63-я Всероссийская научная конференция МФТИ

Сравнительный анализ методов моделирования гравитационного потенциала тел сложной формы

А.С. Юдицкая^{1,2}**, С.С. Ткачев**²

¹ МФТИ

² ИПМ им. М.В. Келдыша РАН

Содержание

- Введение
- Постановка задачи
- Описание подходов
- Сравнение подходов
- Заключение

Введение

- Для задач сближения и исследования тел сложной формы требуется уметь моделировать гравитационного поле.
- Существует несколько методов расчета потенциала (в работе рассматриваются метод многогранника, метод сферических гармоник, масконы), и целью данной работы является сравнение эффективности использования каждого из этих методов.

Подходы описания гравитационного потенциала

R.Werner, The gravitational potential of a homogeneous polyhedron or don't cut corners



T. G. Chanut, Mascon gravitation model using a shaped polyhedral source

Модель сферических гармоник

$$U = \frac{G}{r} \sum_{l=0}^{\infty} \frac{P_l \left[\sin \left(\frac{\pi}{2} - \theta \right) \right]}{r^l} C_{l,0} +$$

$$+ \frac{G}{r} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \frac{P_{l,m} \left[\sin \left(\frac{\pi}{2} - \theta \right) \right]}{r^l} \left\{ C_{l,m} \cos \left(m\varphi \right) + S_{l,m} \sin \left(m\varphi \right) \right\}$$

D. Vallado, Fundamentals of astrodynamics and applications.

Постановка задачи

<u>Дано:</u> форма тела, заданная с помощью поверхностной сетки; масса тела

Задачи:

- 1. Посчитать потенциал в заданных точках
- 2. Сравнить расчет потенциалов, вычисленных разными способами

Модель многогранника

$$U_{triangle} = \frac{\Delta z}{2} \left(\det_{12} L_{12} + \det_{23} L_{23} + \det_{31} L_{31} \right) - \frac{\Delta z^{2}}{2} \left(S_{1} + S_{2} + S_{3} - \operatorname{sign}(\Delta z) \pi \right)$$

$$U = G\sigma \sum U_{triangle}$$

$$U = G\sigma \sum U_{triangle}$$

$$U = G\sigma \sum_{faces} U_{triangle}$$

$$\det_{12} = \Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1; \ \det_{23} = \Delta x_2 \Delta y_3 - \Delta x_3 \Delta y_2; \ \det_{31} = \Delta x_3 \Delta y_1 - \Delta x_1 \Delta y_3$$

$$L_{12} = \frac{1}{r_{12}} \ln \left(\frac{r_1 + r_2 + r_{12}}{r_1 + r_2 - r_{12}} \right); \ L_{23} = \frac{1}{r_{23}} \ln \left(\frac{r_2 + r_3 + r_{23}}{r_2 + r_3 - r_{23}} \right); \ L_{31} = \frac{1}{r_{31}} \ln \left(\frac{r_3 + r_1 + r_{31}}{r_3 + r_1 - r_{31}} \right)$$

$$S_{1} = \arctan\left(\frac{\Delta z \left[\xi_{1} (\eta_{2} - \eta_{3}) + \xi_{2} (\eta_{3} - \eta_{1}) + \xi_{3} (\eta_{1} - \eta_{2})\right]}{-\left\{\det_{31} \det_{12} + \Delta z^{2} \left[\left(\xi_{2} - \xi_{1}\right) \left(\xi_{1} - \xi_{3}\right) + \left(\eta_{2} - \eta_{1}\right) \left(\eta_{1} - \eta_{3}\right)\right]\right\} / r_{1}}\right)$$

$$S_{2} = \arctan \left(\frac{\Delta z \left[\xi_{1} \left(\eta_{2} - \eta_{3} \right) + \xi_{2} \left(\eta_{3} - \eta_{1} \right) + \xi_{3} \left(\eta_{1} - \eta_{2} \right) \right]}{- \left\{ \det_{12} \det_{23} + \Delta z^{2} \left[\left(\xi_{3} - \xi_{2} \right) \left(\xi_{2} - \xi_{1} \right) + \left(\eta_{3} - \eta_{2} \right) \left(\eta_{2} - \eta_{1} \right) \right] \right\} / r_{2}} \right) \quad r_{i}$$
-расстояние между пр

$$S_{1} = \arctan \left(\frac{\Delta z \left[\xi_{1} \left(\eta_{2} - \eta_{3} \right) + \xi_{2} \left(\eta_{3} - \eta_{1} \right) + \xi_{3} \left(\eta_{1} - \eta_{2} \right) \right]}{-\left\{ \det_{23} \det_{31} + \Delta z^{2} \left[\left(\xi_{1} - \xi_{3} \right) \left(\xi_{3} - \xi_{2} \right) + \left(\eta_{1} - \eta_{3} \right) \left(\eta_{3} - \eta_{2} \right) \right] \right\} / r_{3}} \right) \frac{(x, y, z)$$
-координаты пробной точки в СК грани
$$\left(\xi_{i}, \eta_{i}, \zeta \right)$$
-координаты і вершины грани в СК грани
$$\left(\Delta x_{i} \right) \left(\xi_{i} \right) \left(\xi_{i} \right) \left(\xi_{i} \right)$$

$$L_{12} = \frac{1}{r_{12}} \ln \left(\frac{r_1 + r_2 + r_{12}}{r_1 + r_2 - r_{12}} \right); L_{23} = \frac{1}{r_{23}} \ln \left(\frac{r_2 + r_3 + r_{23}}{r_2 + r_3 - r_{23}} \right); L_{31} = \frac{1}{r_{31}} \ln \left(\frac{r_3 + r_1 + r_{31}}{r_3 + r_1 - r_{31}} \right)$$

$$S_1 = \arctan \left(\frac{\Delta z \left[\xi_1 \left(\eta_2 - \eta_3 \right) + \xi_2 \left(\eta_3 - \eta_1 \right) + \xi_3 \left(\eta_1 - \eta_2 \right) \right]}{-\left\{ \det_{31} \det_{12} + \Delta z^2 \left[\left(\xi_2 - \xi_1 \right) \left(\xi_1 - \xi_3 \right) + \left(\eta_2 - \eta_1 \right) \left(\eta_1 - \eta_3 \right) \right] \right\} / r_1} \right) \qquad \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} \mathbf{i}_X & \mathbf{i}_Y & \mathbf{i}_Z \\ \mathbf{k}_X & \mathbf{k}_Y & \mathbf{k}_Z \end{bmatrix} \text{ матрица поворота СК тела -> СК грани}$$

 r_i -расстояние между пробной точкой и і вершиной (x,y,z)-координаты пробной точки в СК грани

$$\begin{pmatrix} \Delta x_i \\ \Delta y_i \\ \Delta z \end{pmatrix} = \begin{pmatrix} \xi_i \\ \eta_i \\ \zeta \end{pmatrix} - \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Модель сферических гармоник

$$U = \frac{G}{r} \sum_{l=0}^{\infty} \frac{P_l \left[\sin \left(\frac{\pi}{2} - \theta \right) \right]}{r^l} C_{l,0} + \frac{G}{r} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \frac{P_{l,m} \left[\sin \left(\frac{\pi}{2} - \theta \right) \right]}{r^l} \left\{ C_{l,m} \cos \left(m\varphi \right) + S_{l,m} \sin \left(m\varphi \right) \right\}$$

r – расстояние до "пробной точки"

 θ, ϕ – зенитный и азимутальный углы для "пробной точки"

 $P_{l,m}$ – присоединенный полином Лежандра

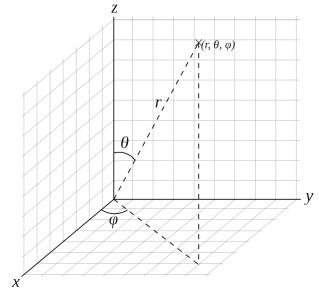
 $C_{l,m}, S_{l,m}$ – коэффициенты разложения

$$P_{l,m}[x] = \frac{1}{2^{l}} (1 - x^{2})^{m/2} \sum_{j=0}^{l} \frac{(-1)^{j} (2l - 2j)!}{j! (l - j)! (l - 2j - m)} x^{l - 2j - m}$$

$$P_l[x] = P_{l,0}[x]$$

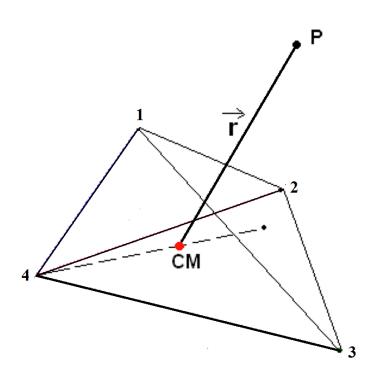
$$C_{l,m} = \sum_{all_tetr} r_{tetr}^{l} \left(2 - \delta_{0m}\right) \frac{(l-m)!}{(l+m)!} P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta_{tetr}\right) \right] \cos\left(m\varphi_{tetr}\right) M_{tetr}$$

$$S_{l,m} = \sum_{all_tetr} r_{tetr}^{l} \left(2 - \delta_{0m}\right) \frac{(l-m)!}{(l+m)!} P_{l,m} \left[\sin\left(\frac{\pi}{2} - \theta_{tetr}\right) \right] \sin\left(m\varphi_{tetr}\right) M_{tetr}$$



 r_{tetr} — расстояние до цт тетраэдра $\theta_{tetr}, \varphi_{tetr}$ — зенитный и азимутальный углы для цт тетраэдра

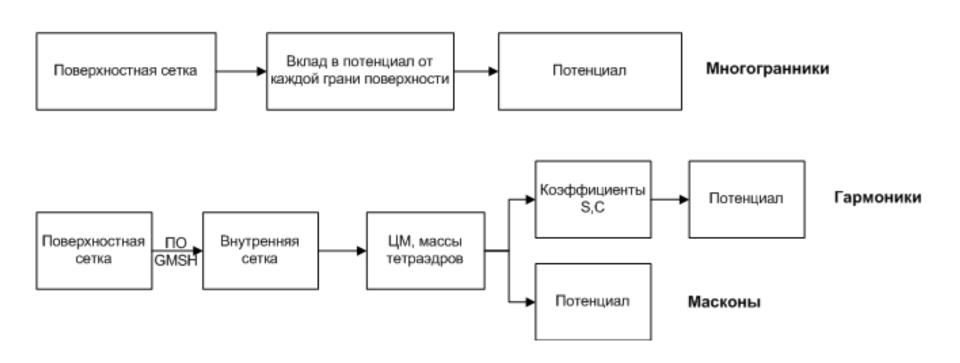
Масконы



$$U = G \sum_{i} \frac{M_{i}}{\|r_{i} - P\|}$$

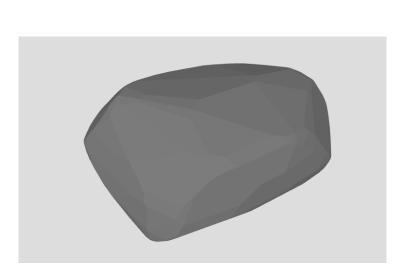
 M_i — масса тетраэдр r_i — центр масс тетраэдра P — пробная точка

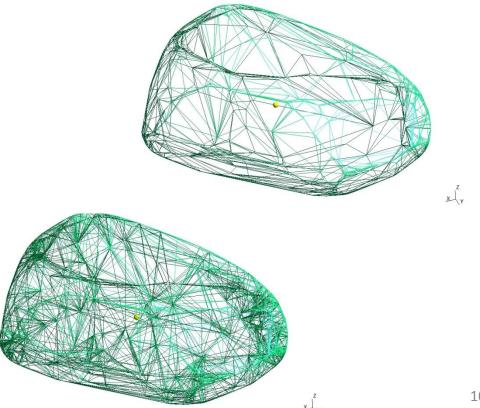
Схемы расчета



(321) Флорентина

- Macca 2,11·10¹⁶ кг
- Средний диаметр 27.97 км





Выбор количества рассматриваемых гармоник

RL	3	4	5	6	7	8	9	10
2r	0,24799	0,24723	0,24725	0,24719	0,24719	0,24719	0,24719	0,24719
3r	0,11276	0,11269	0,11269	0,11269	0,11269	0,11269	0,11269	0,11269
4r	0,06534	0,06536	0,06536	0,06536	0,06536	0,06536	0,06536	0,06536
50r	0,00236	0,00236	0,00236	0,00236	0,00236	0,00236	0,00236	0,00236

Сравнение точности

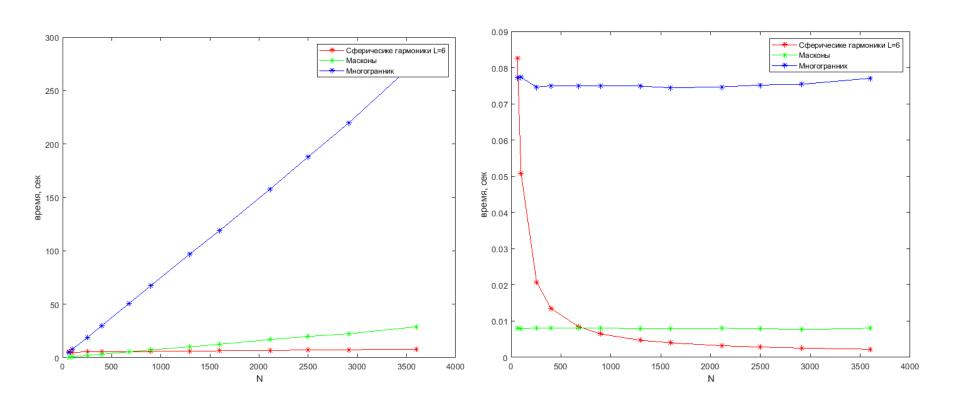
Метод многогранника → точное значение

Метод Расстояние	Сферические гармоники L=6	Масконы
2r	0,2472%	0,009 %
3r	0,1126%	0,004%
4r	0,0653%	0,00221 %
50r	0,0023%	1,57E-05%

Вычислительная сложность

Метод N	Многогран	ник	Сферичесі гармоникі		Масконы	
точек 🔪	_	_	_	время на 1	_	_
	точек, сек	точку, сек	точек, сек	точку, сек	точек, сек	точку, сек
64	4,93969	0,077183	5,28205	0,082532	0,517284	0,008083
100	7,734078	0,077341	5,088143	0,050881	0,785219	0,007852
256	19,10248	0,074619	5,325146	0,020801	2,070883	0,008089
400	30,00034	0,075001	5,397246	0,013493	3,221323	0,008053
676	50,70075	0,075001	5,720762	0,008463	5,418007	0,008015
900	67,50762	0,075008	5,795158	0,006439	7,313903	0,008127
1296	97,05106	0,074885	6,093031	0,004701	10,15913	0,007839
1600	119,0700	0,074419	6,400655	0,004000	12,52991	0,007831
2116	158,0091	0,074673	6,785489	0,003207	16,93859	0,008005
2500	187,9523	0,075181	7,112008	0,002845	19,83606	0,007934
2916	219,9168	0,075417	7,421998	0,002545	22,33779	0,007660
3600	277,3942	0,077054	7,982936	0,002217	28,91226	0,008031

Вычислительная сложность



Время вычисления гравитационного потенциала в N точках

Среднее время вычисления гравитационного потенциала в 1 точке

Заключение

- Многогранник точный метод для однородных тел, может использоваться в качестве эталонного
- Сферические гармоники менее точный, но более вычислительно выгодный метод на большом количестве точек
- Масконы выгоднее использовать на маленьком числе точек

Работа поддержана грантом РНФ № 19-11-00256

Спасибо за внимание!