64-я научная конференция МФТИ 3 декабря 2021 года, Москва

Аппроксимация функции оптимального управления космическим аппаратом методом детерминированного обучения

А.О.Осипов 1 , М.Г. Широбоков 2

¹Московский физико-технический институт

²Институт прикладной математики им М.В. Келдыша РАН

План

- Актуальность
- Преимущества метода
- Описание метода
- Постановка задачи
- Результаты
- Выводы
- План дальнейшей работы

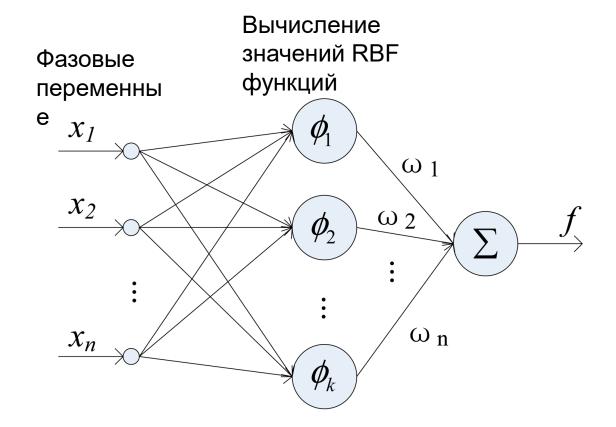
Актуальность

- Существует много методов, позволяющих получить программное оптимальное управление
- Однако, программное управление чувствительно к возмущениям.
- Управление с обратной связью лучше подходит

Преимущества метода

- Возможность использовать различные подходы:
 - Идентификация оптимального управления
 - Построение оптимального управления
- «Легкость» преобученной сети

Цели и Задачи


• Цель:

• Оценка применимости метода детерминированного обучения для получения управления с обратной связью

Задачи:

- Реализация метода детерминированного обучения
- Применение метода в задаче управления

Архитектура нейросети

Радиально базисная функция:

$$s_i(x) = \exp[-\beta \cdot ||x - c_i||^2]$$

с - Гауссовские центры радиальнобазисных функцийβ>0 — коэффициент RBF

Аппроксимирующая функция:

$$f_{nn}(x) = W^T S(x) = \sum_{i=1}^N \omega_i \cdot s_i(x)$$
 W=[ω , ω , ...] — веса нейросет $^{\text{PU}}$

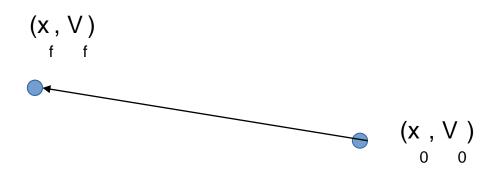
Постановка общей задачи

$$\dot{x} = F(x, p), \qquad x(t_0) = x_0$$

х — фазовый вектор системы

F(x,p) — неизвестная непрерывная нелинейная функция

р — параметр системы, в нашей модельной задачи не используется Для непрерывной, ограниченной и нелинейной F(z), существуют оптимальные веса нейросети — такие, что результат аппроксимации отличается не больше чем на заданную наперед функцию фазового вектора


$$\left| F(z) - W^{*^T} s(z) \right| < \varepsilon(z)$$

Детерминированное обучение

Существует теорема, что для любой квазипериодической или периодической траектории веса RBF нейросети W, которые удовлетворяют следующим выражениям:

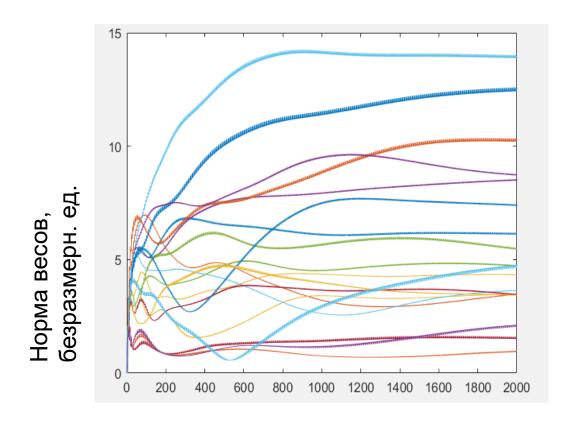
Сходятся в малой окрестности от оптимальных весов W^* , при условии конечного, но достаточно большого числа узлов нейросети, и гауссовских центров расположенных близко к траектории

Простейшая задача управления

^О Центр притяжения

$$\dot{\vec{x}} = \vec{V}$$

$$\dot{\vec{V}} = \frac{\mu}{|\vec{x}|} + \vec{U}$$


$$\vec{U} = \frac{\vec{V}}{|\vec{V}|}c$$

$$minJ = t_f$$

Простейшая задача управления

Количество центров — 20 Они расположены равномерно на предполагаемой траектории Для того, чтобы траектория удовлетворяла условиям применения методов детерминированного обучения, дополним ее до квазипериодической обратным перелетом.

Результаты

Время, безразмерн. ед.

Полученная точность аппроксимации достигает 10

Выводы

- Детерминированное обучение применимо к рассматриваемому классу задач
- С помощью этого метода получено управление с обратной связью для простейшей задачи управления

Направление дальнейшей работы

- Измерение радиуса сходимости метода
- Применение его к более сложным задачам
- Рассмотрение других подходов детерминированного обучения в рамках этой задачи

Спасибо за внимание!