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OPTIMAL DESIGN OF SPACECRAFT FORMATIONS
IN LISSAJOUS ORBITS

Sergey Shestakov∗, Sergey Trofimov†, and Maksim Shirobokov‡

A semianalytical optimisation technique is developed for the design of Lissajous
orbit formations near a collinear libration point. It is based on the use of Lindstedt-
Poincaré series that approximate the center manifold. Any performance factor can
be constructed by symbolically manipulating the series. In this study, we consider
two relative distance-based scalar metrics intended for a general/projected circular
orbit formation. In the first-order approximation, the relative motion parameters
can be optimised analytically or by a simple numerical routine. These values are
then exploited as an initial guess in the numerical optimisation procedure for the
15th-order approximation model. The Nelder-Mead simplex method implemented
in MATLAB’s fminsearch function is used. Finally, all the trajectories are adapted
to the ephemeris model, which requires 3-8 multiple-shooting iterations.

INTRODUCTION

In contrast to the case of near-Earth formations, the design of a libration point formation is a
much more difficult and less studied procedure. The primary obstacle is the unstable and highly
nonlinear dynamics in the vicinity of the collinear libration points. The first works dated back at
the beginning of the 2000s aimed at designing a continuous or impulsive control law that ensures
keeping the predefined formation geometry.1–3, 5, 6 The idea of concurrent numerical optimisation
of both formation configuration and control parameters has also been suggested.7 At the same time,
the general trend of maximally exploiting the natural dynamics was then observed, starting with the
study of Howell and Marchand who introduced the concept of the natural formation, a formation
that keeps favourable geometry under no control (i.e., in purely ballistic motion).8 The efforts
to explicitly describe and visualise the set of best (slowest-degrading) initial configurations for a
two-spacecraft formation resulted in the notions of zero relative radial acceleration and zero relative
acceleration and velocity regions.9, 10 All the criteria based on the relative acceleration are, however,
indirect and approximate: the two spacecraft are assumed to move in close orbits with synchronised
velocities. Moreover, the above notions become useless for the design of non-rigid formations with
relative distances changing in a prescribed way. Even the problem of rigid formation design with
three or more spacecraft is tractable only numerically. For example, in the recent work of Ferrari
and Lavagna, the genetic algorithm is utilised for global optimisation.11
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CENTRAL MANIFOLD DYNAMICS IN THE VICINITY OF COLLINEAR LIBRATION
POINTS

In the current research, a novel semianalytical technique is proposed for the Lissajous orbit forma-
tion design. Its foundation is the use of Lindstedt-Poincaré (LP) series that approximate the center
manifold in the vicinity of the libration point. The LP expansion explicitly parameterises—up to
the user-specified degree of accuracy—the invariant tori the manifold is foliated by. The equations
of spacecraft motion have the following nondimensional form

Ẍ − 2Ẏ = UX

Ÿ + 2Ẋ = UY

Z̈ = UZ

(1)

where

U(X,Y, Z) =
X2 + Y 2

2
+

1− µ
R1

+
µ

R2

is the effective potential, UX , UY and UZ are the partial derivatives of U with respect to the position
variables, and µ = m2/(m1 + m2) is the mass parameter of the system. The distances to the
celestial bodies are given by the equalities

R1 =
√

(X + µ)2 + Y 2 + Z2

R2 =
√

(X − 1 + µ)2 + Y 2 + Z2

The system (1) has five equilibrium points called libration or Lagrangian points. Three of them
lying on the X-axis, are named collinear. Usually denoted by L1, L2, and L3, these points are
proved to be unstable. In the Sun-Earth system, the coordinates of the L1 and L2 points are as
follows:

XL1 = 0.9899871, XL2 = 1.0100740

Linearisation About the Collinear Libration Point

The LP series are usually written in the libration point-centered frame with the dimensionless
coordinates x = (X −XL) /D, y = Y/D, z = Z/D where X , Y , and Z are the coordinates
in the synodic frame with an origin at the barycenter of two massive celestial bodies, XL is the
x-coordinate of the libration point in hand (L1 or L2), and D = |XL − 1 + µ| is the distance from
this libration point to the smaller body. Then, the evolution of the position vector r = (x, y, z)T is
described in the linear approximation by the equations

x = α cos (ωpt+ φ1)

y = −κα sin (ωpt+ φ1)

z = β cos (ωvt+ φ2)

(2)

The constants α and β play a role of the planar and vertical amplitudes, respectively; φ1 and φ2 are
the arbitrary phases, and

κ =
ω2
p + 2ω2

v + 1

2ωp
(3)
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Lindstedt-Poincaré Series

The LP series expansion explicitly parameterizes—up to the user-specified degree of accuracy—
the invariant tori the center manifold is foliated by. In particular, the manifolds consisting of periodic
and quasi-periodic libration point orbits can be approximated by the LP series.

The general expressions of order n for the Lissajous orbits have the following complex exponen-
tial form:12

x =
∑

xijkm α
iβ jγ k

1 γ
m
2

y =
√
−1

∑
yijkm α

iβ jγ k
1 γ

m
2

z =
∑

zijkm α
iβ jγ k

1 γ
m
2

(4)

Here γi = exp
[√
−1 (ωit+ φi)

]
, and the summation is performed over the indices satisfying the

conditions I = { i, j ≥ 0, |k| ≤ i, |m| ≤ j, 1 ≤ i+ j ≤ n}. The frequencies ω1 and ω2 are also
expanded:

ω1 = ωp +
∑

dij α
iβ j

ω2 = ωv +
∑

fij α
iβ j

(5)

The indices in Eq. (5) are summed over the positive even numbers. In the Sun-Earth system, the
planar and vertical frequencies ωp and ωv are respectively equal to 2.0864519 and 2.0152089 for
the L1 point; for the L2 point, their values are 2.0570158 and 1.9850765.

The LP series for halo orbits, three-dimensional periodic orbits branching from the family of
planar orbits, can be found in.13 The expressions resemble Eq. (4), except for the fact that a single
frequency ω = ω1 = ω2 appears and the additional condition for such a resonance is required
to be satisfied. We further concentrate on the family of Lissajous orbits, though the methodology
proposed can also be applied to halo orbit formations and corresponding LP series.

ANALYTICAL ESTIMATES BASED ON THE LINEAR APPROXIMATION

The reference orbit approximated by the LP series expansion of any order is described by four
parameters: two amplitudes α, β and two phases φ1, φ2. Assuming the first spacecraft in a two-
spacecraft formation moves along the reference orbit, the relative position vector

∆r = r2 − r1 =

x2 − x1y2 − y1
z2 − z1

 ≡
∆x

∆y

∆z


can be readily expanded in LP series by subtracting the series for the components of r2 and r1. The
resulting LP expansions for ∆x, ∆y, and ∆z can be parameterised by two differential amplitudes
∆α, ∆β and two differential phases ∆φ1, ∆φ2.

To measure the performance of a formation, some performance metric should be introduced. If
the relative distance is of primary interest in the mission, it is convenient to choose such a metric to
be

∆1 = ∆r2 = ∆x2 + ∆y2 + ∆z2
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When a projection of the relative trajectory onto the plane with the unit normal vector n =
(nx, ny, nz)

T is tracked, the following metric can be used:

∆2 = ∆r2 − (∆r · n)2 =
(
1− n2x

)
∆x2 +

(
1− n2y

)
∆y2 +

(
1− n2z

)
∆z2−

− 2nxny∆x∆y − 2nynz∆y∆z − 2nxnz∆x∆z

If the projection plane is fixed in the rotating reference frame, n is a constant vector.

The critical advantage of the proposed approach is the ability to compute the performance metric
without the necessity of numerical integration in the highly unstable dynamical environment. It is
also better to avoid the derivative computations due to the highly irregular search space. Along
with the relatively small number of optimised variables, this all speaks in favour of derivative-free
numerical optimisation techniques.

It is important to properly initialise the optimisation algorithm. The role of an initial guess grows
with the increase of computational complexity of the problem (for instance, when the number of
optimised variables is large). It appears that a good initial guess and performance metric estimates
in the problem of libration point formation design can be obtained from the linear approximation.

In a two-spacecraft formation, the relative position vector ∆r satisfies the same linearised equa-
tions of motion as do the position vectors of both spacecraft. Thus, the solution can be written in
the same form as Eq. (2):

∆x = Ax cos (ωpt+ θ1)

∆y = −κAx sin (ωpt+ θ1)

∆z = Az cos (ωvt+ θ2)

The transformation formulas between the relative amplitudes and phases Ax, Az , θ1, θ2 and the
above mentioned differential parameters ∆α, ∆β, ∆φ1, ∆φ2 are presented in Appendix.

Distance metric

In the linear approximation, the squared relative distance is expressed as

∆1 =
A2

x

(
κ2 + 1

)
+A2

z

2
+
A2

z

2
cos (2ωvt+ 2θ2)−

A2
x

(
κ2 − 1

)
2

cos (2ωpt+ 2θ1)

It exhibits beating around the mean value

c2 =
A2

x

(
κ2 + 1

)
+A2

z

2

with the beat frequency δ = ωp − ωv.

It follows from the beating theory that the upper and lower envelopes for the sum of two harmon-
ics

a cos (ωt+ ϕ) + b cos ((ω + ∆ω) t+ ϕ+ ∆ϕ)

are determined by the functions

±
√
a2 + b2 + 2ab cos (∆ω · t+ ∆ϕ)
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In our notation,

a =
A2

z

2
, b = −

A2
x

(
κ2 − 1

)
2

, ∆ω = 2δ, ∆ϕ = −2∆θ

where ∆θ = θ2 − θ1. So, the upper envelope has a form of√
A4

x (κ2 − 1)2

4
+
A4

z

4
− A2

xA
2
z (κ2 − 1)

2
cos (2δt− 2∆θ) (6)

For long time intervals, the extrema of the upper and lower envelopes representing the maximum
and minimum values of ∆r2 significantly deviate from the mean value c2. Indeed, the relative
deviation

max |∆r2 − c2|
c2

=
A2

z +A2
x

(
κ2 − 1

)
A2

z +A2
x (κ2 + 1)

has a minimum of

χ =
κ2 − 1

κ2 + 1
≈ 0.82

whenAz = 0. The distance between the spacecraft oscillates from
√

0.18 c2 ≈ 0.42 c to
√

1.82 c2 ≈
1.35 c in this case (see Figure 1). Such variations would almost always be unacceptable in a real
mission. However, it is important for us to observe that, if the harmonics interfere destructively, a
time interval exists during which the squared relative distance values are confined within a strip of
arbitrarily small width 2ε centered at c2. The larger the width, the longer this interval.

Figure 1. Distance metric behaviour without optimisation

To maximise its length for a given ε, we need to select the amplitudes Ax and Az so that the
distance between the adjacent roots of the equation√

A4
x (κ2 − 1)2

4
+
A4

z

4
− A2

xA
2
z (κ2 − 1)

2
cos (2δt− 2∆θ) = c2ε
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with respect to t is maximum. Returning to the short notation in terms of a and b, this equation can
be rearranged as

cos (2δt− 2∆θ) =
c4ε2 − a2 − b2

2ab
Taking into account the mean value constraint

a− b/χ = c2

yields

cos (2δt− 2∆θ) =
c4ε2 − a2 − χ2

(
a− c2

)2
2χa (a− c2)

The maximum distance between the roots is attained when the right-hand side is minimum. Dividing
both the numerator and the denominator by c4 and introducing the notation

ξ = 1− a

c2
, ξ ∈ [0, 1]

we obtain the equivalent function to be minimised:

η (ξ) =
(1− ξ)2 + χ2ξ2 − ε2

2χξ (1− ξ)
This point

ξmin =
1− ε2 −

√
(1− ε2) (χ2 − ε2)
1− χ2

does not depend on ε and can therefore be estimated with the assumption ε = 0:

ξmin ≈
1

1 + χ
≈ 0.55

It results in the relationship

a = −b =
κ2 − 1

2κ2
c2

or, in terms of the amplitudes,
Ax =

c

κ
, Az =

c

κ

√
κ2 − 1 (7)

The upper envelope curve is now determined by the function

c2

κ2
(
κ2 − 1

)
| sin (δt−∆θ) |

To start with a favourable destructive interference interval, it is required to tune the relative phase
difference ∆θ. Up to an integer multiple of π,

|∆θ| = arcsin

(
εκ2

κ2 − 1

)
(8)

Then, the squared distance remains close enough (i.e., within the 2ε-strip) to the mean value over
the interval [0, T ] where

T =
2 |∆θ|
δ

(9)

The formulas (7-9) can be exploited as an initial guess in a numerical optimisation procedure in
case we aim at designing a two-spacecraft formation with the target relative distance c (see Figure
2).
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Figure 2. Optimised distance metric behaviour

Projected relative metric

Direct calculations show that

∆2 =
C

2
+A cos (δt+ ∆θ)+B sin (δt+ ∆θ)+F1(t) cos (2ωpt+ 2θ1)+F2(t) sin (2ωpt+ 2θ1) ,

where δ = ωp − ωv is the slow frequency, C is the constant term,

C = A2
x

(
1 + κ2 − n2x − κ2n2y

)
+A2

z

(
1− n2z

)
,

A and B are amplitudes for slow oscillations A = −AxAznxnz , B = −AxAzκnynz . The remain-
ing motion is fast oscillations with frequency ωp, whereas amplitudes are equal to

F1(t) =
A2

x

2

(
1− κ2 − n2x + κ2n2y

)
−AxAznxnz cos (δt+ ∆θ) +AxAzκnynz sin (δt+ ∆θ)

+
A2

z

2

(
1− n2z

)
cos (2δt+ 2∆θ)

F2(t) = A2
xκnxny +AxAznxnz sin (δt+ ∆θ) +AxAzκnynz cos (δt+ ∆θ)

− A2
z

2

(
1− n2z

)
sin (2δt+ 2∆θ)

For obtaining upper and lower envelopes of ∆2 we define q = δt+∆θ to be the slow motion. Then,

F 2
1 + F 2

2 = A0 +A1 cos q +B1 sin q +A2 cos 2q +B2 sin 2q.
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The expressions for the coefficients Ai and Bi are presented in the Appendix. Then two envelopes
are determined by the functions

E± =
C

2
+A cos q +B sin q ±

√
A0 +A1 cos q +B1 sin q +A2 cos 2q +B2 sin 2q

As in the case of distance metric for a given small ε we want to maximise the length of such an
interval that ∆2 in it is bounded by ε · cmean, so again ε determines the width of strip. To achieve a
desired result we maximise the difference between upper and lower envelopes E+ − E−.

To maximise the difference we solve the equation

2
√
A0 +A1 cos q +A2 cos 2q +B1 sin q +B2 sin 2q − ε · cmean = 0

and we maximise the distance between such two adjacent roots that the left-hand side of the equation
is negative on whole interval. Here ε is a small parameter, but cmean could deviate from actual
integral mean of the metric, rather it is the desired mean value of the metric oscillations. The
accurate numerical optimisation does not produce a robust result when applied directly to a given
problem. To achieve a better outcome we solve the equation of the type

c0 + c1 cos q + s1 sin q + c2 cos 2q + s2 sin 2q = 0

using tangent half-angle substitution sin q = 2u
1+u2 , cos q = 1−u2

1+u2 . The resulting polynomial equa-
tion

(c0 + c1 + c2) + (2s1 + 4s2)u+ (2c0 − 6c2)u
2 + (2s1 − 4s2)u

3 + (c0 − c1 + c2)u
4 = 0

could be solved numerically. The roots of the original equation are given by q = 2 arctan t. On
the each interval between the roots the sign of the polynomial as well as the original trigonometric
polynomial is constant.

The results of numerical optimisation depend heavily on normal vector n.

In the case n = (nx, ny, 0) A = B = 0 and the coefficients for the envelopes A1 = B1 = B2 =
0, so this case is analogous to relative distance metric (6) (see Figures 3, 4).

In the case n = (0, 0, 1) the expression for ∆2 is simplified due to A = B = A1 = B1 = A2 =

B2 = 0, so E± = a2

2

(
k2 + 1

)
± a2

2

(
k2 − 1

)
and the optimisation procedure is not applicable to

the problem (Figure 5).

For the general choice of the vector n the envelopes are more complex asymmetric curves with
several beating frequencies (Figures 6, 7), still the aforementioned technique produces the numerical
optimised results (Figures 8, 9)

NELDER-MEAD OPTIMIZATION ALGORITHM

One of the popular non-gradient methods for solving unconstrained optimization problems is the
Nelder-Mead simplex method (do not confuse with the simplex method for linear programming
problems). The idea behind the method is first to initialize a simplex with n + 1 vertices in the n-
dimensional phase space and then to modify the simplex with the operations of reflection, expansion,
contraction, and shrinkage, depending on the objective function values at the vertices. The algorithm
is simple and easily programmable. Its description can be found in the paper of Lagarias et al.14 This
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Figure 3. Projective metric behaviour without optimisation, n = (nx, ny, 0)

Figure 4. Projective metric behaviour after optimisation, n = (nx, ny, 0)

classical algorithm is implemented in the FMINSEARCH routine, a part of the Matlab Optimization
Toolbox.

In cases when the problem is initially constrained, penalty functions are added to the objective
function. For example, if we want to target some value c of the relative distance so that c (1− ε1) ≤
∆r ≤ c (1 + ε2) at a specific time interval, the following objective function can be exploited:

J = (〈∆r〉 − c)2 + k1 max (0, c (1− ε1)−m) +

+ k2 max (0,M − c (1 + ε2))
(10)
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Figure 5. Projective metric behaviour with nz = 1

Figure 6. Projective metric behaviour with nx = ny = nz

In this expression, 〈∆r〉 is the average value of
√

∆r2 over a given time interval, m = min
√

∆r2,
M = max

√
∆r2, k1 and k2 are some large penalty weight coefficients.

In practice, the Nelder-Mead method often performs well even for irregular, non-smooth, and
noised objective functions or objective functions with dense local minima in a vicinity of one global
minimum. However, when the dimension of the phase space is high, convergence to a local mini-
mum could take much time; so, it is usually recommended to use the classical Nelder-Mead algo-
rithm only for small-scale problems. Nonetheless, large-scale modifications of the algorithm also
exist.15, 16 These parallel versions can be effectively used in high-performance computing systems.
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Figure 7. Projective metric behaviour with nx = nz , ny = 0

Figure 8. Projective metric behaviour with nx = ny = nz , optimised

NUMERICAL OPTIMIZATION AND ADAPTATION TO THE EPHEMERIS MODEL

The derived analytical estimates can be exploited as an initial guess for the Nelder-Mead op-
timization procedure in a high-order LP approximation model. The 15th order of the LP series
expansion is quite accurate for the reference Lissajous orbit selected. The termination tolerances
of Matlab’s FMINSEARCH routine for the objective function and the vector of optimized variables
have been set to 1e− 8.

In the relative distance-based performance metric (10) with c = 6.6845871 · 10−7 (the non-
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Figure 9. Projective metric behaviour with nx = nz , ny = 0, optimised

dimensional equivalent of 100 km), the penalty weight coefficients k1 and k2 both equal 107. The
analytical estimate (9) for the time a formation naturally keeps acceptable performance is used as
the length of the optimization interval.

The numerical optimization in the 15th-order approximation model is followed by the adaptation
of resulting absolute spacecraft trajectories to the high-fidelity model incorporating the gravitational
attraction of the Sun and all the planets up to Saturn, as well as the solar radiation pressure force
(the area-to-mass-ratio of 0.01 m2/kg is assumed for all spacecraft). In all the examples below, the
initial date of Jan 1, 2020 is used. It requires just 3-8 multiple-shooting iterations to converge.

The evolution of the relative distance for a two-spacecraft formation in several models of motion
is compactly shown in Fig. 10. The upper and lower bounds ε1 = 1−

√
1− ε, ε2 =

√
1 + ε−1 with

ε = 0.1 are indicated by dashed lines. In the 15th-order approximation model, the analytical guess
slightly violates the bounds, which is then successfully eliminated by the numerical optimization.
The subsequent adaptation to the ephemeris model has almost no influence on the performance.

In higher orders of approximation, the difference between the planar and vertical frequencies is
known to be less than in the linear approximation. Thus, the conservative estimate (9) can usually
be refined by substituting ω2 − ω1 in the denominator instead of δ = ωp − ωv. The analytical
guess sometimes appears excellent even for longer intervals. For example, it is managed to opti-
mize the half-year formation design of Fig. 10 over the one-year interval (Fig. 11). In some cases,
however, it is necessary to relax the ε tolerance when proceeding to the numerical optimization. For
sophisticated performance metrics, natural constraints on ε can exist in high-fidelity models.

CONCLUSION

The proposed semianalytical technique based on the powerful tool of Lindstedt-Poincaré series
has appeared to be an effective approach to the rather complicated problem of designing libration
point formations with various performance metrics. The series of any order are readily param-
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Figure 10. Relative distance behavior for a two-spacecraft formation in different models of motion

eterised by just four design parameters, which opens the road to such non-gradient optimisation
techniques as the classical Nelder-Mead simplex algorithm. Numerical integration is thus totally
avoided.

The analysis of low-order expressions for the performance metric makes it often possible to obtain
an initial guess for the numerical optimisation procedure. This drastically speeds up the convergence
or is even its prerequisite.

The explicit analytical derivations have been presented for the relative distance-based perfor-
mance metric and projective performance metric in the case of two-spacecraft formation. The opti-
mal design is found so that the relative distance variations for half a year are no greater than 5-6%
in the 15th-order approximation model and the ephemeris model. The same stability level proved
to be achievable for the one-year ballistic flight.
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APPENDIX

Transformation Between Relative and Differential Parameters of Linearized Relative Motion

The orbit of the first spacecraft is described by the expressions

x1 = α cos (ωpt+ φ1)

y1 = −κα sin (ωpt+ φ1)

z1 = β cos (ωvt+ φ2) ,

For the orbit of the second spacecraft, we have

x2 = (α+ ∆α) cos (ωpt+ φ1 + ∆φ1)

y2 = −κ (α+ ∆α) sin (ωpt+ φ1 + ∆φ1)

z2 = (β + ∆β) cos (ωvt+ φ2 + ∆φ2)

Since the relative position vector ∆r satisfies the same linear equations, its components can be
written as follows:

∆x = Ax cos (ωpt+ θ1)

∆y = −κAx sin (ωpt+ θ1)

∆z = Az cos (ωvt+ θ2)

The relation between Ax, Az , θ1, θ2 and ∆α, ∆β, ∆φ1, ∆φ2 can be easily derived from the equa-
tions ∆x = x2 − x1, ∆y = y2 − y1, ∆z = z2 − z1. The solution is given by the following
relationships:

∆φ1 = arctan (Ax sin (θ1 − φ1) , Ax cos (θ1 − φ1) + α)

∆φ2 = arctan (Az sin (θ2 − φ2) , Az cos (θ2 − φ2) + β)

∆α = −α+ α cos ∆φ1 +Ax cos (θ1 − φ1 −∆φ1)

∆β = −β + β cos ∆φ2 +Az cos (θ2 − φ2 −∆φ2)

The coefficients for the envelope in the projected relative metric

For the square of amplitude

F 2
1 + F 2

2 = A0 +A1 cos q +B1 sin q +A2 cos 2q +B2 sin 2q.
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