a three-dimensional Gaussian random vector of unit
norm. The resulting grid is shown in Fig. 7.

V. CANDIDATE CONSTELLATIONS
PERFORMANCE AND STABILITY

In the framework of this study, several dozens of
LLO constellations have examined. All of them have
successfully been made frozen by applying the novel
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two-stage non-gradient technique. Among the whole
set of different designs, we will focus further only on
5 configurations appeared to be best suited for some
of the goals: global or local lunar surface coverage of
a multiplicity high enough to ensure communication
and navigation services. To visualize the parameters
of the selected constellations, the five star marks are
displayed on the introduced nomogram (see Fig. 8),
with the y-value for each of the marks being equal to
the total number of satellites (in 100s) and the label
next to the mark designating the numbers of orbital
planes and satellites per plane.

Fig. 7: Quasi-uniform surface grid of 1200 points
with 8 sites included by default; among them are
the North and South poles, as well as the craters
Boguslawsky (light green) and Manzinus (purple).

Out of the five selected candidate constellations,
three have an altitude of href = 261 km, whereas the
other two are designed for href = 522 km. The major
performance metrics of the candidate constellations
are summarized in Table 1. Note that, in addition to
earlier mentioned metrics, the minumum distance is
also tracked between the satellites in a constellation
since it is a very important safety parameter.

Based on the presented results, one can conclude
that three constellations (84◦ : 54/3/1, 84◦ : 70/5/1,
84◦ : 36/3/1) are capable of providing navigation for
the lunar polar zones, including the targeted craters
and the poles themselves. Navigation quality is very
good almost all the time. It is especially true for the
84◦: 70/5/1 constellation. Apart from high-precision
polar navigation, it also provides the global commu-
nication service. The same property is shared by the
84◦ : 36/3/1 constellation. Close performance can be
attained with significantly smaller numbers of satel-
lites and orbital planes, but at the cost of four times
higher FSPL due to the doubled altitude. We should
notice, however, that the larger the orbital altitude,
the greater the minimum intersatellite distance. So,
performance and safety vote for the altitude as high
as the satellite power budget allows.

The one-year evolution of the eccentricity vector
and the semimajor axis for each orbital plane of the
three constellations is shown in Figs. 9–11. To avoid
full overlapping, we displayed the curves for just one
satellite in each orbital plane; the other satellites in
the same plane have very similar evolution. It can be
deduced from these figures that all the constellation
orbits are indeed frozen and remain near-circular. A
slight difference in the semimajor axis from plane to
plane serves as the main instrument for meeting the
frozenness condition.

If one seeks guaranteed navigation globally, over
the entire lunar surface, the constellation size has to
be significantly larger. Keeping a three-plane design
of the 522 km constellation, the number of satellites
in each plane needs to be increased almost threefold:
the 84◦ : 99/3/1 constellation is the first that attains
global continuous coverage.

On the other part of the range, among the down-
sized constellations, the 84◦ : 18/2/1 constellation at
a 261 km altitude appears to be the most promising
in case a continuous up/downlink for the lunar base
in the polar region is required. There is no any other
lunar constellation orbiting so low that is able to do
such a thing more efficiently.

Fig. 8: Five candidate LLO constellations marked
on the previously introduced nomogram.

We should remark that the conducted analysis is
not in any sense an exhaustive search for those LLO
constellations that can be made frozen for years and
possess good performance metrics for lunar commu-
nication and navigation. The numerical results play
an illustrative role to demonstrate opportunities the
proposed powerful techniques and tools provide to a
mission designer.
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(a) eccentricity vector (b) semimajor axis

Fig. 9: One-year evolution of orbital elements for the 84◦ : 54/3/1 constellation (href = 261 km).

(a) eccentricity vector (b) semimajor axis

Fig. 10: One-year evolution of orbital elements for the 84◦ : 70/5/1 constellation (href = 261 km).

(a) eccentricity vector (b) semimajor axis

Fig. 11: One-year evolution of orbital elements for the 84◦ : 36/3/1 constellation (href = 522 km).
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Table 1: Coverage performance for some candidate constellations.

href = 261 km Nglobal NNorth NSouth NBogus PDOPNpole PDOPSpole PDOPBogus

84◦ : 18/2/1
dmin = 1.01 km

min 0
med 0

min 1
med 2

min 1
med 2

min 1
med 2

N/A N/A N/A

84◦ : 54/3/1
dmin = 0.37 km

min 0
med 2

min 4
med 7

min 4
med 6

min 4
med 6

95% 6.5
med 2.0

95% 6.9
med 2.1

95% 10.9
med 3.0

84◦ : 70/5/1
dmin = 0.54 km

min 1
med 3

min 4
med 9

min 4
med 8

min 4
med 8

95% 3.2
med 1.9

95% 3.4
med 2.0

95% 4.8
med 2.4

href = 522 km Nglobal NNorth NSouth NBogus PDOPNpole PDOPSpole PDOPBogus

84◦ : 36/3/1
dmin = 2.66 km

min 1
med 3

min 5
med 7

min 5
med 6

min 5
med 6

95% 7.2
med 1.8

95% 7.4
med 1.8

95% 8.2
med 2.3

84◦ : 99/3/1
dmin = 1.30 km

min 4
med 7

min 16
med 19

min 15
med 18

min 16
med 18

95% 1.1
med 1.0

95% 1.1
med 1.0

95% 1.5
med 1.2

It was interesting to find that, though the frozen
LLOs seem to be long-term stable, they are actually
unstable, be it very mild instability. This fact can be
proved based on the sign of the maximum Lyapunov
characteristic exponent. More precisely, we estimate
the leading finite-time Lyapunov exponent (FTLE)

λ (t; t0) =
ln ∥Φ(t; t0)∥2

t− t0

by integrating the variational equations for the state
transition matrix Φ(t; t0) alongside the equations of
motion. When we increase the propagation interval,
the leading FTLE tends to some limit value. For the
frozen orbits with href = 261 km, this value appears
to be equal to 3.5·10−4 and almost does not depend
on a specific orbit. In the case of href = 522 km, the
result is similar: 3 ·10−4. Converting to dimensional
time units and inverting yields the characteristic in-
stability time (Lyapunov time) of 1.1 to 1.3 months.
According to numerous studies of spacecraft motion
in the unstable dynamical environment, the optimal
frequency of impulsive station-keeping burns [27] or
optimal update time for low-thrust orbit control [28]
can be estimated by the value of the instability time.
It implies the optimal periodicity of frozen orbit cor-
rections to be once per 1–2 months. The annual cost
for a satellite to correct its orbit will supposedly not
exceed 1–2% of the Delta-V budget allocated for the
missions with extensive maneuvering between usual
(non-frozen) LLOs: 150 m/s in the LROmission [29]
and the extended GRAIL mission [30] (note that the
5-month budget is indicated in the latter case). The
future extension of this work will include the results
of Monte-Carlo experiments to confirm feasibility of
long-term station-keeping of frozen constellations.

VI. CONCLUSIONS

The whole toolkit of techniques and instruments
has been presented for the easy and robust design of
lunar frozen orbits of low altitude and constellations
employing these orbits. The Bayesian/Nelder-Mead
method of non-gradient optimization allows flexibly
incorporating different design constraints and at the
same time succeeds in satisfying the frozenness con-
dition with high accuracy. The compact nomogram,
specially developed here to visualize the preliminary
design of Walker–Mozhaev constellations, has given
useful insights regarding geometrical configurations
capable of providing the lunar surface coverage. The
numerical study of various constellation designs has
revealed several promising configurations for the de-
ployment of navigation infrastructure in polar zones
also applicable to the task of global communication.
The Lyapunov time estimated for all the considered
orbits has shown mild instability, which may require
negligible orbital corrections on a monthly basis.
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