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z, thousands km

Near Rectilinear Halo Orbits (NRHOs)

NRHOs — a class of halo orbits with a low minimal distance to the minor body
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Properties of lunar NRHOs:

* Good shadow and radio
visibility conditions

» Unstable but require low
station-keeping costs

e Stationary visibility conditions
of the lunar surface

* Apolune is above the lunar
south pole

Southern NRHO L2 9:2 in the standard rotating frame
(perilune altitude = 1400 km, orbit period = 6.652 days)
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High Circular Polar Orbits (HCPOs)

HCPOs are considered as an alternative to NRHOs for
the orbital station:

* Polar regions visibility conditions are similar to those
for the NRHOs

* Unlike NRHOs, these are orbitally stable orbits

* Transfers from low Earth orbits are cheaper than
those to NRHOs
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Perturbations at different altitudes
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Double-averaged model

Lidov (1961), Kozai (1962) investigated the double-
averaged model:

* Only third-body perturbation is taken into account

* The third body moves in a circular orbit around the
central body

* Gauss equations in osculating elements are averaged
w.r.t. orbital motion of the spacecraft and orbital
motion of the third body
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Double-averaged equations of motion
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Phase portrait of the reduced system

It is convenient to make a change of variables:
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Osculating elements w/o station keeping

o
~J
1

e
(o]
T

o
~

Eccentricity, non-dimentional

e
—

o

Initial values of the orbital elements:
a=11,745km, e=0.01,i=90.95% Q=0° w=342.75° M =338.22°
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e , non-dimentional

Station-keeping of high lunar orbits

0.02
* The station-keeping
0018 ¢ :
approach is based on
0.01" Natural targeting the stable manifold

_ evolution :
0.005 * Two-impulse maneuvers are

Two-impulse separated by regular time

-0.005 : correction spans
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Station-keeping algorithm

Given a phase state x; at the moment ¢, consider the

moment ¢, = t; + T, where T (periodicity of corrections) is
fixed and the same in every station-keeping cycle

Calculate two impulses Av,; at the moment r, and Awv, at
the moment 7 such that

J = Avy + Avy — min  s.t. er(T) =€x0 T >ty — P/2
C. : €, (Tz) = €40 . < 1. ¢
optimization variables: ;(,}_‘_) _ G:’] T <ty + P/2
' \v. ‘ o | Ty 2 T
Avy, Avsy, 71, T M () = M, 1
(72)

Integrate the equations of motion from ¢, to = applying the
impulses; now, 7 is new t,
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Controlled evolution of eccentricity
and inclination
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Periodicity of corrections: 81.966 days
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Change of station-keeping costs with
correction maneuver frequency

Periodicity of
corrections, days

Mean annual station-
keeping cost, m/s/year

Standard deviation, m/s/year

04.644
81.966
109.288
136.610
163.932

25.088
20.547
22.190
23.923
30.528

Navigation errors (30): 1 km, 1 cm/s
Impulse magnitude error (30): 1%
Impulse direction error (30): 3 deg
Minimal impulse magnitude allowed: 1.5 mm/s

3.696
1.785
3.941
3.480
0.648

The corresponding station-keeping costs for the NRHO L, 9:2:
0.2464+ 0.024 m/s/year
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Conclusion

Stability properties of high near-circular polar orbits around the
Moon are investigated.

The near-circular orbits with an altitude of 10,000 km are unstable:
the eccentricity increases, whereas the mean semi-major axis is
constant, which leads to collision with the Moon. The characteristic
time of the eccentricity vector evolution is approximately 50 days.

Based on the double-averaged dynamics analysis, an algorithm of
station-keeping is designed and implemented in code.

Annual station-keeping costs exceed 20 m/s, this is by 1-2 orders
higher than for the near-rectilinear halo orbit L, 9:2. The station-
keeping of high circular orbits requires 1 correction in 2-4 months.
To compare, near rectilinear orbits require 1-2 correction in a week.
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Delaunay elements

Canonical variables in the two-body problem (Delaunay elements):

/g\ — true anomaly

x=| g — argument of pericenter

\ h ) - longitude of the ascending node

(L ([ vm )
X=| G | =| LV1—-e¢e2
\H} \ (v cos 1t /

2

H . .
Hic = ~572 — two-body Hamiltonian




Lie-Deprit’s transform

e Canonical transformation ¢ : (y.Y) — (x, X)

ch k ch cn
H(x, X;e) = > —H)(x,X) —> H(y.Yie) Z —HG(Y) )+ ) - —Hi(y.Y)

n=0 n>k

 Lie-Deprit’s method: W (x,X;¢) = Zﬂ_m 1(x, X)

n=(0

~n ~n
X=Y¥ + Z EL?‘[' (Y) = X+ Z o Ln W }(X) LH—’ — {_; [1"} L( Wy = {—; —ny}

n=>0 n=>0

X:Y+Z% r(Y) Y = X+Z L'” wy(X)  {=i—} — Poisson bracket

n>0 " n::-u

Generating function can be found from recurrent formulas:

J
Hy =M+ ) CHH Wi} & (W) = Q-

J+1
k=()



