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TETRAHEDRON FORMATION MAINTENANCE VIA 
ATMOSPHERIC DRAG CONTROL 

Sergey Shestakov,* Yaroslav Mashtakov,† and Mikhail Ovchinnikov‡ 

The problem of tetrahedron formation reference motion synthesis and its 

maintenance is considered. Linear Hill-Clohessy-Wiltshire equations are 

used to study passive relative motion of the satellites. Lyapunov-based con-
trol that increases the mission lifetime and utilizes atmospheric drag only is 

proposed. 

INTRODUCTION 

Utilization of small satellites can greatly reduce the cost and complexity of space mission. 

In addition, they make it easier to launch several satellites simultaneously. This, in turn, 
brings new possibilities, especially in the scientific missions that require simultaneous and 

distributed measurements. A good example of such mission is Magnetospheric MultiScale, 

when four satellites forming a tetrahedron carried out measurements of the Earth magnetic 

field.  

In this paper we consider the similar to MMS mission problem, but at low near-circular 

Earth orbit. The main goal is to construct and maintain such relative motion of four satellites, 

that the tetrahedron formed by them preserves its shape and volume. This problem is divided 
into two parts. On the first step we construct such reference motion that in linear Hill-

Clohessy-Wiltshire model the tetrahedron does not change. Several families of such orbits 

have been obtained.  

However, in more precise model of motion under the influence of external disturbance, e.g. 

the effect of J2 spherical harmonic and nonlinear terms in equations of relative motion, ob-

tained tetrahedrons degrade over time, and it is necessary to implement additional control in 

order to maintain the formation. Therefore, the second part of this paper is dedicated to the 
study of means of relative motion control. Since the satellites are supposed to be small, the 

most interesting approaches are the fuelless ones. Here we consider the atmospheric drag con-

trol that allows us to significantly increase lifetime of the mission. This control is implement-
ed by changing the satellite attitude w.r.t. Orbital Frame, which, in turn, changes the satellite 

cross section area.  

In order to synthesize the control law we utilize Hill-Clohessy-Wiltshire equations, but in-
stead of using Cartesian coordinates to describe the relative motion we use combinations of 

the initial conditions of the solution. The main idea of the method is the same as whilst using 

osculating elements that describe orbital motion in disturbed two-body problem. This allows 

us to develop rather simple controller, which ensures the required relative orbit maintaining. It 
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should be mentioned that the controller is developed using the simple drag model when the 
acceleration caused by the atmosphere is antiparallel to the satellite velocity. In order to verify 

developed control law the more precise model of motion, which includes J2 perturbation and 

more complex model of atmospheric drag, is used in the simulation.  

PROBLEM STATEMENT AND MOTION MODEL 

Let us consider the following problem  

 Four satellites orbit passively on near circular orbits, major semiaxes of their orbits are 

equal. 

 Four satellites together form a tetrahedron for which we want to define some mathemati-

cal equivalent of size and shape. 

 We need to find the initial parameters for the satellites motion so that the tetrahedron 

does not change its size and shape over time at least approximately 

 Also, the tetrahedron should never reach zero volume. 

 Moreover, we want to construct a simple control algorithm to maintain shape of the tet-

rahedron in a presence of disturbances. 

We use the following right-handed Cartesian reference frames: 

Inertial Reference frame (IRF): its center O
 is at the Earth center of mass, the axis O Z

 is 

directed along the Earth axis of rotation, the axis O X
 is directed to the vernal equinox corre-

sponding to the epoch J2000. 

Orbital Reference Frame (ORF): its center O  is at the one of satellites, the axis Ox  is directed 

along the radius vector of the point O  away from the Earth, the axis Oz  is normal to the or-

bital plane and is directed along the orbital momentum. 

The center of ORF is located in one of the satellites that is moving along the circular orbit. 
Without loss of generality we refer to this satellite as “the fourth”. Its motion in ORF is de-

scribed by 

 4 4 4 4( ) ( ), ( ), ( ) 0,0,0 .t x t y t z t   r   

Our assumptions allow us to describe the relative motion of other satellites using the linear-

ized CW equations: 

 

2

2

2 3 0,

2 0,

0,

x ny n x

y nx

z n z

  

 

 

  (1) 

where 3/n    is the mean motion,   is the Earth gravitational parameter,   is the radi-

us of circular orbit. Orbits major semiaxes being equal guarantees periodic motion of each 

satellite in ORF, so the tetrahedron size is bounded over time. This motion is described then 
by equations 
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  (2) 

where nt   . Here , , , ,i i i i iA B C D E  are constants depending on the initial values of motion, 

index i  attains values 1, 2, 3. The motion of the fourth satellite is described by the same set of 

equations with all the constants being equal to zero. 
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SIZE AND SHAPE OF TETRAHEDRON 

We now derive the conditions for the tetrahedron to preserve size and shape. In this section 

we do not use the fact that two satellites move along the same orbit, rather we define size and 

shape in the general case of tetrahedron.  

The natural measure for the size of the tetrahedron is its volume . In ORF the volume has 

the form 

 
1 4 2 4 3 4 1 2 3

1 1
det , , det , , .

6 6
    r r r r r r r r r   

Substituting 
ir  with values from (2) we obtain the volume as trigonometric polynomial of    
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The coefficients in the polynomial depend on initial conditions, i.e. on , , , ,i i i i iA B C D E . For the 

volume  of the tetrahedron to remain constant it is necessary that 

 
P = Q = T = W = R = 0,

U = V.
  

Under these conditions, the volume is equal to 6U , hence they are also sufficient. 

We want the tetrahedron to be non-degenerate. To simplify notation we combine constants 

, , , ,i i i i iA B C D E  in (2) in vectors. Let 1 2 3, ,A A AA , vectors , , ,B C D E  are defined analogous-

ly. 

With this notation and after appropriate simplifications conditions have the form  
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where ( , , )X Y Z  is mixed product of three vectors X , Y  and Z . 

If , , ,A B C D or E  is equal to zero, then 0  that should be avoided. If none of these vec-

tors are equal to zero, then from (3) we can derive that all four of them should be coplanar. If 

A  and B  are collinear, again 0 . If A  and B  are not collinear then they form a basis in a 

plane and coplanar D , E  are expressed as linear combinations 
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which eventually leads to b c  , a d . 

With such conditions the volume  could be calculated from the formula  

 ( , , ).
6

b
 A C B   
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The coefficient b  should not be equal to zero in all subsequent calculations. 

Unlike the volume, the shape of the tetrahedron does not have simple geometric or algebraic 

interpretation, partially due to the fact that the tetrahedron is not fully described by lengths of 
its edges. We do not demand the similarity of the tetrahedron in each moment of time instead 

we use one parameter that depicts the shape of the tetrahedron in average. We also assume 

that conservation of this parameter implies conservation of the shape at least approximately. 

This parameter, which here and below is called the tetrahedron quality, is described as 

 
 

2/3
3

12   

Here  is the volume,  is the sum of squares of the tetrahedron edge lengths. For regular 

tetrahedron 1  and for degenerate one (when four satellites lie in the same plane) 0 . 

Similar to the volume derivation we derive the expression for :   

 2 2 2 2 2 2

1 2 1 3 2 3 1 2 3( ) ( ) ( ) .        r r r r r r r r r   

After substitutions, reductions of terms and all simplifications the derivation for  is a trigo-

nometric polynomial. In general the polynomial has the form 

 2 2cos cos sin sin cos sinP Q R T U W             

The necessary and sufficient conditions for conservation of  have the form 
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Using volume conservation expressions we can simplify the equations. Finally, for the non-
degenerate tetrahedron preserving its volume and quality (size and shape) vectors A  and B  

must be non-collinear and the following expressions must be true 
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  (4) 

To fully describe all possible configurations preserving volume and quality one should solve 

this system for unknown vectors , , ,A B C D  and E . This is the system of 10 equations with 15 

variables and 2 parameters so the solutions are 7-parametric families. Two of the parameters 

are the constants a  and b . One parameter should be proportional to the volume of the tetra-

hedron because enlarging or shrinking of the tetrahedron does not affect the quality. The 

fourth parameter is the initial phase of the motion, because nt   changes from 0 to 2  over 

time, so adding arbitrary number to the phase of all satellites in a group does not change the 

motion. The fifth parameter could be found using the following observation: vector C  has 

three components, but only two last equations depend on them, so C  could be found only up 

to a factor. This arbitrary factor is the fifth parameter – in our case it is the shift between two 

satellites orbiting on the same orbit. Note that the satellite renumbering does not affect the 
dynamics, so we refer two different solutions obtained from each other by renumbering the 

satellites to a single family of solutions. The geometric sense of two remaining parameters is 

described below. 
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PARTICULAR SOLUTIONS ANALYSIS 
In a search for particular solutions we do the following variables change 
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here , ,    -- amplitudes of oscillations of first, second and third satellites in ORF respec-

tively, , ,    are the initial phases. Given , ,  
 
one can find phases so two ratios between 

amplitudes (for example / , /    ) are two remaining parameters.  

In this paper we are focusing on leader-follower solution of the abovementioned equations: 

two satellites, the third and the forth are on the same orbit, so the third satellite rests in ORF. 

That means 0  and 
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Moreover, nt   changes from 0  to 2  upon the motion, so we choose initial moment of 

time so that 0  . The only non-degenerate solution is 
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Here K  represents the linear size of tetrahedron (average length of edge) and   is the phase 

shift between the first and the second satellites. When   is again nonzero arbitrary phase an-

gle we obtain initial conditions 
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Substituting obtained relations in (4) we obtain  

 1 2 3, 2C cC C c     

with arbitrary .c  Combining it with  
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we obtain a complete set of solutions to the problem with , , , ,K a b c  being parameters. 

In this case  
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As being expected, neither volume, nor quality depends on   in linear case. 

The maximum of quality is achieved when 
5

0, 5,
3

a b c K      and is equal to 

3

1

5
max    

ATMOSPHERIC DRAG CONTROL ALGORITHM 

Simulations show that for high orbits the degradation of the tetrahedron quality is rather 

small, so active control of relative orbits is not necessary. However, at LEO tetrahedron deg-

radation rate leaves much to be desired so some control algorithm is necessary. 

At LEO, especially for small satellites, one of the most convenient and cheap way of rela-

tive motion control is to utilize atmospheric drag. In order to construct the efficient controller, 

we use curvilinear relative coordinates. Equations of motion can be described in the following 

way:  
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where 0 4a  R , i.e. it is the orbit radius of the satellite placed in ORF origin, ,i i   are the 

angles that define relative satellite position (see Figure 1). It should be noticed that they are 
obtained for the Keplerian motion, when the forth satellite moves along circular orbit. These 

equations are similar to (1), and for the formation with small relative orbits their solution de-

scribe the same relative orbits. However, these coordinates describe wider formation much 
better, because they allow us to take into account that satellites actually move along almost 

circular orbits. If we include disturbances g  and control u , the system became 
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Figure 1 Curvilinear parameters 
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Introduce new variables , , , ,,A B C D   : 
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Their derivatives in accordance with equations of motion can be written as follows: 

 

    

 

 

 

 

    

1
cos 2 sin ,

1
cos ,

1
,

2
3 ,

1
sin .

1
sin 2 cos .

x x y y

z z

y y

x x

z z

x x y y

A u g u g
n

u g
n

С u g
n

D Cn u g
n

n u g
nB

n u g u g
An

B

 



 

  

   

 

 

   

  

    

  

The physical meaning of new variables is closely related to the meaning of CW constants: 

the projective relative trajectory is close to the ellipse with semiaxes A  and 2A , the oscilla-

tions in the Oz  direction has the amplitude close to B , the trajectory drifts from the origin of 

ORF with rate C  and initial shift D . Also,   and  correspond to the position of the satel-

lite on the relative orbit.  

The relative orbit size changes slowly with respect to shift and drift that can change rapidly 

and with increasing rate. So the first step of a control algorithm should nullify drift and set 

shift to a desired value  

 
00, .ref refC D D    

In order to increase lifetime of the satellite it would be useful to suggest fuelless control al-

gorithm. For example, we can use atmospheric drag. It means that control can be applied only 

along the velocity vector of the satellite, i.e. 0x zu u  . Here we do not take into account the 

possible reflection of air molecules from the satellite body, i.e. aerodynamic lift – we will 

consider it as a disturbance and, as well as other disturbances, will not include it in control 
synthesis. Hence, simplified system dynamics is 
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For control construction we use Lyapunov direct method. Consider the Lyapunov-candidate 
function  

  
2

2 , 0.D ref DV C k D D k      

Its derivative is 

  3 .D r f

y

e

u
C DV nk

n
D

 
  

 
  

If , 0c ck CV k  , the derivative is non-positive and equal to zero on set containing only 

one whole trajectory 0, .refC D D   According to Barbashin-Krasovski-LaSalle theorem the 

control 

  23 D rey cfu k D Dn k C     

provides asymptotic stability of a desired motion. However, due to the presence of external 
disturbances this control will only ensure that drift and shift of the orbit are within the vicinity 

of the required ones. 

It should be noted that the main goal of the control is to preserve the tetrahedron, therefore 
not only shift and drift must preserved, but also relative ellipse size and difference between 

phases should be equal to a certain value. We consider so-called “leader-follower” formation, 

when two satellites lie almost on the same orbit (one in the origin of ORF, the other is shifted 
along the OY axis), and the other two satellites move along the same relative orbit with dif-

ferent phases. To be exact, as usual the forth satellite is in the origin of ORF, the third one is 

shifted so  

 3 0 3 3, 0, 0,D D A B     

and the remaining two satellites are on the same orbit 

 1,2 0 1,2 0 1,2 00.5 , , .D D A A B B     

In addition, phase shift between them must be  

 2 1 2 1

1
acos

3
.       

In order to ensure this motion, we suggest simple idea: when shift and drift are within ac-

ceptable vicinity of the required values, control should work only when it helps to achieve 

correct phase shift between the satellites. For example, if 2 1 acos(1/ 3)   , it is necessary to 

increase 1 , therefore control is applied only if  

 1cos 0.yu    

Relative orbit radius is controlled in the same way, but only when both the phase shift and 

drift are in the vicinity of the required ones. It should be noted that we consider here the con-

trol that is applied only along the velocity of the satellite, therefore direction along orbit nor-
mal is uncontrollable.  

Control implementation 

In order to provide the necessary control atmospheric drag is utilized. It creates the force 
which is antiparallel to the satellite velocity, and some component that is aligned with the 

normal to satellite surface (so-called atmospheric lift), which is usually one order of magni-

tude lesser than drag force. Further we will suppose that satellites are the thin plates that have 
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an area S  and normal to their surface 
in . In this case drag force can be described in the fol-

lowing way: 

         , 1 2 1, ,atm i i i i i i i S         V n nF nV n V   

where 
atm  is atmospheric density, 

iV  is satellite velocity w.r.t. the atmosphere, ,   are some 

parameters that describe what part of the flow is absorbed or reflected.  

In according with suggested controller, it is necessary to provide control in both directions: 

along and antiparallel to velocity of the chief satellite. Since 
, , ,y i y i y cu f f  , where 

,y if  de-

notes drag force that affects the i-th satellite, and 
,y cf  is drag force that affects chief satellite, 

the required control might be provided in the following way. Chief’s normal in the ORF is 

described as 
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which means that drag force affecting it is equal to 0.5 maxf , where 
maxf  denotes the maximum 

possible drag force (here we omit the reflected part of the flow: as was mentioned earlier, it is 

rather small). Therefore, since ,y if  lies in the interval [ ,0]maxf , the resulting control ,y iu  lies 

in the interval ,
2 2

max maxf f 
 
 
  . Hence, control which must be produce is chosen in the follow-

ing way: 
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
 

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It should be noted that ,y iu  not fully defines the satellite normal attitude: it defines only the 

angle between the velocity direction and in . To fully describe it we will use the following 

technique: since there is also a lift force (which might affect the motion along orbit normal), 

we will choose the in  direction in such a way, that lift force helps to preserve the necessary 

out-of-plain motion amplitude and phase shift, i.e. it will lie in the OYZ plane. 

 SIMULATION RESULTS 

In order to test suggested control technique the following problem was simulated. 

 Satellites are the 3U CubeSats with a drop-down solar panels. 

 Mass is 5 kg. 

 Area is 0.15 2m . 

 All the satellites move under Newtonian gravity field, as well as J2 and atmospheric 

drag perturbations. 

 Formation size K  is 1 km.  

In Figure 2 different relative osculating parameters are presented. They correspond to the 

passive motion in the Newtonian field with J2 perturbation (without atmospheric drag). As we 
can see, part of them stays almost the same (e.g. in-plane phase shift and amplitude), but 

some of them changes drastically, such as relative shift and out-of-plane parameters. It leads 

to fast degradation of the tetrahedron. 

In figure 3 the same parameters are presented, but now the control using atmospheric drag is 

utilized. As we can see, in this case all in-plane parameters are almost the same as necessary, 
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and only out-of-plane motion is different. As we can see, in this case tetrahedron quality is 
almost preserved.  

  

  

  

 

Figure 2 Relative motion without control 
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Figure 3 Relative motion under control 
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Figure 4 Tetrahedron quality evolution for long period of time 

 

DISCUSSION AND CONCLUSION 

Simulation shows that suggested technique can effectively control relative in-plane motion 

of the satellites, thus slowing degradation rate of the tetrahedron. It should be noted that out-
of-plane motion is almost uncontrollable, because the lift force is too small. Therefore, even 

though it is possible to decelerate the degradation rate of relative parameters along this direc-

tion, they still degrade. This, in turn, leads to degradation of the tetrahedron: as we can see in 
Figure 4, after a month it degrades completely, therefore additional control (e.g. using thrust-

ers) is required.  
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