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The work is devoted to the problem of adaptation of planar sun-assisted lunar transfer trajectories ob-
tained in the bicircular restricted four-body problem model to the high-fidelity ephemeris model of motion.
In addition to the standard gradient multiple-shooting method, which is conventionally used when solv-
ing such type of problems, the authors consider the non-gradient modification of the multiple-shooting
technique based on the modified Chebyshev-Picard iteration method. The study of the convergence char-
acteristics of both gradient and non-gradient methods is performed on the example of a flight from the
low-Earth parking orbit to a lunar near-rectilinear halo orbit.

I. INTRODUCTION

A sun-assisted lunar transfer (SALT), also
known as a weak stability boundary transfer or bal-
listic lunar transfer, is a low-energy transfer to the
Moon when a spacecraft departs from a low Earth
orbit to a distance far beyond the lunar orbit, un-
dergoes the influence of the solar gravity field, and
then heads toward the Moon to be captured bal-
listically. This type of transfer is characterized by
the propellant efficiency and wider launch windows
compared to conventional high-energy fast transfers
to the Moon. The flight along a SALT trajectory
typically takes several months, but requires 200-300
m/s less delta-v. According to Topputo’s research,
SALT trajectories provide the minimum transfer
cost among two-impulse transfers to the Moon in
the Earth-Moon-Sun planar bicircular four-body
problem (PBR4BP) model, especially when a lunar
fly-by included [1].

Such a benefit makes SALT trajectories an at-
tractive option both for the efficient cargo payload
delivery to the circumlunar space and for lunar mis-
sions of small spacecraft with very limited propel-
lant resources. This type of transfer was used in
the Hiten [2] (JAXA, 1990) and GRAIL [3] (NASA,
2011) missions. And just recently, on June 28, 2022,
NASA’s 12U cubesat CAPSTONE [4] was launched
on a four-month SALT trajectory as a pathfinder for
the prospective Lunar Gateway space station [5].
Two more cubesats, Japanese EQUULEUS [6] and
NASA’s Lunar IceCube [7], both using sun-assisted

transfers, are scheduled to be launched on Septem-
ber 3, 2022 as a part of Artemis-1 mission [8].

An overview of SALT trajectory design methods
can be found in the monograph by J. Parker and R.
Anderson [9]. In general case, existing techniques
of designing such transfers rely on direct numerical
optimization procedures, usually of shooting type.
The major challenge is in choosing a good initial
guess for that procedures. Previously, we presented
several geometrical and analytical tools for the sys-
tematic design of SALT trajectories in the PBR4BP
model of motion [10, 11]. This model is the sim-
plest one that captures the fundamental geometri-
cal and energy properties of sun-assisted trajecto-
ries. Therefore, it can be used for the initial guess
trajectory design.

The aim of the current research is to study the
problem of adapting SALT trajectories from the
PBR4BP to the realistic ephemeris model and spe-
cific boundary conditions. The standard tool of
trajectory adaptation to a more complex dynam-
ical model is the multiple shooting technique. The
resulting system of nonlinear equations is usually
solved by some gradient-based method. However,
the evaluation of the gradients in the ephemeris
model is cumbersome and leads to slow or even
poor convergence when using a planar SALT tra-
jectory as an initial guess. So, in addition to
the standard multiple shooting procedure, the au-
thors consider the non-gradient modification of the
multiple shooting technique based on the modified
Chebyshev-Picard iteration method. Up to this mo-
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ment, the developed modification of the multiple
shooting technique can be used for solving bound-
ary value problems without optimization. However,
it gives a smooth solution from the vicinity of the
Earth to the vicinity of the Moon, which is then can
be fed as an initial guess to the gradient method to
obtain an exact solution.

In this work, the above-described approaches are
compared for the flight from the Baikonur launch
parking orbit (h = 200 km, i = 51.6 deg) to the
L2 southern near-rectilinear halo orbit (NRHO) 9:2,
the primary candidate for the nominal orbit in the
ongoing Lunar Gateway project.

II. SALT GENERATION IN PBR4BP MODEL

II.I Planar bicircular restricted four-body problem

The planar bicircular restricted four-body prob-
lem models the motion of the spacecraft of neg-
ligible mass under the gravitational pull of three
massive bodies, the Earth, the Moon, and the Sun
in our case. In this model, the Earth (with the
mass mE) and the Moon (mM ) are revolving with a
constant angular velocity in circular coplanar orbits
around their center of mass C. The Sun (mS) is as-
sumed to revolve in a circular orbit of radius L� 1
around C in the same plane (see Fig. 1). The mo-
tion of the spacecraft also occurs in this plane. In
the standard Earth-Moon rotating reference frame
with the x-axis connecting mE and mM , the equa-
tions of motion are written as

ẍ− 2ẏ =
∂Ω4

∂x
, ÿ + 2ẋ =

∂Ω4

∂y
[1]

where

Ω4 = Ω3 +
µS
r3
− µS
L2

(x cos θ + y sin θ) [2]

is the effective potential. The equations [1] are writ-
ten in the dimensionless system of units in which 1)
masses are normalized so that mE = 1 − µ and
mM = µ where µ = mM/(mE +mM ), 2) the an-
gular velocity of the rotating frame is normalized
to one, and 3) the distance between mE and mM

is normalized to one. Thus, the dimensionless uni-
versal gravitational constant G is also identically
equal to one. In this system of units, mE and mM

are at fixed positions along the x-axis at [−µ, 0] and
[1−µ, 0], respectively. For the Earth-Moon system,
the units of distance, velocity and time are the fol-
lowing:

DU = 384402 km,

VU = 1.024544182251307 km/s,

TU = 4.342513772754916 days.

The mass parameter

µ = 0.012150584460351,

the gravitational parameter of the Sun

µS = 3.289005596145305× 105.

The spacecraft distances to mE , mM and mS are
given by the equalities r21 = (x + µ)2 + y2, r22 =
= (x− 1 + µ)2 + y2, r23 = (x − L cos θ)2 + (y−
−L sin θ)2, respectively. The phase of the Sun
θ defines the position of the Sun in the Earth-
Moon system; this angle linearly grows over time:
θ = θ0 + ωS(t − t0). For L = 389.17 (the approx-
imate Earth-Sun distance), the orbital velocity of
the Sun is determined as ωS =

√
(1 +mS)/L3−1 ≈

≈ −0.9253.
When the last two terms in the effective po-

tential [2] are discarded, the BR4BP model is re-
duced to the well-known planar circular restricted
three-body problem (CR3BP) model with the ef-
fective potential Ω3 = (x2 + y2)/2 + (1− µ)/r1+
+µ/r2 + µ(1− µ)/2.

II.II Designing SALT transfers in PBR4BP model

Let us briefly describe the methodology based
on which SALT trajectories are calculated in the
framework of the PBR4BP model. At the first
stage, a sun-assisted trajectory is divided into three
parts using the concept of regions of prevalence.
According to Castelli [12], the boundary of the
Earth-Moon region of prevalence consists of points
in the configuration space where the error in the
right-hand side of the spacecraft’s equations of mo-
tion would have the same magnitude independently
of what body we neglect in the Earth-Moon-Sun
system—the Moon or the Sun. In a planar case, the
boundary of the region of prevalence can be mean-
square approximated by an ellipse in the Earth-
Moon rotating reference frame [11]. Figure 2 shows
the Earth-Moon region of prevalence boundaries for
different Sun phase angles and the orange ellipti-
cal boundary of the mean-square averaged region of
prevalence. So, a SALT trajectory is divided into
the three legs: the arriving and departing legs, lying
inside the region of prevalence and calculated in the
Earth-Moon PCR3BP model, and the exterior leg,
designed in the Earth-Moon-Sun PBR4BP model.

The use of the PCR3BP within the region of
prevalence allows one to take advantage of impor-
tant dynamical properties of this model. In particu-
lar, the PCR3BP system has an integral of motion,
the Jacobi integral,

JEM = 2Ω3 − (ẋ2 + ẏ2),
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Fig. 1: The Cxy and Cx′y′ planes of the Earth-Moon and the Sun-barycenter rotating reference frames.
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Fig. 2: Earth-Moon region of prevalence boundaries for different Sun phase angles and the orange
elliptical boundary of the mean-square averaged region of prevalence.

and, thus, any solution lies on the manifold
J (J̃EM ) = {[x, y, ẋ, ẏ] ∈ R4 | JEM (x, y, ẋ, ẏ) =

= J̃EM} for some energy level J̃EM .

As it is well known, for a planar trajectory to
be transit (i.e., passing inside the lunar Hill sphere),
it should belong to the interior of the stable man-
ifold tube of the planar Lyapunov orbit with the
corresponding Jacobi integral level [9]. In the (x, ẋ)
plane, the manifold trajectories, when crossing the
Earth-Moon region of prevalence boundary, form a
closed curve limiting the L2 lunar gateway (Fig. 3).
Let P denote a set of inner points of the gate-
way. Note that for any point of P and a given
[xP , ẋP ], the corresponding coordinate yP can be
found from the condition of belonging to the region
of prevalence boundary, while ẏP is determined by
the energy relation JEM (xP , yP , ẋP , ẏP ) = J̃EM .
The propagation of the initial condition xP =

= [xP , yP , ẋP , ẏP ] in the CR3BP model will give
a trajectory passing inside the Hill sphere of the
Moon.

Each point xP produces a trajectory with a cer-
tain value of the perilune distance rp and the argu-
ment of the perilune ωp (in the planar case, the an-
gle between the Cx axis of the Earth-Moon rotating
reference frame and the direction Moon-perilune).
It is convenient to display initial data for the tra-
jectories with a given value of rp and/or ωp on the
lunar gateway in the form of gradient-colored con-
tour lines. Figure 3 shows the line rp = 3141 km
on the L2 gateway with JEM = 3.06. Such values
of the Jacobi integral and perilune distance coin-
cide with the values for the NRHO 9:2. The color
of the contour line points indicates the ωp value
of the approaching trajectory. Consequently, to ob-
tain the arriving leg with specified rp and ωp values,
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Fig. 3: L2 lunar gateway for JEM = 3.06 (orange closed curve).

the corresponding point of P should be targeted. At
the preliminary stages of designing a transfer to the
NRHO orbit, it is possible to target all points of a
given isoline to form initial guess trajectories.

For a given point xP , the phase of the Sun
θP specifies a certain exterior leg outside the re-
gion of prevalence when propagating xP in the
PBR4BP model backward in time. If, for some
value of θP , the corresponding exterior leg inter-
sect the boundary of the region of prevalence at
some point xBP = xBP (xP , θP ), we try to retrieve
a departing leg which provides a zero residue with
xBP by varying the departure trajectory parameters.
Here we consider a circular 200 km orbit as a de-
parting, so the trans-lunar injection (TLI) impulse
∆vTLI and the point of its application (defined by
the angle ϕ) fully determine a spacecraft trajectory
inside the region of prevalence. Let us denote the
point obtained by integrating the departing leg un-
til the intersection with the region of prevalence as
xBD = xBD(∆vTLI , ϕ). On the boundary of the re-
gion of prevalence, the point xBP is patched with the
point xBD so that |xBP −xBD| < 10−4. As a result, we
obtain an initial guess SALT trajectory.

Subsequently, it is adapted to the BR4BP model
by the multiple shooting method: the trajectory
is divided into N + 1 nodes, 0 = t0 ≤ ... ≤
tN = tf , where tf is the time of flight, so the
non-linear programming problem arises. We require
that ∆vTLI ≤ 3.2 km/s and ∆vTCM → min, where
∆vTCM is an additional trajectory correction ma-
neuver (TCM) at the trajectory apoapsis. The final
lunar orbit insertion (LOI) impulse ∆vLOI is set to
zero. The equality-type constraints include condi-

tions for smoothness of patching the position and
velocity at internal nodes of the multiple shooting
method, at the initial epoch t0 the phase vector be-
longs to a given near-Earth parking orbit, and the
final state should be at the periapsis of a given lunar
orbit. A detailed description of solving the corre-
sponding non-linear programming problem can be
found in the authors’ previous work [11].

II.III Planar SALT trajectories

Using the presented methodology, a database of
SALTs to different orbits around the Moon was ob-
tained in the PBR4BP model. For all SALT tra-
jectories, its apogees are located in the second or
fourth quadrant of the Sun-barycenter rotating ref-
erence frame Cx′y′ where sin 2α < 0 (see Fig. 1).
Under this condition, the gravitational perturba-
tion from the Sun provides ∆JEM > 0 along the
exterior leg, which is a necessary condition for sub-
sequent ballistic capture. This well-known result
of the SALT theory, previously numerically discov-
ered by many researchers, has been also analyti-
cally explained in the framework of the PBR4BP
model [10].

The database contains, among others, transfers
with lunar flybys. Generally, SALTs can be divided
into three groups: without intermediate lunar fly-
bys (I), and with an outbound leading (II) or trail-
ing (III) side flyby (see Fig. 4). For the trajectories
from a circular 200 km near-Earth parking orbit to
the lunar orbits with JEM = 3.06 and rp = 3141
km, the characteristic time of flight turned out to
be from 70 to 250 days for lunar-gravity-assisted
transfers and from 85 to 210 days for SALTs with-
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Fig. 4: Examples of typical planar SALT trajectories.

out flybys. It is worth noting that a lunar grav-
ity assist significantly reduces the launch energy
C3: from −0.74...0.62 km2/s2 for a simple SALT
to −2.03...1.03 km2/s2 for trajectories with lunar
flybys.

Figure 4 shows typical examples of planar tra-
jectories of each type. The blue line corresponds to
the sun-assisted transfer without flyby with time of
flight equal to 167 days, ∆vTLI = 3.19 km/s and
∆vTCM = 11.56 m/s. Green line represents lunar-
gravity-assisted transfer with leading side flyby (105
days, ∆vTLI = 3.15 km/s, ∆vTCM = 26.31 m/s).
The third type of SALT is depicted in orange (82
days, ∆vTLI = 3.17 km/s, ∆vTCM = 16.77 m/s).
Symmetrical trajectories can be designed with the
apogee in the fourth quadrant.

III. MULTIPLE SHOOTING ADAPTATION TO
THE EPHEMERIS MODEL

III.I High-fidelity model of orbital motion

The high-fidelity ephemeris model of motion is
used to provide high accuracy modeling. It includes
the central gravitational fields of the Earth and
the Moon, gravitational perturbations from the Sun
and all the planets of the Solar system, as well as
solar radiation pressure.

In the Geocentric Celestial Reference System
(GCRS) gravitational accelerations from a certain
celestial body can be written as

aB =
µB

|rB − r|3
(rB − r)− µB

|rB |3
rB [3]

where µB is the gravitational parameter of the con-
sidered celestial body and rB is its radius vector.
For the Earth, the second term in [3] is equal to
zero because of rB = 0. The solar radiation pres-
sure (SRP) acceleration is determined as

aSRP = −δPA
m

rS − r

|rS − r|3
κ2.

Here δ ∈ [0; 1] represents the level of illumina-
tion, and the constant P = 4.56 · 10−6 Pa can be
interpreted as solar radiation pressure at κ = 1
a.u. distance from the Sun. The area-to-mass ratio
A/m = 0.006 m2/kg is taken.

So, the spacecraft’s equations of motion in the
GCRS are the following:

r̈ =
∑
B

aB + aSRP . [4]

The gravitational parameters of the Solar sys-
tem’s celestial bodies can be found in the Astronom-
ical Almanac 2018.∗ In this work, their positions
and velocities are determined from JPL’s DE430
ephemeris [13].

III.II Standard adaptation procedure

Now let us focus on the problem of adaptation
of planar SALT trajectories to the realistic three-
dimensional model. Using the multiple-shooting
method, the three-dimensional trajectory design is
reduced to solving a non-linear programming prob-
lem. The epochs and state vectors of the spacecraft
in the GCRS coordinate system, as well as the LOI
impulse and TCM, are selected as the optimization

∗http://asa.usno.navy.mil/
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variables. The initial guess for the phase variables
consists of the epochs and state vectors of the space-
craft retrieved from the planar solution, the initial
guess for impulses can also be set as in the pla-
nar case. As the objective function, the sum of the
squares of the TCM and LOI impulses is consid-
ered: ∆v2TCM + ∆v2LOI → min. The constraints of
the multiple shooting method include requirements
for

• the altitude, inclination, and eccentricity of a
post-launch parking near-Earth orbit,

• the launch date and time,

• the departure impulse magnitude,

• smoothness of patching the position and ve-
locity at all internal nodes of the multiple
shooting method,

• conditions for entering the target orbit.

A circular 200 km orbit is taken as a low-Earth
parking orbit where a transfer to the Moon begins
by applying the TLI maneuver. The parking orbit
corresponds to the launch from the Baikonur cos-
modrome and is fixed relative to the International
Terrestrial Reference System axes: its inclination is
51.6◦, the longitude of the ascending node is 8.26
E. The magnitude of the TLI impulse has an upper
limit of 3.2 km/s. What concerns the final lunar
orbit, the L2 southern NRHO 9:2 is assumed. We
require that the final position and velocity of the
spacecraft correspond to the average perilune of the
NRHO orbit in the rotating Earth-Moon reference
frame. The launch date is selected in accordance
with the resulting value of the phase of the Sun
θ0 at the initial epoch for the corresponding planar
initial-guess trajectory. In general, for a particular
transfer, θ0 corresponds to 12 launch dates within
a year. Further, for certainty, the launch dates in
August 2028 are considered.

III.III Modified adaptation procedure using the
Chebyshev-Picard method

Among well-established non-gradient methods
that allow solving boundary value problems, it is
worth noting the modified Chebyshev–Picard itera-
tion method. It is based on the principle of contrac-
tion mappings. The main idea of this method is to
approximate the right-hand sides of the equations
of motion by a sum of Chebyshev polynomials and
then integrate the system of equations in Picard it-
erations [14].

The Chebyshev-Picard method has found its ap-
plication in solving astrodynamical problems [15].
However, its main disadvantage is known to be the
limited area of convergence. The use of the multi-
ple shooting technique makes it possible to expand
the region of convergence and thus, obtain a non-
gradient method for solving boundary value prob-
lems on any given time interval. This subsection de-
scribes a non-gradient version of the multiple shoot-
ing method based on the Chebyshev–Picard itera-
tions. The multiple shooting method is considered
in relation to the system of ordinary non-linear dif-
ferential equations [4] for solving a boundary value
problem r (t0) = r0, r (tf ) = rf .

First, we divide the time interval [t0; tf ] into N
subintervals [ti; ti+1], i = 0, ..., N − 1, so that the
modified Chebyshev–Picard iteration method con-
verges for the following boundary value problems:

r(ti) = ri, r(ti+1) = ri+1 (I);

r(ti) = ri, v(ti+1) = vi+1 (II);

v(ti) = vi, r(ti+1) = ri+1 (III).

A detailed description of the Chebyshev-Picard
method for solving these boundary value problems
is given in Appendix A.

To patch the trajectory at the nodes of the mul-
tiple shooting method, the following rules for up-
dating velocities and positions are introduced. Let
vi+1
i (ti) be the departure velocity from the point ti

to the point ti+1, i = 0, ..., N − 1, and vi−1i (ti)
be the arrival velocity to the point ti from the
point ti−1, i = 1, ..., N . A similar notation for
the radius vector is also introduced. As a result
of solving the problem of type I on each subinter-
val, we obtain vi+1

i (ti) and vii+1(ti+1). The veloc-
ity residual at the interior node ti is defined then as
||vi+1

i (ti) − vi−1i (ti)||, i = 1, ..., N − 1, where ||.||
is the Euclidean norm. The condition for patching
the solution in terms of velocity with accuracy ε can
be written as

max
i=1, ... ,N−1

∥∥vi+1
i − vi−1i

∥∥ < ε.

The updated velocity is defined as

vnewi =
vi+1
i + vi−1i

2
, i = 1, ..., N − 1,

vnew0 = v1
0, vnewN = vN−1N .

[5]

Using the updated velocity values, it is also pos-
sible to solve problems of type II and III on each
subinterval. The solution of these problems pro-
vides rii+1(ti+1) and ri+1

i (ti), i = 0, ..., N − 1, re-
spectively. By analogy, the condition for patching
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the solution in terms of radius vector with accuracy
ε can be written as

max
i=1, ... ,N−1

∥∥ri+1
i − ri−1i

∥∥ < ε.

The updated radius-vector is defined as

rnewi =
ri+1
i + ri−1i

2
,

rnew0 = r0, rnewN = rN .

[6]

Using the rules [5] and [6], the full algorithm
can be written as follows. Let R, V be arrays of
vectors of size 3 × (N + 1) whose columns define
positions and velocities at time nodes, ∆R, ∆V —
arrays of size 1× (N + 1) whose components define
position and velocity residuals. We also introduce
the learning rate, lr ∈ [0; 1], which specifies the
principle for modifying an array of radius vectors
as R ← R + (Rnew −R) lr, Rnew is obtained after
applying the update rules. Further, the designation
updating corresponds to the rule according to which
the array of velocities Vnew is updated by the array
of positions R; the array of positions Rnew is up-
dated by the array of positions R and the array of
velocities V . The corresponding errors are defined
as ∆Vnew, ∆Rnew.

The correction and average procedures allow
one to improve the described rules for updating po-
sitions and velocities. In the first one, positions or
velocities are updated only at those nodes where
the new residual is reduced compared to the previ-
ous iteration. The average procedure updates the
arrays of positions and velocities by calculating the
average value over the last few iterations.

We also introduce verification and patching con-
ditions:
matching — condition for patching the solution
with the required accuracy ε

||∆R|| = max
i=1, ... N−1

∆Ri < ε,

||∆V || = max
i=1, ... N−1

∆Vi < ε,

check — check for residual reduction at each itera-
tion

||∆Rnew|| < ||∆R||, ||∆Vnew|| < ||∆V ||.

The pseudocode of the method is given in Appendix
B.

This version of the multiple shooting technique
does not include velocity optimization, however, it
provides a smooth quasi-planar solution from the
vicinity of the Earth to the vicinity of the Moon,
which can then be refined by the gradient method
described in the subsection III.II.

IV. RESULTS

Both of the above approaches have been applied
to adapt planar SALT trajectories to the realistic
ephemeris model of motion. All the algorithms are
implemented in MATLAB. The arising non-linear
programming problems are solved using the sqp op-
tion of MATLAB’s fmincon solver.

It should be noted that the convergence of mul-
tiple shooting procedures strongly depends on the
choice of optimization nodes. The authors used
an empirical rule for choosing the nodes based on
the analysis of the convergence of multiple-shooting
method for trajectories with various times of flight.
The initial base of trajectories from the first stage
of planar SALT trajectory design was obtained us-
ing the MATLAB’s ode113 integrator with the ab-
solute and relative integration tolerances of 10−12.
Moreover, trajectories from this base had an adap-
tive time step based on the integration tolerance on
the departing and arriving legs, and the fixed step
of 14 hours on the exterior leg. For these param-
eters, every one out of 10 points was taken as an
optimization node on the departing leg, every one
out of 2000 points — on the exterior leg, and every
one out of 15 points — on the arriving leg. Thus,
the number of nodes for the initial-guess trajecto-
ries varied from 50 to 90, depending on the time
of flight. Such discretization provides high conver-
gence both for adaptation to the bicircular model
of motion and for the subsequent adaptation to the
ephemeris model of motion.

Let us present the results of multiple-shooting
adaptation of planar SALT trajectories without lu-
nar gravity assist to the ephemeris model of mo-
tion. For the base of 150 trajectories with differ-
ent times of flight, as a result of applying the sim-
ple multiple-shooting technique, 47 realistic three-
dimensional SALT trajectories from the Baikonur
parking orbit to the southern NRHO 9:2 with
∆vTCM + ∆vLOI < < 100 m/s have been obtained
(31% of the total number of trajectories). The use
of the multiple-shooting procedure based on the
modified Chebyshev-Picard iteration method has
increased the percentage of convergence up to 56%.
The modified Chebyshev-Picard iteration method
was used with the following parameters: for all the
interior subintervals P = 5, M = 5, ε = 10−3

(see Appendix A), and when patching a trajectory,
lr = 0.01, ε = 10−3. These parameters and the
above described procedure for selecting the opti-
mization nodes ensured the convergence of the mod-
ified Chebyshev-Picard iteration method in 90% of
cases.
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Fig. 5: An example of initial-guess planar SALT trajectory (blue dashed line) and the resulting realistic
transfer trajectories obtained by the simple multiple-shooting technique (purple line) and using the
modified Chebyshev-Picard iteration method (green line).

For a computer system with Intel(R) Core(TM)
i5-8265U CPU, 1.8 GHz, 16 GB RAM, the conver-
gence time of the simple multiple-shooting method
varied from 10 to 40 minutes. In this case, the inte-
gration of the equations of motion was carried out
using 4 computer cores. Leveraging the modified
Chebyshev-Picard iteration method slows down the
adaptation process: its convergence takes up to 30
minutes. After that, the trajectory is refined by
the gradient method, which also requires from 10
to 40 minutes. To speed up the running time, the
modified Chebyshev-Picard iteration method can
be parallelized, however, this is a matter for future
research.

The solutions obtained by the two multiple-
shooting techniques are slightly different. In most of
cases, when using the modified Chebyshev–Picard
iteration method, a trajectory with less delta-v is
obtained. Figure 5 shows an example of initial-
guess planar SALT trajectory (blue dashed line)
and the resulting realistic transfer trajectories ob-
tained by the simple multiple-shooting technique
(purple line) and using the modified Chebyshev–
Picard iteration method (green line). For both
transfers the launch date is August 26, 2028,
12:23:09, and the arrival date is 10 February, 2029,
10:31:13. For the purple trajectory ∆vTLI =
3.2 km/s, ∆vTCM = 27.9 m/s, ∆vLOI = 71.6 m/s.
The cross indicates the point of executing of the
trajectory correction maneuver. The green tra-
jectory is characterized by ∆vTLI = 3.2 km/s,
∆vTCM = 23.3 m/s, ∆vLOI = 33.1 m/s.

V. CONCLUSION

This work is focused on the issue of adap-
tation of planar SALT trajectories obtained in
the PBR4BP model to the high-fidelity ephemeris
model of motion. The authors considered two adap-
tation strategies: the standard gradient multiple-
shooting method and the developed non-gradient
modification of the multiple-shooting technique
with the subsequent gradient adjustment. In the
second case, the modified Chebyshev–Picard itera-
tion method is used to solve the resulting bound-
ary value problems. The study of the convergence
characteristics was carried out for 150 trajectories
of different time of flight without a lunar gravity as-
sist from the Baikonur parking orbit to the southern
NRHO 9:2.

The use of the modified Chebyshev-Picard iter-
ation method made it possible to increase the per-
centage of convergence by 25%. However, the run-
time may be increased up to 40 minutes. In the fu-
ture, this time can be reduced by parallelizing the
method.
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Appendix A

Here we describe the Chebyshev-Picard method
for solving the system of ordinary non-linear equa-
tions of the second order

r̈ = f(t, ṙ(t), r(t)), t ∈ [t0, tf ] ,

with one of the following boundary value problems:

r (t0) = r0, r (tf ) = rf
r (t0) = r0, ṙ (tf ) = vf
ṙ (t0) = v0, x (tf ) = rf .

First, the transition to a new independent vari-
able τ is done:

t = ω1 + ω2τ, ω1 =
t0 + tf

2
, ω2 =

tf − t0
2

.

Thus, the boundary value problem is rewritten as

r̈ = g(τ, ṙ(τ), r(t)) ≡ ω2
2f(t, ṙ(t), r(t)),

τ ∈ [−1, 1],
[7]

r (−1) = r0, r (1) = rf
r (−1) = r0, ṙ (1) = vf
ṙ (−1) = v0, r (1) = rf .

The solution of this problem is written in the form
of Picard iterations

vi(τ) = v(−1) +

τ∫
−1

g
(
q,vi−1(q), ri−1(q)

)
dq,

ri(τ) = r(−1)+

+

τ∫
−1

v(−1) +

s∫
−1

g
(
q,vi−1(q), ri−1(q)

)
dq

 ds,

with the notation ṙ = v introduced. Further, the
right sides of the equations [7] are approximated by
the Chebyshev polynomials of the first kind

vi(τ) =

P−1∑
k=0

βikTk(τ) =

= v(−1) +

∫ τ

−1

P−2∑
k=0

F i−1k Tk(q)dq,

ri(τ) =

P∑
k=0

αikTk(τ) = r(−1) +

∫ τ

−1

P−1∑
k=0

βikTk(s)ds,

where

F i−1k =

M∑
j=0

VkjWkjg
(
τj , r

i−1 (τj)
)
Tk (τj) ;

W = diag

{
1

2
, 1, . . . , 1,

1

2

}
,

V = diag

{
1

M
,

2

M
, . . . ,

2

M
,

1

M

}
,

when M = P , or

V = diag

{
1

M
,

2

M
, . . . ,

2

M
,

2

M

}
,

when M > P . Here P is responsible for the order of
approximation, and M corresponds to the number
of points τj . The coefficients βik are calculated by
the formulas

βi0 = v(−1) +

P−1∑
k=1

(−1)k+1βik,

βi1 =
1

2

(
2F i−10 − F i−12

)
,

βik =
1

2k

(
F i−1k−1 − F

i−1
k+1,

)
, k = 2, 3, . . . , P − 3,

βiP−2 =
F i−1P−3

2(P − 2)
,

βiP−1 =
F i−1P−2

2(P − 1)
.

For the coefficients αik

αi0 = x(−1) +

P∑
k=1

(−1)k+1αik,

αi1 =
1

2

(
2βi0 − βi2

)
,

αik =
1

2k

(
βik−1 − βik+1

)
, k = 2, 3, . . . , N − 2,

αiP−1 =
βiP−2

2(N − 1)
,

αiP =
βiP−2
2P

.

The equations should be supplemented with the
boundary conditions

v(−1) =

P−1∑
k=0

βikTk(−1),

v(1) =

P−1∑
k=0

βikTk(1),

r(−1) =

P∑
k=0

αikTk(−1),

r(1) =

P∑
k=0

αikTk(1).

As a stop criterion, it is possible to use∥∥ri+1(t)− ri(t)
∥∥ < ε,

∥∥vi+1(t)− vi(t)
∥∥ < ε.
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Appendix B

Algorithm 1 Multiple shooting technique based on the Chebyshev–Picard method.

R,∆R, V,∆V, lr
while matching is false do

Vnew , ∆Vnew ← updating (R)
Rnew , ∆Rnew ← updating (R, Vnew , lr)

if check is true then
R,∆R, V,∆V ← Rnew ,∆Rnew , Vnew ,∆Vnew

else
Vcorrect ← correction (Vnew )
Rnew ,∆Rnew ← updating (R, Vcorrect , lr)
Vnew ,∆Vnew ← updating (Rnew )
if check is true then

R,∆R, V,∆V ← Rnew ,∆Rnew , Vnew ,∆Vnew
else

Rcorrect ← correction (R)
Vnew ,∆Vnew ← updating (Rcorrect )
Rnew ,∆Rnew ← updating (Rcorrect , Vnew , lr)
if check is true then

R,∆R, V,∆V ← Rnew ,∆Rnew , Vnew ,∆Vnew
else

Raverage , Vaverage ← average(R, V )
Rnew ,∆Rnew ← updating (Raverage , Vaverage , lr)
Vnew ,∆Vnew ← updating (Rnew )
if check is true then

R,∆R, V,∆V ← Rnew ,∆Rnew , Vnew ,∆Vnew
else

stop while
end if

end if
end if

end if
end while
return R,∆R, V,∆V
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