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Design of libration point formations

Two points of view on the design of a libration point FF:

• the optimal control problem

The reference relative motion is defined by hand; the 

control just ensures its tracking.

• the natural motion search problem

Natural trajectories are sought that best fit mission 

requirements. The control ensures tracking and, if 

needed, refinement of the natural motion found.



Circular restricted three-body problem
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New non-dimensional coordinates near the L1/L2 point:

is a distance from L1/L2 to the smaller primary

Solution to linearized equations:

Planar 
frequency

Vertical 
frequency

Sun-Earth L1 2.0864519 2.0152089

Sun-Earth L2 2.0570158 1.9850765

Linearized dynamics in the vicinity of 
collinear libration points



Differential and relative parameters for 
the description of relative motion

The relative position vector meets the same 

linearized equations

Two sets of variables can be used for describing the relative 

motion in the linear approximation:

• differential amplitudes and phases 

• relative amplitudes and phases



Lindstedt-Poincaré series

• Lindstedt-Poincaré series 
approximate the central 
manifold

• For (quasi)periodic libration 
point orbits, two small 
parameters introduced are 
the in-plane and out-of-plane 
amplitudes

• Any invariant torus of 
(quasi)periodic trajectories is 
parameterized by two 
amplitudes and two phases



Reference orbit (linear approximation)

Reference orbit: Lissajous
110,000 km x 90,000 km



Reference orbit (15th-order LP series)

Reference orbit: Lissajous
110,000 km x 90,000 km



Some typical performance metrics

• Relative distance

 Should keep the relative distance constant

• Projected relative distance

 Should keep the projected relative distance constant 

(the relative trajectory is a projected circular orbit) –

space interferometry missions



Design of libration point formations

• Search for a natural motion that produces good performance 
in linear model

• Optimize a motion in high-order LP series model

• Further adapt to ephemeris model

Advantages
• Linear model provides a lot of tools to possibly find the reference 

motion

• Only four parameters to optimize and Nelder-Mead simplex 
algorithm works well in a low-dimension search space

• Good first approximation so optimization methods converge fast

• No numerical integration in the highly unstable dynamical system



Performance metric #1:
(squared) relative distance
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Performance metric #1:
(squared) relative distance
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Beating around mean value



Performance metric #1:
(squared) relative distance

Constant part Short-periodic part

Beating with the beat frequency



Performance metric #1:
(squared) relative distance

Planar 
frequency

Vertical 
frequency

Sun-Earth L1 2.0864519 2.0152089

Sun-Earth L2 2.0570158 1.9850765

Minimum variation is more 
than 80%

It is unacceptable for most of 
real applications

The performance can be good 
for a shorter interval



Performance metric #1:
(squared) relative distance
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The upper and lower envelopes



Performance metric #1:
(squared) relative distance
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Adjust parameters to make beatings smaller for short period of time



Performance metric #1:
(squared) relative distance

Maximize the distance between adjacent roots
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Performance metric #1:
(squared) relative distance
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Adjust parameters to make beatings smaller for short period of time



Performance metric #1:
(squared) relative distance

 2 22 2 cos 2 2 2a b ab t      

Adjust parameters to make beatings smaller for short period of time



Performance metric #1:
(squared) relative distance

is the tolerance for the 
squared relative distance

The performance is good for half a year 



Performance metric #2:
projected relative distance
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reference frame, n is a constant vector. 



Performance metric #2:
projected relative distance
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Performance metric #2:
projected relative distance
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Performance metric #2:
projected relative distance

Constant part Short-periodic part

Long-periodic part

   

   1

2

1 1 2( ) s

co

co 2 2 ( )si 2

s sin

n 2p pF t t F t

A t B t

t

C

  





     

 











These oscillate with 2δ frequency



Performance metric #2:
projected relative distance
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Performance metric #2:
projected relative distance
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Performance metric #2:
projected relative distance
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Performance metric #2:
projected relative distance
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Performance metric #2:
projected relative distance
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Performance metric #2:
projected relative distance
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Performance metric #2:
projected relative distance
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The performance is good for half a year 



Performance metric #1: complex 
models adaptations



Performance optimized over the extended 
time interval (with the same initial guess)



Conclusions

• The analysis of linear expressions for the performance metric 
makes it often possible to obtain an initial guess for the numerical 
optimization procedure.

• Formation performance metrics are calculated w/o numerical 
integration of highly unstable trajectories

• The explicit analytical derivations have been presented for the 
relative distance-based performance metric and projective 
performance metric in the case of two-spacecraft formation

• The optimal design is found so that the performance metric 
variations for half a year are no greater than 10%

• The same stability level is achievable for the one-year ballistic flight



Questions?


