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Introduction

Missions with tetrahedral formations

• Cluster/Cluster II

• The Auroral Lites

• Magnetospheric Multiscale (MMS)



Using tetrahedral formation

• Why?
• Physical quantities change in time and space 

simultaneously

• Even in linear approximation one needs to have four 
measurements to have a gradient

• Magnetosphere study

• Need to maintain the tetrahedron
• Nondegenerate for all the lifetime of the mission

• Possibly the closest to the regular one 

• It is common and convenient to describe the 
tetrahedron using several scalar parameters



Problem statement
• Four satellites move on close LEOs

• One is moving along circular trajectory

• Need to obtain a reference orbit in order that the 
volume and shape of the corresponding 
tetrahedron maintain over time

• Size and shape must be formalized

• Also provide a simple control algorithm for several 
satellites to neglect perturbations



Tetrahedral configuration

• Quality of the tetrahedron is chosen to be meaningful 
in geometric sense and analytically analyzable

• Linearized HCW model, closed orbits described by

• The main goal is to find such reference orbit that in 
passive motion in linearized model volume and quality 
of the tetrahedron remain constant

   
2/3 2/3 2 2 23

1 2 3

2 2 2 2 2 2 2 2 2
12 13 14 23 24 34 1 2 3

3 | V | 3 | V |
12 12 3

L
Q

r r r r r r

  

  
  

      

2

2

2 3 0,

2 0,

0

x ny n x

y nx

z n z

  

 

 

( ) sin cos ,

( ) 2 cos 2 sin ,

( ) sin cos ,

i i i

i i i i

i i i

x t A B

y t A B C

z t D E

 

 

 

 

  

 



Quality/Volume conservation

The set of equations so that the tetrahedron does 
not change volume and quality in linear model
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Quality/Volume conservation

Solutions are 7-parametric families

Some of the solutions are presented below



Focus on leader-follower formation
• Orbit height – 400 km

• Inclination 51.6 deg

• Formation size K = 1000 m
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Focus on leader-follower formation

• Orbit height – 400 km

• Inclination 51.6 deg

• Formation size – 1000 m

Need to control formation



Using curvilinear coordinates
More natural to use and to describe relative 
motion

We use the same set of initial conditions for 
leader-follower formation

Need to maintain amplitudes A,B and phase 
differences

 

 

   

2
2

02

2

02

2
2

0 02

2 3 0

2 0

0

d d
a

dt dt

d d
a

dt dt

d
a a

dt

n n

n

n

  

 

 

  

 

 

 

 

 

0

0

cos 2 ,

2 sin 3

sin

A nt C

a A nt Cnt G

a B nt

 

 

 

  

    

 

1 2 1 2 acos(1/3)      



Osculating coordinates
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New variables:
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The system is described by



Atmospheric control algorithm
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• Asymptotically stable 
controller

• We neglect additional 
accelerations

• But acceleration is only 
along velocity vector
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Atmospheric control algorithm

First step – shift adjust and 
drift elimination

• Direct Lyapunov method

• Control

Second step – phasing

• Control only if it helps to 
phase properly

Third step – amplitudes A, B

• The same, but if phasing is 
correct
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Atmospheric control algorithm

Drift and shift are controllable 



Atmospheric control algorithm

In-plane motion is fully controllable 



Atmospheric control algorithm

Out-of-plane motion is not controllable



Atmospheric control algorithm

• Tetrahedron configuration 
conserving quality in linear 
model

• Tetrahedron size  K = 1000 m
• Orbit height = 400 km
• Masses = 5 kg
• Area = 0.15 m2

• Inclination = 51.6 deg
• Disturbances – J2 and 

atmosphere



Conclusions

• The reference orbit for 4 satellites conserving volume 
and shape of the tetrahedron is found in linear model 
on circular orbit

• Suggested Lyapunov-based controller can effectively 
control relative in-plane motion of the satellites, thus 
slowing degradation rate of the tetrahedron

• The out-of-plane motion is almost uncontrollable, 
because the lift force is too small 

• It is possible to decelerate the degradation rate of 
relative parameters for several weeks
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