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FORMATION FLIGHT RELATIVE MOTION CONTROL USING 
SOLAR SAIL 

Y. Mashtakov,* M. Ovchinnikov,† T. Petrova‡ and S. Tkachev§ 

In paper the scheme of simultaneous relative motion and attitude control via 

solar radiation pressure is suggested. The control aim is to stabilize given 

closed relative orbits. The principle idea is to use special materials for solar 
sail that are able to change its optical properties. It is considered that solar 

sail is divided into a number of cells. Each of them can be absolutely black, 

i.e. it absorbs completely the solar radiation, or absolutely specular (white), 

i.e. it reflects all solar radiation. The necessary control force is developed by 

varying the average reflectivity of solar sail, and the control torque is 

achieved by the appropriate pattern of black and white cells 

INTRODUCTION 

Utilization of a group of satellites, for example formation flight, brings new possibilities in 
space missions. In addition, group of satellites is more reliable because even if one satellite 

fails, others can continue their operation.  

The main problem of formation flying utilization is the deployment and maintenance of the 
particular group configuration. The simplest solution for this problem is to use thrusters that 

are installed onboard all or several satellites. On the other hand, thrusters require propellant, 

which can greatly affect the satellite lifetime or the payload mass. To overcome this problem 

environmental forces for formation flying motion control can be used 
1
. This approach can be 

applied relatively easily by installing a special high area-to-mass ratio device such as a flat 

sail. There are two forces that can be used: aerodynamic drag 
2–6

 and solar radiation pressure 

(SRP) 
7–11

. The principal idea here is to use a difference in environmental forces acting on 
each satellite in formation. This difference usually appears when a sail rotates but the effec-

tive size variation is also considered in literature 
12

. 

In paper the case when both attitude and relative motion are controlled via solar sail with 
variable utilization. It is considered that sail is divided into cells which can either absorb all 

solar radiation or fully reflect it. 

PROBLEM STATEMENT AND REFERENCE FRAMES 

Deployment and maintenance of required relative orbit of two satellites is considered. It is 
assumed that each satellite has solar sail. The initial orbit of one satellite (leader) is circular. 

Second satellite (follower) is moving along the orbit which is close to the first one. Satellites 

move under the solar radiation pressure and 2J  perturbations. 
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In paper the following reference frames are used: 

– 
1O XYZ  is the inertial frame (IF) with the origin in the Earth centre of mass, 

1O Z  is 

perpendicular to the equator plane, 
1O X  is directed to the vernal equinox; 

– Оxyz  is the orbital frame (OF), its origin in the leader satellite centre of mass, Оz  di-

rected along its radius vector, Оy  is perpendicular to the orbit plane; 

– О  is the body-fixed frame (BF), its axes are the principal axes of inertia (it is also 

assumed that О  is perpendicular to the sail plain); 

– 
s s sОx y z  is the solar frame (SF), 

sОz  is directed to the Sun, 
sОy  is perpendicular to the 

ecliptic plane. 
Transition between IF and OF is performed by the following matrix  

  1 2 3S e e e , 
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| |
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where r  is the radius vector and v  is the velocity of  the leader satellite. Transition between 

IF and SF is determined by the  
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

 
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  is the ecliptic longitude,   is the obliquity of the ecliptic. 

PROBLEM STATEMENT AND REFERENCE FRAMES 

There are three types of motion equations that are used in this paper.  

Orbital dynamics 

Orbital dynamics is described by the following vector equation 

3E
r

  
r

r g , 

where E  is the Earth gravity constant and g  is the result vector of the external disturbances. 

As it was mentioned earlier, only the effects of 2J  and SRP force are taken into account. The 

first has a form of 

2
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4

3sin sin 1
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sin sin 2
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sin 2 sin

E
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i u
J R

i u
r

u u

 
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 

  
  

f . 

Here 3

2 1.08 12 0J  , R  is the mean Earth radius, i  is the orbit inclination and u  is the ar-

gument of latitude. SRP force on the elemental area can be written as follows 

 

     

0 ,

2
1 2 , 1 ,

3

s s

s s s
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  

F r n

r r n n r n

 

where 
2

0 1357 W m   is the solar flux constant, sr  is the unit vector from the Sun to the sat-

ellite, n  is the solar sail normal (SSN),   is the reflection coefficient,   is the specularity 

coefficient. Further the case of 1   is considered, so 
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       0 , 1 2 ,s s s sd dS
c

 


   F r n r r n n . 

Due to the   from point to point variation the total SRP force becomes 

      0 , 2 ,s s s sS dS dS
c

 


    F r n r r n n . 

If denote 
dS

f
S





  0 1f   and 0SA
c


  , then 

       , 1 2 ,s s s sA f f  F r n r r n n . 

These equations are written for both satellites and are used in numerical simulation. 

Angular dynamics 

Angular dynamics is described in the BF by the Euler equations 

 
control grav  Jω ω Jω M M , (1) 

where J  is the satellite inertia tensor, ω  is the angular velocity, 
controlM  is the control torque 

and 
grav 5

3 E

r


M r Jr  is the gravity gradient torque. 

Attitude kinematics is defined by the quaternion  0 ,   , 2 2

0 1  λ . Corresponding equa-

tions are the following 

 
 

 

0

0

0.5 , ,

0.5 .



 







λ ω ω

λ

λ

ω
 

These equations are used for the numerical simulation and control torque synthesis. 

 

Relative motion dynamics 

The control synthesis is based on the Hill-Clohessy-Wiltshire equations written in the curvi-

linear parameters  0 0, ,r ra a    (see Figure 1). Since it is assumed that the leader satellite 

moves along circular orbit while the relative orbit is small with respect to the size of the orbit, 
these parameters more preferable that the regular one. Motion equations in the OF can be 

written as follows 
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 (2) 

where   is the orbital angular velocity of the leader satellite, 12  r r , 0 1a  r . Index “1” 

corresponds to the leader satellite and “2” to the follower. 
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Figure 1 Curvilinear parameters 

If control is taken into account Eq.(2) can be rewritten in the following form 
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Here xu , yu , zu  are the components of control vector ,2 ,1s s

m




F F
u . 

Solution of (2) is  
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One can introduce new variables based on this solution. 
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The equations that corresponds to these variables have form 
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It should be noted that 
1B corresponds to the drift velocity of the follower satellite along axis 

Ox  of the OF, 
2B  is the size of the in-plane ellipse, 

3B  is the shift of this ellipse along Ox , 

finally, 
4B  is the out-of-plane motion amplitude. The control purpose is to achieve the re-

quired , 1,2,3,4iB i   parameter i.e. to have required relative orbit. 

CONTROL SYNTHESIS 

The general control synthesis scheme is presented in Fig. 2.  

Relative orbit

Solar sail rotation 

and reflection 

Ideal relative 

motion control

Reference 

angular motion

Control torque Solar sail pattern

B1, B2, B3, B4

ux, uy, uz

θi, φi 

ni, ωref,i

Mi,ξ, Mi,η

fi

 

Figure 2. Control synthesis scheme 

The control synthesis scheme is presented in Figure 2. First of all, the ideal control that pro-

vides required relative motion is found. Then corresponding integral reflection coefficient if  

and angles of SSN i , i  are determined. Normal directions define the reference angular mo-

tion of each satellite. After that the control torque ,i controlM  (in О  plane) is calculated. Fi-

nally, ,i controlM  and if  determine the solar sail reflection pattern. Further in this section each 

step is discussed. 

Relative motion control 

The purpose of the control is to deploy and maintain the required relative orbit. This orbit is 

defined by the iB  ( 1,2,3,4i  ). In paper the following relative orbit is considered  

1 0B  , 02B B , 3 0B  , 4 0B  . 
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This means that the centre of the orbit is the origin of the OF and its shape is the ellipse with 

major and minor semi-axes 
02B  and 

0B  respectively. The relative orbit stabilization is per-

formed by two stages: firstly 
1 0B   and 

3 0B   are provided then 
2 0B B  is achieved. The 

out-of-plane motion control is separated, so 
4 0B   can be guaranteed independently. 

On the first stage the following Lyapunov control function (LCF) is used 

 2 2

1 3

1 1

2 2
V B B  . 

Its time derivative in accordance with (3) is  

 
1 3

.

3

.

11 1 3

1 2
3x zV B B B B B u B B u

 

 
     

 
. 

So the control that ensures global asymptotic stability of 
1 0B   and 

3 0B   is the following 

(Barbashin-Krassovskii theorem) 

 
 

1 1 1

2

1 2 3 2

, 0,

1
3 , 0.

2

x

z

u k B k

u B k B k 

  

  
 (4) 

It should be noted that when 
1B  is large the value of required 

zu  can exceed the accessible 

control effort (in this paper this value is 610 N ). So one should wait until 
1B  becomes small 

which is possible since the first equation of (3) is independent. 

On the second stage the following LCF is used 

  
22 2

1 2 0 3
2

.
1 1 1

2 2
B B B BV    

and its time derivative 

      1 2 0 1 2 0 1 3 1 3

1 1
sin co .2 3s2 x zV B B B B uB u B B B  

 
     

Then the control is 

 
  

  32 0

1 2 0 1

1

sin2 , 0

cos 2 , 0

x x x

z z z

u k B k

u

B B

k B B B k





   

    


 (5) 

Which leads to  

      
2

1 2 0 1 2 0 1 3 1 3

21 1
si2 n 3c s .2oV B B B BB B B B  

 
       

The last term doesn’t depend on control and its sign is undefined. From the other side its 

value after the first stage will be smaller than the sum of the first and second terms. This is 
why the first stage is required. 

Practically, in both cases (4) and (5) the following scheme was used 

 
max

max

( ), 1

, 1

u sign a a
u

u a a

 
 

 
 

Additionally, as 1B  determine the drift velocity it could be used to control the convergence 

speed of 3B  to zero.  

 . 
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The out-of-plane motion control has a form 

 
4 2cosy yu k B   , 0yk  . 

Control 
xu , 

yu , 
zu  is an ideal one. It should be implemented through the solar sails rotation 

and integral reflectivity coefficients 
if . 

Relative motion control implementation 

Let   be the angle between the SSN and Sun direction,   is the angle between normal pro-

jection to the plane 
s sОx y  of the SF and axis 

sОx . Then in the SF the SSN is as follows 

 

cos

sin

sin

sin

cos

 

 



 
 

  
 
 

n . 

Relative motion control force u  in the SF  

 

   

2 2

2 2 2 2 1 1 1 1

2 2

2 2 2 2 1 1 1 1

3 3

2 2 1 1 2 2 1 1

2 cos sin cos 2 cos sin cos ,

2 cos sin sin 2 cos sin sin ,

1 cos 1 cos cos 2 cos .

s

s

s

x

y

z

u Af Af

u Af Af

u A f A f Af Af

     

     

   

 

 

     

 (6) 

These equations are the non-linear equations w.r.t. 
if , 

i  
i . Moreover, here are only three 

equations for six unknown variables. This freedom is used for the maximization of the possi-

ble values u . First of all, as the SRP force is decreasing when 
i  tends to 90 degrees, it is 

reasonable consider the case of small i , so (6) transforms to  

 

2 2 2 1 1 1

2 2 2 1 1 1

2 1

2 cos 2 cos ,

2 sin 2 sin ,

.

s

s

s

x

y

z

u Af Af

u Af Af

u Af Af

   

   

 

 

 

 (7) 

From the last equation one can see, that only if  define 
szu . It should be noted that the max-

imum torque will be when 0.5f   while when 0f   and 1f   the torque is zero. So it is rea-

sonable to demand if  to be as close to 0.5 as possible, so  

    
2 2

1 20.5 0.5 minf f     

with the constraint  

2 1

min max

,

0 1, 1,2.

sz

i

u
f f

A

f f f i

 

    

 

The solution in the inner domain is as follows 

 
1

2

0.5 ,
2

0.5 .
2

s

s

z

z

u
f

A

u
f

A

 

 

  (8) 

It exists when 

min max2 1 2 1szu
f f

A
    .    (9) 
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In the further discussion it is supposed that 
min 0.25f   and 

max 0.75f  . So (9) rewrites as 

0.5 0.5szu

A
   . 

When 
if  is known one can find 

i  from the maximization (with 
i  fixed) of  

   
2 2

2 2 2 1 1 1 2 2 2 1 1 1cos cos sin sin .L f f f f            

It means that the result values of 
i  give the largest domain of the possible control force. This 

problem has two groups of solutions 

1 2  , 
1 2 0   , 

1 2    , 
1 2 0   . 

It should be noted that relative attitude of two satellites is the same for both solutions. So 

further the case 
1 2     is considered. The first and the second equations of (7) one can 

rewrite as follows 

 
 

 

2 2 1 1

2 2 1 1

cos ,
2

sin .
2

s

s

x

y

u
f f

A

u
f f

A

  

  

 

 

 

Then 

 s

s

y

x

u
tg

u
  , 

 

2 2

2 2 1 1
2

s sx yu u
f f

A
 


  . 

If cos 0
sxu    

 

2 2

2 2 1 1
2

s sx yu u
f f

A
 


  . (10) 

To find i  one can solve the following optimization problem  

 2 2

1 2L     

with constraints (10) and max maxi     . The solution of this problem gives the minimum 

possible values of i  that fulfill constraints. This keeps i  in the vicinity of zero. 

The solution in the inner domain is as follows 

 

2 2

1

1 2 2

1 2

2 2

2

2 2 2

1 2

,
2

.
2

s s

s s

x y

x y

u u f

A f f

u u f

A f f






 








 

Thus, once u  is known the attitude of SSN can be found. 
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Attitude control 

The expression for the SRP torque for the square sail and given sun direction in the BF 

 sin cos sin sin cos
T

s      r  is as follows 

0

cos

cos cos

Qsin sin sin cos

M P

M Q
c

M P









 

   

   
   

    
     

, 

Where 

2 2

2 2

a a

a a

P d d  

 

    , 
2 2

2 2

a a

a a

Q d d  

 

    . 

One can notice that there are only two components that can be defined independently by the 

optical properties variation and SSN attitude. So there can be only two independent control 
torques that can be produced. Taking this into account the following LCF is considered 

      T2 2

rel,1 rel,2 a

1
0 0 1 ,1 .

2
V J J k      Bn  (11) 

Here J , J  are the in-plane moments of inertia, 
,1rel , 

,1rel  are the corresponding relative 

angular velocity components ( rel ref ω ω ω ), ref  ω n n , n  is the required SSN attitude in 

the IF, 0ak   and B  is the transition matrix between the IF and the BF. The goal of the con-

trol is to guarantee asymptotic stability of the motion when the axes O  of the BF and n  co-

incide. 

Derivative of (11) is 

    
T

rel,1 rel,1 rel,2 rel,2 a 0 0 1 , .
d

k
t

V J
d

J   
 

  


 


Bn  (12) 

As there is no need to control the third component of the angular velocity it is reasonable to 

take relative angular velocity vector as  ,1 ,2 0
T

rel rel rel ω . In this case  

   rel

d

dt
  Bn ω Bn . 

And (12) one can rewrite as follows 

  
.

T
rel a 0 0 1T

relV k
 

   
 

ω Jω Bn . 

To guarantee 0V   it is sufficient if 

  
.

T
rel a rel0 0 1 kk   Jω Bn ω  

and the control torque  

  
T

control rel ext ref ref a 0 0 1 .k k        M ω M ω Jω Jω Bω JBω Bn  (13) 

Here only two first components of controlM  are taken. The last component is defined by the 

other ones. 
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Solar sail pattern 

The final step of the control synthesis is the determination of the solar sail pattern for each 

satellite. This pattern must give the required integral reflection coefficients and control tor-

ques components M  and M . In general the reachability domain is the inner area of rhom-

bus LMNK  which is presented in Figure 3. 

 

Figure 3. The torque reachability domain 

One can see, that in the domain between rhombus and square the component of control torque 

can’t be chosen independently. To overcome this the control torque components are limited 
by the square. 

Each solar sail is considered to be divided into n n  cells. Each cell can either reflect all radi-

ation or absorb it. The problem is to find the fully reflective cells that give the required torque 

components and integral reflectivity coefficient. There are  various approaches. Here present-

ed on of them which requires neither complex calculations nor large amount of memory. 

Let initially each cell have the reflectivity coefficient 0  . The required torque will be pro-

duced by the rectangle with 1  . Its center is located at the edge of the square, which is de-

scribed in the following way: its center coincides with sail center, and the edge length equals 

to a half of sail's edge length (Figure.4). The SRP torque which is produced by this rectangle 

is as follows 

, ,

, ,

,0

,

s s

s s

s

F F M

F F M

F F F M

  

  

   

 

 

 

     
     

      

 
 

    


 
   
 

  
     

s s
M r F

 
where  

T
0 r  is the center position vector. So  

   

2

2 2

,

4

sign

,

sign .

M

M

a

M











 



 

 
 
 

 

   



 

 11 

 

Figure 4. Solar sail pattern 

 

The area of the rectangle is determined by third component of SRP force 

20

, rcossF
c

S 


  . 

 

 

2 2 2 2 2

,

,

,

sign 1.

s

s

M M F

F

  



  

 


 

The rectangle with given center and area is not unique but it should fit cell pattern on the sail 
surface. First of all it should be noted that  

2

2
r

a
S

 
 
 

 

since the control parameters in (13) are chosen to guarantee control torque to be in the square 
in Figure 3. Next the following algorithm is used 

1. When 

2

r

a

n
S

 
 
 

  (which means that area corresponds to at least one cell) the sides of the 

rectangle are taken to fulfill 

,

2

2
0.r

A B

n
A

S
B

a


 
  

 
 

2. In case 

2

r

a

n
S

 
 

 
. The area is taken as 

2

rS
a

n

 
  
 

, but the center of rectangle is moving to 

the point 

T

0
k k

  
 
 

. Here  

2 2

2 2

M M
k

F

 

 





.  

When k n  (it means that distance from the center of sail to the center of the rectangle is less 

than the half-size of the cell). In this case пр 0S   and no torque is produced. 



 

 12 

Once the cell pattern for torque implementation is determined the f  should be realized. The 

number of cells with 1   is determined from 

2

req nN f  . 

But there are already N  cells with 1   which realize the control torque. In general, here 

several options: 

1. 
reqN N . Which means that there is no need in cell pattern modifications and required f  is 

achieved. 

2. 
reqN N . In this case the symmetric pairs with zero torque are added. If 

reqN N  is an odd 

number then one cell is left (this be an error in force realization). 

3. 
reqN N . Torque producing cells give pattern with 0.25f   since no more than quarter of 

sail has 1  . On the other hand in (9) minimum force producing 
min 0.25f  . So this situation 

is avoided. 

Thus, the control synthesis is finished. The presented scheme allows determining the solar sail 

pattern which give the required control force and torque with given constraints. 

NUMERICAL EXAMPLE 

Numerical simulation is carried out with the following parameters 

Leader orbit radius 9000 kmorbR  ; 

Initial relative orbit: 
 

 

rel

rel

200 100 50  m

0.05 0.5 1  m/s





r

v
; 

Mass of each satellite: 10 kgm  ; 

Solar sail size: 5 5 m ; 

Inertia tensor:   2diag 2.1 2.1 3.8  kg m J ; 

Initial angular velocity: 
 

 

1

1

1

2

0.005 0.003 0.001  s

0.001 0.003 0.002  s









ω

ω
; 

Attitude of the SSN: 1

2

10

10








; 

Control law parameters: 
6 1 1

1 3 4 2

4

20,  10  s ,  10 s

0.02 N m s  N, 10  m

y

a

k k k k k

kk

  







  

  


; 

Maximum allowed control force: 6

max 10  Nu  ; 

Maximum allowed control torque: 5  m3 N10M   . 

 

The results of numerical modeling are presented in figures 5-12. Figures 5-8 shows the evo-

lution of the parameters iB  which determine the relative orbit. In figure 9 the relative orbit is 

shown. Figure 10 contains the integral reflectivity coefficient of the first satellite while figure 

11 presents its angle between SSN and sun direction. Finally, Figure 12 shows one of the 

components of the control torque. 
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Figure 5. Parameter B1 evolution 

 

Figure 6. Parameter B2 evolution 
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Figure 7. Parameter B3 evolution 

 

Figure 8. Parameter B4 evolution 
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Figure 9. Relative orbit 

 

Figure 10. Integral reflectivity coefficient 
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Figure 11. The angle between SSN and sun direction 

 

Figure 12. One of the control torque components 

From Figures 5-9 one can see that control successfully solve the task and formation reach 

the required relative orbit. It also can be seen in Figure 5 that 1 20B m   during first 50  

revolutions. This allows reaching required 3B  value much faster. The Figures 10 and 11 show 

that the f  and   are bounded in the desired regions except the initial region for  . This val-

ue depends on initial conditions and one can see that control together with the gravity gradient 
torque bring the satellite to the required attitude. Finally, from Figure 12 one can see that 

torque is also bounded in the desired region.  

CONCLUSION 

In paper the scheme of the two satellites formation flying control using the solar sail is pro-
posed. It was shown that it is possible to control relative motion and corresponding attitude 

control using solar sail only.  
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