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MAGNETIC ATTITUDE CONTROL FOR GRACE-LIKE MISSIONS

Yaroslav Mashtakov∗, Mikhail Ovchinnikov†, Florian Wöske‡,
Benny Rievers §, and Meike List ¶

The problem of attitude control law synthesis for a GRACE-like missions is con-
sidered. Due to restrictions imposed by payload only magnetorquers and thrusters
can be used. Lyapunov-based controller is suggested. Control coef-ficients are
obtained via Floquet theory. Suggested control then is tested in precise model of
motion that includes gravity gradient, aerodynamic and solar radiation pressure
torques.

INTRODUCTION

Precise measurements of the Earth gravitational field might provide a lot of useful data that are
used in a wide variety of scientific applications, such as glaciers melting tracking and water redis-
tribution at the Earth surface. In order to acquire this kind of measurements in 2002 the Gravity
Recovery and Climate Experiment (GRACE) mission was launched. It consists of two satellites
equipped with microwave ranging system that allows us to measure the distance between the satel-
lites with high accuracy, which further can be used to estimate the gravitational field. However, for
this system to be working it is necessary to maintain the line of sight between the satellites with the
accuracy of about 0.15 deg. This problem becomes more critical for the GRACE-Follow-On mis-
sion, where laser interferometer is used for the distance measurements: it requires ten times better
accuracy.2 The problem of precise attitude control is complicated by the fact that reaction wheels
cannot be installed on-board the satellites because they greatly affect the measurements. Therefore,
only magnetorquers and gas thrusters can be used.

In present paper we suggest the Lyapunov-based attitude control algorithm that is implemented
by magnetorquers. Its efficiency is very sensitive to the control parameters. They are chosen using
Floquet theory and the assumption that the Earth magnetic field is represented by direct dipole
model. Since the required accuracy is rather high, magnetic-only attitude control cannot provide it,
so gas thrusters are included in the control loop.
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Suggested control law is tested using the real orbital motion of GRACE satellites and pro-
gramming complex X-HPS developed by Center of Applied Space Technologies and Microgravity
(ZARM) and German Aerospace Center (DLR).

It should be mentioned that the satellite platform was developed by Airbus Defense & Space, and,
to the best knowledge of the authors, there is no open sources on how the GRACE attitude control
actually works. Here we present our vision of how attitude control might be implemented on-board
the satellite.

COORDINATE SYSTEMS

The following right-handed Cartesian coordinate systems are used in the paper:

• OX1X2X3 – Inertial Frame (IF). Its origin is located in the Earth center of mass, OX3 is
aligned with the Earth rotation axis, OX1 is directed to the vernal equinox of J2000 epoch.

• OaY1Y2Y3 – Orbital Frame (OF). Its origin is located in the satellite’s center of mass, OY3 is
anti-parallel to its radius-vector, OY2 is anti-parallel to orbital plane normal.

• Oax1x2x3 – Body Frame (BF) (Fig. 1). Its axes are the satellite principal axes of inertia,
Oax1 corresponds to the ranging device line of sight.

• OaZ1Z2Z3 – Reference Frame (RF) (Fig. 2). It defines how the satellite should rotate.

Figure 1: Body frame (credit to gfz-potsdam.de)

Let us obtain the exact expressions that describe reference motion, i.e. rotation matrix (from
which the quaternion can be calculated), angular velocity and angular acceleration.

The main goal of the attitude control system is to maintain the line of sight between the two
satellites. We will consider only the reference motion construction for the second satellite, for the
first one it will be almost the same. Basis vectors of RF (Fig. 2) are chosen in the following way:
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Figure 2: Reference Frame

e1 corresponds to the line of sight between two satellites, e2 is orthogonal to the line of sight and
satellite radius-vector, e3 complements this system to the right orthogonal. Let r1, r2,v1,v2 be
the position and velocity of the first and second satellites. Then basis vectors can be described as
follows:

e1 =
r1 − r2
|r1 − r2|

, e3 = −
r2 − e1 (r2, e1)

|r2 − e1 (r2, e1) |
, e2 = e3 × e1.

Hence, the matrix from IF to RF is

Dref =

eT1
eT2
eT3

 .

Angular velocity is obtained using Poisson equations for direction cosine matrices:

[ωref ]× = −ḊrefD
T
ref .

Here [·]× is skew symmetric matrix of cross product:

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .

Time derivative of Dref can be found using expressions for the basis vectors, i.e.

Ḋref =

ėT1
ėT2
ėT3

 .

They, in turn, are

ė1 =
v1 − v2 − e1 (v1 − v2, e1)

|r1 − r2|
,

ė3 =
h− e3 (h, e3)

|r2 − e1 (r2, e1) |
,

ė2 = ė3 × e1 + e3 × ė1.
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Here h = v2 − ė1 (r2, e1)− e1 [(v2, e1) + (r2, ė1)]. Expressions for the components of ωref then
are

ωref,1 =
1

2

[
(ė2, e3)− (ė3, e2)

]
,

ωref,2 =
1

2

[
(ė3, e1)− (ė1, e3)

]
,

ωref,3 =
1

2

[
(ė1, e2)− (ė2, e1)

]
.

Reference angular acceleration might be found in the same way, but expressions for it are rather
bulky. Since the reference angular motion is almost constant in OF, it can be determined as zero,
otherwise it can be found numerically.

As was mentioned earlier, line of ranging device sight is principal axis of inertia. In addition, the
satellites move along almost the same orbit and the distance between them is about 200 km. Taking
into account expressions for basis vectors of the OF

j3 = −
r2
r2
, j2 = −

r2 × v2

|r2 × v2|
, j1 = j2 × j3,

we can notice that reference motion almost the same as stabilization in the vicinity of unstable
equilibrium w.r.t. OF (difference between these motions is shown in Fig. 3 using Euler angles,
rotation sequence 2−3−1 with angles α2, α3, α1 respectively). Hence, in the next Section attitude
control law will be designed to stabilize the satellite in equilibrium position w.r.t. OF. However, in
the simulations differences between the OF and the RF are taken into account.

Figure 3: Difference between the Orbital and Reference Frames
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ATTITUDE CONTROL

Lyapunov-based attitude control

There are plenty of algorithms that can be used for attitude control. The most interesting ones
allow us to ensure the asymptotic stability of the reference motion. Hence they still will provide
decent accuracy even in the presence of sufficiently small external disturbances that are not taken
into account in the control loop (e.g. solar radiation pressure and aerodynamic torques which may
be too complicated for on-board processing). One of such algorithms is based on the utilization of
the Barbashin-Krasovskii-LaSalle principle.4, 5 Consider the equations of motion in general form

Jω̇abs + ωabs × Jωabs = Mctrl + Mext,

Q̇ =
1

2
Q ◦ ωabs.

(1)

Here J = diag (A,B,C) is satellite tensor of inertia, ωabs is angular velocity w.r.t. IF, Mctrl,Mext

are control and external torques respectively, Q = (q0,q)
T is the quaternion that describes transition

from IF to BF, “◦” is the quaternion multiplication:

Q ◦N =

(
q0
q

)
◦
(
ν0
ν

)
=

(
q0ν0 − (q,ν)

q0ν + ν0q + q× ν

)
The reference motion is described by quaternion R from IF to RF and reference angular velocity

ωref . In addition, for the reference motion Poisson equation

Ṙ =
1

2
R ◦ ωref

must be satisfied.

Let us chose the positive-definite Lyapunov-candidate function in the form

V =
1

2
(ωrel,Jωrel) + ks(1− s0), ks = const > 0 (2)

where ωrel = ωabs− S̃ ◦ωref ◦S, S = (s0, s) = R̃ ◦Q is quaternion from RF to BF, tilde denotes
quaternion conjugation. In addition, Ṡ = 1

2S ◦ωrel that can be verified directly using the definition
of S. Time derivative of (2), in accordance with (1), is

V̇ = (ωrel,Jω̇rel) + ks (s,ωrel) .

Consider ω̇rel in more details:

ω̇rel = ω̇abs +
1

2
ωrel ◦ S̃ ◦ ωref ◦ S− 1

2
S̃ ◦ ωref ◦ S ◦ ωrel − S̃ ◦ ω̇ref ◦ S

= ω̇abs + ωrel ×
(
S̃ ◦ ωref ◦ S

)
− S̃ ◦ ω̇ref ◦ S.

Let ωBFref = S̃◦ωref ◦S, i.e. it is reference angular velocity written in BF, and ω̇BFref = S̃◦ ω̇ref ◦S.
Thus, time derivative of (2) can be rewritten as

V̇ =
(
ωrel,Jω̇abs + Jωrel × ωBFref − Jω̇BFref + kss

)
.
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In accordance with the already mentioned Barbashin-Krasovskii-LaSalle principle, in order to pro-
vide the asymptotic stability of the required motion, derivative of the Lyapunov-candidate function
should be nonpositive and set of all the points where its derivative is equal to zero should not contain
any whole trajectories except the required one. If

Jω̇abs + J
[
ωrel × ωBFref

]
− Jω̇BFref + kss = −kwωrel, kw = const > 0,

then this requirement is satisfied, hence reference motion is globally asymptotically stable. The
expression for the control torque in this case is

Mctrl = ωabs × Jωabs −Mext − J
[
ωrel × ωBFref

]
+ Jω̇BFref − kss− kwωrel. (3)

If we consider only two last terms of the suggested control law, we obtain the standard Propor-
tional Derivative (PD) controller. Additional terms include information about external disturbances
and allow us to track even time-variable reference motion with high accuracy. Estimations of the
provided accuracy can be found in.6

Described above attitude control law is not the single one that can be derived using Lyapunov
approach. Several examples of similar control laws are given in.7, 8

Implementation of control torques using magnetorquers

In order to control the satellite attitude magnetorquers are used. The control torque in this case is

Mctrl = m×B,

where m is the magnetic dipole vector, generated by three non parallel magnetorquers, B is the
external magnetic field. It is obvious that for any time there is a direction where the control torque
cannot be generated. Hence, standard Lyapunov-based control could not be applied in this case.
However, there are several approaches to use magnetorquers for orbital or inertial stabilization.
Usually they are based on Proportional-Derivative controller,9–11 when dipole vector is chosen as
follows

m = B× (−kps− kdωrel)
There are several modifications of this control law (e.g.12 when the main goal is to decrease the
satellite angular velocity).

We will utilize the same idea, but will use not only the PD part of Lyapunov control law (3), but
also additional terms. In this case the dipole moment should be chosen as follows:

m =
1

(B,B)
B×Mid,

where Mid corresponds to Eq.(3), the ideal torque desired by the controller. Then the generated
control torque is

Mgen = Mid − eB(eB,Mid) = − [eB]× [eB]×Mid, eB =
B√

(B,B)
. (4)

This means that Mgen is the projection of Mid into the plain perpendicular to the external magnetic
field B. Thus no wasteful magnetic dipole m parallel to B is generated.

Simulation shows that if control coefficients are chosen appropriately, the satellite can be sta-
bilized in the vicinity of even unstable equilibrium, though the accuracy of stabilization might be
unacceptable for mission requirements. There is a technique based on Floquet theory application
that allow us to appropriately choose control parameters.10, 13 Further we consider it in more details.

6



Satellite dynamics in the vicinity of equilibrium

In this subsection the satellite dynamics is described. Let the satellite moves along near-circular
orbit, hence there are several equilibriums in OF. The main goal is to stabilize the specified one.

Equations of the satellite passive angular motion, considering gravity gradient torque, are

Jω̇abs + ωabs × Jωabs = 3
µE
r5

r× Jr,

Ḋ = − [ωabs]×D.
(5)

Here J = diag (A,B,C) is the satellite tensor of inertia, ωabs is the angular velocity w.r.t. IF, µE
is the Earth gravitational parameter, r is the satellite radius-vector, D is the rotation matrix from IF
to BF such as xBF = DxIF .

Since the satellite has to be stabilized for the whole period of mission, we can consider the case
when it does not leave vicinity of equilibrium, hence equations of motion can be linearized. It is
suitable to use relative variables to describe satellite motion: A is the rotation matrix from OF to
BF, ω = ωabs − Aω0 is the relative angular velocity, ω0 = (0,−ω0, 0)

T is the orbital angular
velocity in OF. In addition, to parametrize the attitude Euler angles (rotation sequence 2 − 3 − 1
with angles α2, α3, α1 respectively) are used. Linearization in the vicinity of equilibrium leads to

Jω̇ = J [ω × ω0]− ω × Jω0 − ω0 × Jω

+ [ω0 × J (α× ω0) + (α× ω0)× Jω0]

− 3ω2
0 (e1 × J [α× e1] + [α× e1]× Je1)

Ȧ = − [ω]× .

,

Here α = (α1, α2, α3)
T , e1 = r/r = (0, 0,−1)T in OF. This result is obtained using the linearized

expression A ≈ I3 − [α]× and omitting all the second order infinitesimals. After the mathematics,
relative motion equations are

α̇ = ω,

ω̇ =

4ω2
0
(C−B)
A 0 0

0 3ω2
0
(C−A)
B 0

0 0 ω2
0
(A−B)
C


α1

α2

α3



+

 0 0 ω0
(C+A−B)

A
0 0 0

ω0
(B−C−A)

C 0 0


ω1

ω2

ω3

 .

(6)

For further analysis we will use linear time-independent equations (6). It should be noticed that
for some cases utilization of quaternions is more suitable. In the vicinity of equilibrium relation
between quaternions and Euler angles (with the accuracy up to the second order infinitesimals) is

s0 ≈ 1,

s ≈ 1

2
α.
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Floquet analysis of controlled relative motion

There are different models of magnetic field that can be used for analytical and/or numerical study
of satellite motion. For the analytical study we use quite simple model where the Earth magnetic
field is generated by so-called direct dipole: it is located in the Earth center of mass and antiparallel
to its rotation axis. This model is not very accurate, but it has one very important property: if
a satellite moves along a circular orbit, the expression for magnetic field in OF is periodical. In
addition, the difference between magnetic field in this model and more complicated one (e.g. IGRF)
is rather small.14 Therefore, if controller provides asymptotic stability in direct dipole model, then
we can expect that in the full model it still will give a decent performance.

Expression for the induction vector of magnetic field of direct dipole in OF is

BOF =
µB
r3

 cosu sin i
− cos i

2 sinu sin i

 (7)

where µB = 7.812 · 106 km3 · kg · s−2 · A−1 is the Earth magnetic constant, r is distance between
the Earth center of mass and the satellite, u is latitude argument, i is orbit inclination. Since satellite
moves along circular keplerian orbit, i = const, r = const, u = ω0t+u0. Using this expression for
magnetic field (7), implemented control torque (4) and linear equations (6) we obtain the following
equations for the controlled motion:

α̇ = ω,

ω̇ = Aαα+ Aωω + J−1
[
eOFB

]
×
[
eOFB

]
× (JAαα+ JAωω + kαα+ kwω) .

(8)

Here kα = 1
2ks and the following notations are used:

Aα =

4ω2
0
(C−B)
A 0 0

0 3ω2
0
(C−A)
B 0

0 0 ω2
0
(A−B)
C

 ,

Aω =

 0 0 ω0
(C+A−B)

A
0 0 0

ω0
(B−C−A)

C 0 0

 .

Obtained equations are periodical with a period T = 2π
ω0

, where ω0 is the orbital angular velocity.
Hence, it is possible to apply Floquet theory4, 5 to study its motion.

Consider fundamental matrix Φ of system (8) that was obtained using initial conditions Φ(0) =
I6 where I6 is 6× 6 identity matrix. Let ρk be the roots of the characteristic equation

det (Φ(T )− ρI6) = 0.

If for any k Re (ln ρk) < 0, then the equilibrium (α,ω)T = 0 of the linear system is asymptotically
stable. Moreover, the smaller max (Re ln ρk), the faster system converges to equilibrium. Hence,
the most appropriate control parameters can be obtained by solving the minimization problem

max
k

Re(ln ρk)→ min . (9)
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Two scalar parameters kα, kω, can be replaced by two diagonal matrices Kα,Kw for better tuning:

kαα+ kwω → Kαα+ Kwω,

so there are six control parameters to be determined. It should be noticed that obtained control law
will ensure asymptotic stability of the linear periodic system (8). However, using a more precise
model for disturbances and non idealized relative motion, (α,ω)T = 0 might not be asymptotically
stable. On the other hand, since the main disturbance caused by the gravity gradient (GG) torque is
taken into account, and differences between the simplified model of magnetic field and the real one
is rather small, it is likely that the obtained control law can provide decent accuracy.

Thruster torque calculation

In the GRACE case, it is not possible to ensure the necessary attitude accuracy using magne-
torquers only, because for any time there is a direction in which no control can be applied and
additional disturbances that are affecting the satellite. In order to maintain the necessary accuracy
an additional attitude control system that consists of several thrusters is applied.

Thrusters provide very large torque in short period, hence their influence on the satellite angular
motion is almost the same as immediate change of angular velocity. This can be used for the thruster
torque calculation: when the relative attitude reaches allowed boundaries, thrusters change angular
velocity along the corresponding axis to the desired one. It can be chosen as constant for every axis,
i.e.

ωdes,i = −sign(qrel,i)γi

where γi is constant, qrel,i is i-th component of vector part of the relative quaternion. Control torque
then can be calculated as

M thr
ctrl,i = Jii (ωdes,i − ωrel,i) .

Since there are many disturbances affecting the satellite (solar radiation pressure, atmospheric drag
etc.) that cannot be calculated on-board, it might be reasonable to adjust γi. For example, it can be
changed in the following way:

γi(tk) = f(tk, tk−1)γi(tk−1)

where

f(tk, tk−1) =


1, if tk − tk−1 ≥ T
1 + a (T − (tk − tk−1)) , if (qrel,i(tk)qrel,i(tk−1)) > 0

1− a (T − (tk − tk−1)) , if (qrel,i(tk)qrel,i(tk−1)) < 0

Here a, T are constants. Using this adjustment we ensure that if two consequent firings along the
same axis are in the same direction, the fire rate increases. If they are in the different directions, the
fire rate decreases.

SIMULATION RESULTS

In order to enable a test of the performance of the developed Attitude Determination and Con-
trol System (ADCS) algorithms, a GRACE-like simulation was set up by using the eXtended High
Performance Satellite dynamics simulator (XHPS) which has been developed within the framework
of the German collaborative research center geo-Q.20 The XHPS is a derivative of the HPS jointly
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developed by the Center of Applied Space Technology and Microgravity (ZARM) and the German
Aerospace Center (DLR) for more than 10 years. It has been successfully used for the simulation
of various space missions such as MICROSCOPE, Gravity Probe-B and Galileo. Within XHPS, a
satellite mission scenario can be assembled by means of a modular MATLAB/SIMULINK database
employing C/C++ codes to model the satellite dynamics. This includes the interaction with Earths
gravity field, the influence of non-gravitational effects21–24 such as solar radiation pressure, albedo
radiation, infrared radiation, thermal radiation pressure, atmospheric drag and the characteristics
of the spacecraft itself. By means of scenario-specific actuator, sensor and controller models the
operation of the ADCS can be simulated with inclusion of a realistic satellite dynamics model. The
implementation of the perturbations acting on the trajectory and attitude of the satellite includes a
detailed geometrical model of the respective satellite, thus effectively treating the influence of re-
flections, material parameter distribution and shadowing effects. Therefore, a very realistic modeled
dynamical behavior of the satellite can be realized. By specifying the sensor model outputs accord-
ing to the real satellite specifications, the simulations can be used to create so called mock data sets
which resemble the real data sets in terms of protocol architecture, data rates etc.

For the study in this paper, we implemented the GRACE satellite scenario in XHPS with the
following parameters, thus providing a simulation testbed for the developed ADCS algorithms:

• Satellite orbital motion corresponds to the one of GRACE mission: orbit inclination is about
89 deg, orbit radius is 6 862 km and satellite separation is about 200 km. Initial conditions
for both satellites are taken from real GRACE data from year 2006

• Tensor of inertia is J = diag(110.4, 580.5, 649.5) kg ·m2

• Maximum dipole moment of magnetorquers is 50 A·m2

• Aerodynamic drag, solar radiation pressure and GG torque from spherical harmonic gravity
field are included into the simulation, but only the simplified GG torque is included in the
control loop.

• Attitude measurements are provided by two independent orthogonal star trackers. Covariance
matrix of the noise is diag(52, 52, 402) arcsec2

• Angular velocity measurements noise is diag(52, 52, 52)(arcsec/sec)2

Two different Kalman Filters were implemented. The first one utilizes measurements from the star
tracker only, and the second one also uses measurements of the angular velocity provided by gyro.
In Figures 5 and 6 results of the Kalman filtering are presented. The comparison shows that the filter
process clearly reduces the error of the observations. There is almost no difference between them,
because gyro measurements are too rough in comparison with the star trackers, hence utilization of
its measurements have very little impact on the efficiency of the Kalman Filter.
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Figure 4: Attitude measurement accuracy provided by star trackers

(a) Star tracker only (b) Star tracker and gyro

Figure 5: Filtered attitude measurement accuracy

(a) Star Tracker only (b) Star Tracker and gyro

Figure 6: Filtered angular velocity measurement accuracy
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In Figure 7 and results of purely magnetic attitude control utilization are shown. Control pa-
rameters obtained using Floquet theory are Kα ≈ diag(0.0012, 0.0030,−0.0005)Nm and Kω ≈
diag(1.05, 3.1, 0.33)Nms. It should be noticed that one of the control parameters is negative, which
is counter-intuitive. Despite this fact, provided accuracy is in the range of about 5 degree, which is
rather good for magnetic attitude control but does not satisfy mission requirements.

(a) Attitude accuracy (b) Dipole moment of magnetorquers

Figure 7: Simulation results of the Lyapunov-based attitude control without thrusters

In addition to the purely magnetic attitude control two additional scenarios that utilize thrusters
were considered. The first one corresponds to the initial GRACE mission, the attitude accuracy
requirements are ‖α2,3‖ ≤ 0.17 deg and ‖α1‖ ≤ 0.46 deg. Results of the simulation are presented
in Figure 8.

(a) Attitude accuracy (b) Thruster torques

Figure 8: Simulation results of the Lyapunov-based attitude control with thrusters

The amount of firings is around 70 per day: 20 along the first axis and 50 along the third one.
Second axis, which is orthogonal to the orbit plane, does not require any firings because it is con-
trollable using magnetorquers only: the magnetic field is almost in the orbit plane, hence we can
always produce the control torque in the direction orthogonal to the orbit plane. This is in good
accordance with real GRACE data, but developed controller is able to drastically reduce the amount
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of firings: during the mission, it was about several hundreds per day.

The second scenario that was simulated corresponds to the GRACE-FO mission. It utilizes a
laser interferometer to determine the relative distance between the two satellites. Hence, attitude
accuracy requirements are much higher: ‖α2,3‖ ≤ 0.014 deg and ‖α1‖ ≤ 0.14 deg. In this case
Lyapunov-based attitude control (with coefficients obtained using Floquet theory) shows unaccept-
able results: it require more than 500 firings to maintain the required accuracy. However, “hand tun-
ing” of control coefficients for the Lyapunov-based algorithm can greatly improve the efficiency:
only around 200 firings will be required – 60 along the first axis and 150 along the third one.
Second axis still does not require additional thruster firings. Control coefficients in this case are
Kα ≈ diag(0.03, 0.4, 0.45)Nm and Kω ≈ diag(2, 10, 15)Nms. Simulation results are shown in the
Fig. 9. However, in this case attitude control is sensitive to the accuracy of relative angular velocity

(a) Attitude accuracy (b) Thruster torques

Figure 9: Lyapunov-based attitude control with thrusters for GRACE-FO

measurements. Even with the Kalman Filter utilization, accuracy of this measurements is around
0.2 arcsec/sec, and the relative angular velocity is around 0.5 arcsec/sec (see Fig. 10). This also
may explain the additional star camera and an improved inertial measurement unit (IMU) with laser
gyros for the real GRACE-FO spacecrafts. Peaks in Fig. 10b appear periodically due to the presence
of external disturbances (solar radiation pressure and aerodynamic torques) that are not included in
the Kalman Filter model of motion.

CONCLUSION

In this paper the problem of hybrid magnetic/thrusters attitude control was considered. Lyapunov-
based algorithm was suggested, and special technique of control parameters selection, which is
based on Floquet theory utilization, was suggested.

Simulations showed that utilization of suggested technique in the case of original GRACE can
reduce amount of thruster firings However, for the GRACE-FO requirements this approach fails,
and it is necessary to adjust control parameters manually to reduce the amount of firings.
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(a) Filtered measurements (b) Measurements accuracy after filtering

Figure 10: Relative angular velocity
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