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Abstract — The paper considers the problem of relative 

motion control for a docking to the noncooperative tumbling 

object. The translational motion is assumed to be controlled by 

the thrusters; the attitude control system is based on the 

reaction wheels. The SDRE-based coupled motion control 

algorithm is proposed and its performance is studied. The 

misalignment of the thrusters and the reaction wheels 

saturation are taken into account in the numerical simulations. 

The area of acceptable the control system parameters for 

successful docking is obtained. The influence of the tumbling 

object angular velocity and its inertia moment ratio to the 

reaction wheels saturation is studied using multiple 

simulations. 
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I. INTRODUCTION 

Inactive satellites or its fragments, rocket stages on the 
Earth’s orbit are classified as space debris. Their removal 
became a crucial international problem. There is a set of 
approaches to address this problem. Self-removal and active-
removal are the main two categories of the proposed 
solutions [1], [2]. In the case of self-removal, the satellites 
are to be deorbited using its own propulsion system or 
external forces, e.g. aerodynamic drag, solar pressure etc. 
Active removal is a wide range of methods that suggest 
special missions for de-orbiting the noncooperative objects. 
These missions assume that a special satellite is to be 
attached to the space debris using electro dynamic tether [3], 
tethered space-tug [4]–[7], nets [8] or robotic arms [9], [10] 
to capture objects for delivering it into the lower orbit for 
further aerodynamic drag deorbiting. One of the crucial 
problem related to active space debris removal is the 
rendezvous, docking and capturing the non-cooperative 
tumbling target. Generally, onboard propulsion is used to 
achieve the required proximity about the debris while the 
required for capturing relative attitude is obtained with help 
of the attitude control system that could include the reaction 
wheels. However, the reaction wheels could saturate because 
of onboard thrusters misalignment or high angular velocity 
of tumbling object which attitude must be tracked for 
capturing. The paper addresses this problem. 

The problem of an autonomous docking between a 
controlled rigid spacecraft and an uncontrolled tumbling 
target is well studied in the literature. In the last decade 
significant achievements have been obtained in the field of 
optimal docking control strategies. In the papers [11], [12] 
the model predictive control is applied to the problem. It 
allows to generate the safe and fuel-optimal rendezvous 
trajectories that guarantee collision avoidance. Its 
computation requires the use of convex linear and quadratic 
programming. In the papers [13], [14] proposed a second-
order cone-programming-based methodology to solve the 
rendezvous and proximity operations problem. Another 

approach is to apply the inverse dynamics in the virtual 
domain method for rapid sub-optimal docking trajectory 
generation [15]. The fuel-optimal trajectory generation 
algorithms are computationally intensive, its implementation 
in a real-time system is very challenging. Another approach 
is to use non-optimal docking trajectory generation as in 
[16], [17] for the sake of simpler computations. In that paper 
State Dependent Riccati Equation (SDRE) control 
approached is applied for the rendezvous problem that does 
not require the trajectory calculation and leads to the docking 
points matching. 

The aim of the study is to develop a control algorithm for 
translational and rotational motion of spacecraft to achieve 
the necessary relative state for the following capturing. 
Another main point is to investigate dynamical conditions of 
the uncooperative object under which it is possible to capture 
it with the given parameters of control system such as 
maximal reaction wheels angular momentum, misalignment 
of thrusters and weighing parameters of control algorithm. 
Due to nonlinearity of the coupled relative translational and 
angular motion models the SDRE control approached is 
applied. SDRE control provides sufficient optimality, 
stability, real-time implement ability and inherent robustness 
to the states and system uncertainties and disturbances [18]. 

The main characteristic of SDRE method is state vector 
factorization of nonlinear system to establish a linear-liked 
dynamic model with matrix of state dependent coefficients 
and states. There are various ways of solving SDRE for 
instance Theta-D, power series, and solving Algebraic 
Riccati equation in each integrating time step [18]. These 
iterative methods are time consuming and increase 
computational cost as a result they cannot be a proper choice 
for real time implementation. Consequently, investigating of 
a direct algorithm to solve algebraic Riccati equation is 
needed. An analytical way of solving state dependent Riccati 
equation is based on Schur decomposition algorithm. This 
method uses eigenvalues and their corresponding 
eigenvectors of Hamiltonian matrix to solve Algebraic 
Riccati Equation. The method is shown to be 
computationally faster than the iterative methods [19] and 
applied in this work. 

The first section of the paper is devoted to problem 
statement. The used coordinate systems are presented and 
relative translational and angular motion models are 
described. The basics on the SDRE control are given in the 
second section. In the third section the results of the 
numerical study of the proposed algorithm are presented. 

II. PROBLEM STATEMENT 

A. Reference Frames 

In order to derive the equations of relative motion of the 
chaser and the target satellites the following coordinate 
systems are used as presented in Fig. 1 : I  stands for the 



2 

 

Earth centered inertial, Cartesian right hand reference frame 
with axes X,Y and Z; D  stands for a local-vertical, local 
horizontal (LVLH) Euler-Hill reference frame which is fixed 

to the center of mass of debris with axes: ˆ
D

x  is aligned with 

spacecraft radius-vector, ˆ
D

z  is in the direction of orbital 

angular momentum and ˆ
D

y  completes the system. Cartesian 

body-fixed reference frame C  attached to the Chaser 

spacecraft’s center of mass. It is assumed that orbital 
reference frames D  is aligned with the Cartesian body-fixed 
reference frame of the debris.  

B. Equations of motion 

Nonlinear Relative translational equation of motion is in 
the given form [19]: 
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Fig. 1. Reference frames attached to spacecraft, target and earth 

Here , ,x y z  are relative positions, 
OT

is the orbital 

angular velocity of the target, vectors anda F are produced 

translational control acceleration and external forces 
respectively.  

Relative attitude of spacecraft with respect to the debris 
can be described using relative quaternions and angular 
velocities. Consider relative angular velocity vector ω  as: 

 .ω ω ωC D   (2) 

Here ,ω ωC D  are target and chaser angular velocities 

correspondingly. Four dimensional quaternion vector q  is 

used to describe the relative attitude of spacecraft with 
respect to debris: 

 1 2 3 4[ ] ,q
Tq q q q   (3) 

where 1 2 3, ,q q q   are the components of the vector part of 

the quaternion, and 4q   is the scalar part. 

The relative kinematics is expressed by the following 
equations in terms of relative quaternion (4): 

 
1

( ) ,
2

q ωQ q C   (4) 

where ω
C  is relative angular velocity expressed in chaser 

reference frame and  Q q  is as follows: 

 

4 3 2

3 4 1

2 1 4

1 2 3

.

q q q

q q q
Q

q q q

q q q

 
 


 
 
 
   

  (5) 

To determine the attitude of the spacecraft with respect to 
the debris target in D  reference frame it is necessary to 
obtain time derivatives of angular velocities and use change 
of angular momentum equations for both debris and 
spacecraft. To accomplish this task by differentiating (2) one 
can obtain: 

 .
ω ωω C Dd dd

dt dt dt
 

I II

  (6) 

It can be shown that (6) can be written in the following 
form: 
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where ( )qM  is the transition matrix from chaser reference 

frame to a target reference frame, DI  is debris tensor of 

inertia. Furthermore the dynamical equations for the chaser 
and target have the following forms: 

 ,    
H Η

ω Η N TC C
C C C C

d d

dt dtI C

  (8) 
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  (9) 

where and  Н HC D  are angular momentums of the chaser 

and target, and  N NC D  are external torques acting on the 

spacecraft and debris respectively, and and T TC D  are 

control torques. The chaser satellite is equipped with reaction 
wheels, so its angular momentum are calculated as follows: 

 , ,H ω h H ωC C C WC D D DI I     (10) 

where hWC  is the angular momentum produced by reaction 

wheels. Then the dynamical equation can be rewritten as 
follows: 
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  (12) 

Using equations (11), (12) and (7) and substuting 

 1( )ω ω ωC DM q  C D D , 0TD   (since the target object 
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is uncontrolled space debris), will lead to relative rotational 
equation of motion [19]: 

   

 

1

1 1
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In the final approaching phase to the debris, when the 
spacecraft and object are in the vicinity of each other, the 
relative distance become comparable to the objects size. In 
this phase the spacecraft and the debris can no longer be 
assumed as point masses. At this stage, the geometrical 
properties of spacecraft and the debris affect the relative 
translational motion between off-centered points. The less 
the relative distance, the more the effect is influential. Two 
arbitrary points that may represent the robotic arm and 
specific grabbing point on the debris are shown in Fig. 1. 

Assume that for capturing the debris these two points 
have to coincide with each other. Consider the vector 

[ , , ]
j

P
j j j

D xD yD zDP P P  that directed from the center of mass 

of debris 
0 [0,0,0]PD   to point P

j
D  and vector 

[ , , ]
i
CP

i i i
xC yC zCP P P  that directed from the spacecraft’s 

center of mass 
0 [0,0,0]PC   to the point P

i
C . Vector  ρij  

stands for the relative position between these two given 
points as presented in Fig. 1. It can be calculated as follows: 

 0 .ρ ρ P P
ji

ij C D     (14) 

The relative velocity and relative accelerations in 
reference frame D   can be obtained as: 

 0 ,ρ ρ ω P
i

ij C     (15) 

  0 .ρ ρ ω P ω ω P
i i

ij C C        (16) 

Instead of a simple uncoupled Clohessy-Whiltshire 
equations (1) a more general relative rotation equation of 
motion for two arbitrary points can be derived using the (14)-
(16) [20]: 
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Here vector , ,   p
T

x y zp p p  is obtained using equations 

(16) and (13). It is highly coupled nonlinear term, that is 
rather bulky to present it in the paper, but it can be found in 
[19]. Thus, the problem statement of the paper is as follows. 
Using nonlinear coupled motion equation (17) it is required 
to develop a control algorithm using reaction wheels and 
thrusters for capturing the object, i.e. to match two body-
fixed points. It is needed to obtain the area of the acceptable 
parameters values for successful capturing the object taking 
into account reaction wheels angular momentum constraints, 
thrusters direction misalignments relative the center of mass 
and debris tumbling motion. 

III. SDRE-BASED CONTROL ALGORYTHM 

In the paper, the application of the SDRE-based control 
algorithm is considered. In this section a short basics on this 
control methods is presented and the problem of the Riccati 
equation solution is addressed. 

A. SDRE control method basics 

While linear quadratic regulator can be used to minimize 
the corresponding cost function of a linear dynamical system, 
it may fail to address nonlinear control problem. There are 
cases where accuracy is of a great importance and cannot be 
underestimated. Nonlinear regulator approach can cover this 
issue. The method is proved to be stable and in some sense 
robust. Consider the following nonlinear system:  

        , , x f x g x ut t t   (18) 

Where ( )and ( )x ut t are the state and control vectors 

correspondingly, f   is the nonlinear function, representing 
the free motion, g   is control dependent nonlinear function. 

Let the system has the following initial condition: 
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The cost function J  can be defined as: 
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where andQ R  are the weighting matrices. The nonlinear 

system can be factorized as (21) to provide a state space 
form. This is called a state dependent parameterization of the 
dynamics. The factorization is not unique for the systems of 
ranks bigger than one. The resulted linearized system can be 
treated as linear system: 
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It is possible to form Hamiltonian to derive optimality 
conditions for the nonlinear quadratic regulator problem. 
According to [18] the final SDRE has the following form: 
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And the control is as follows: 

      1 , , . u x x u x u x
TR B P   (23) 

B. Solver of SDRE 

Eeigenvalues of an associated Hamiltonian matrix can be 
used for obtaining the solution for algebraic Riccati equation 
(22). The Hamiltonian matrix is given as follows [19]: 

 
     

   

1

.

 
 
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x x x

x x

T

T

A B R B
HM

Q A
 (24) 

Hamiltonian matrix HM has a size of 2 2n n , where n  

is the dimension of vector x . The Hamiltonian matrix has 
symmetric eigenvalues in the complex plane. For these 
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systems a stabilizing solution exists if and only if HM has 2n 
eigenvalues with negative real part. Using corresponding 
eigenvectors of these eigenvalues (22) can be solved for 
matrix P. Using corresponding 2n eigenvectors one can 
construct the following matrix: 

 1 2 ,n

Y

X
  

 
  

   
   

  (25) 

Then finally, the SDRE solution can be calculated as 
follows: 

 1.P XY    (26) 

Using the calculated matrix, P the control (23) can be 
obtained. 

C. Matrices for coupled motion equations 

Obtaining the matrices A and B are of a great importance 
for SDRE-based approach. As already mentioned there is no 
unique way to determine them. In this paper, the 
factorization is performed in a way to achieve the 

controllability of pair A and B. The state vector ( )x t  has 

12 components. The state vector is composed of three 

vector-part quaternion components 1 2 3( , , )q q q , the angular 

velocity vector ( , , )  x y z , relative translational position 

and velocity of docking points ( , , , , , )x y z x y z . The control 

vector ( )u t  contains six elements to provide a full feedback 

control for the coupled motion. The three first elements of 

vector ( )u t are reaction wheels control vector h
WC

 and 

thrusters force vector F . 

The state matrix A is chosen in the following form: 
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Here  
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For a given vector, the skew-symmetric matrix is defined 
as follows: 
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The control matrix B is in the following form: 
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Where 3 3Eye  is identity matrix of order 3. Thus, with 

defined dynamic and control matrices A and B the SDRE 
control algorithm can be applied for the rendezvous problem. 

IV. NUMERICAL INVESTIGATION 

In this section the proposed control algorithm 
performance is studied using numerical simulations. Two 
different debris shapes are considered   the dynamically 
spherical body and cylinder-like body. In the second case, 
the matching of the two docking points is more affected by 
the attitude free motion of the target. It is assumed that the 
spacecraft is initially close to the debris position The debris 
orbital parameters and spacecraft initial conditions are 
presented in TABLE I. The mass of satellite is 50 kg. For the 
first case, it is assumed the target is spherical object and the 
moment of inertia of the chaser and the target are 

2
3 32 2.2 kg mC TI I Eye    .  

TABLE I.  SIMULATIONS PARAMETERS 

Simulations Parameters 

Orbital elements of 

the target 
Initial condition 

Attitude, km 750 0q   [0,0,0,1]T   

Eccentricity 0.03 0( ), deg/sω t   [10, 10,20]T
  

Inclination, 

deg 
70 0 0 0 0 0[ , , ]Tr x y z  

 
[50,27,100]T   

Right 
ascension, 

deg 

50 0 0 , m/s  r   [0,-2,0]T   

Argument of 
perigee, deg 

80 

Chaser docking point 

1, mi   
[1,1,0]T   

Target docking point 

, m jo
  

[1,0,1]T   

 

To implement the SDRE-based control algorithm the 
following steps are necessary to be accomplished. First is to 
produce a proper SDC factorization of dynamical system and 
control that is done in the Section III. Secondly, the State 
Dependent Riccati Equation must be solved to obtain the 
positive definite matrix P at each control step. And finally 
resulted feedback control law is to applied in the closed loop 
system. 

The spacecraft approaches to the debris from a close 
distance. The reaction wheels installed on the spacecraft are 
used to compensate disturbance torque caused by the 



5 

 

misalignment of thrusters 2 mm from the center of mass and 
to perform the attitude tracking maneuver. The debris 
constant angular velocity is assumed to be known. The 
spacecraft is controlled to accomplished rendezvous 
maneuver and attitude tracking simultaneously.  

Consider for an example the simulation of the controlled 
motion with defined above parameters of the system. Fig. 2 
shows the relative translational motion of spacecraft during 
the motion relative to the debris. The trajectories of the 
motion using uncoupled and coupled dynamical model are 
presented. Spacecraft reached to zero in the maneuver time 
Fig. 3 shows the vector-part quaternion components that tend 
to a zero, so the attitude maneuver is successfully 
accomplished. Fig. 4 presents the relative angular velocity, 
which is also converging to zero. The rotational tracking is 
performed by torques produced by reaction wheels showed 
in Fig. 5. As the reaction wheels have to maintain the final 
relative attitude and velocity they have the unloaded angular 
momentum after the maneuver. Fig. 6 shows the thrusters 
force produced to control the translational motion. After 
reaching the debris and make the relative position and 
velocity, zero; the two objects will have the same orbit. Fig.7 
and Fig. 8 shows relative position and velocity of the 
docking points of the chaser relative to the debris docking 
point, which converge to zero smoothly.  

 

Fig. 2. Translational trajectory of spacecraft relative to the debris 

 

Fig. 3. Vector-part quaternion components 

 

Fig. 4. Relative angular velocity of spacecraft 

 

Fig. 5. Angular momentum of reaction wheels 

 

Fig. 6. Thrusters force for translational motion control 

 
Fig. 7. Position of spacecraft relative to the debris 
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Fig. 8.  Relative velocity of spacecraft with respect to the debris 

Reaction wheels have a maximum possible angular 
momentum. Consequently, any attempt to produce more than 
the certain amount will lead to saturation of wheels. 
Operational area for the reaction wheels for performing the 
rendezvous should be obtained for the practical 
considerations. Based on (13) and the control law there are 
four key parameters which affects performance of reaction 
wheels during maneuver. It is the initial rotational speed of 
debris, the weighting matrix of control, the misalignment of 
thrusters, and finally target moment of inertia that cause the 
tumbling. Let fix weighting matrix Q  as identical matrix, 

while the weighting matrix R  can be algorithm-tuning 
parameter. The other parameters that affect the angular 
momentum are defined for the given chaser spacecraft and 
target object. These parameters is required to be known in 
advance to predict the feasibility of maneuver. Investigation 
of the worst possible cases to obtain these parameters 
constraints for the debris removal mission will help to 
prevent the situation that reaction wheels are saturated and 
the capturing will fails.  

Let us for the considered system find out the maximum 
possible values of rotational speed of debris, misalignment of 
thrusters, and control weighting matrix, at which the reaction 
wheels will not be saturated after the docking maneuver. 
Consider first the dynamically spherical target body and set 
the reaction wheel maximum angular momentum as 1 Nms . 

Fig. 9 schematically shows areas in which the reaction 
wheels are still not saturated according to the preliminary 
numerical study. The acceptable values lie in the following 

areas 23.9 deg/sD D
, misalignment 15mm  and 

3 3 3 3120 200I R I     , where R  is part of the weighting 

matrix corresponding to reaction wheels control. To obtain 
these areas a set of random points was chosen for a 
numerical simulation. 

Fig. 10 shows that the arbitrary chosen points lead to 
acceptable angular momentum values for a defined maximal 
angular momentum. Fig. 11 shows the maximal angular 
momentum for 200 numerical simulations (Monte Carlo 
method) with points in the acceptable area with fixed 

max 1H  Nms. However, it can be seen that at some 

numerical experiments the maximal angular momentum 
exceeds this limit due to nonlinearity in the motion 
equations. Nevertheless, these points are in the neighborhood 
of the critical border. 

 

Fig. 9. Schematic dependence of maximum angular momentum of reaction 

wheels on weighting matrix, debris angular speed, and misalignment of 

thrusters 

 

Fig. 10. Angular momentum of reaction wheels for 200 numerical 
simulations 

 

Fig. 11. Maximal angular momentum of reaction wheels for a 200 

numerical simulations 

A new problem arises when the target object is not 
spherical. Consider cylindrical objects or rectangular cuboid 
shaped debris with diagonal moment of inertia matrix with 
different diagonal values. From (13) it can be seen that the 

term [ ]ω ωD D DID D  is equal to zero for the spherical object. In 

this part it is assumed that the target has a cylindrical shape. 
In this case the inertial matrix can be written as follow: 
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  (31) 

The ratio /h r  represents the elongation of the target. 

The bigger the ratio, the more control value along x and y 

axis should be applied. In this case assuming h r  then 

4xx yy zzI I I   while the other parameters are fixed and 

have the same value as in the previous case. Fig. 12 and 13 
show the quaternions and angular velocity for considered 
example. These two figures show that the settling time is 
increased in comparison to the case of dynamically spherical 
body. The periodical rotation behavior can be seen in Fig. 14, 
while in the previous case there is no oscillations in the 
angular momentum of reaction wheels.  

 

Fig. 12. Vector-part quaternion components 

 

Fig. 13. Relative angular velocity of spacecraft 

 
Fig. 14. Angular momentum produced by reaction wheels 

It can be obtained that for larger values of h with the 
chosen reaction wheels the area of the acceptable angular 
velocity of target reduces. It means that for the similar 
condition for a spherical body and an axisymmetric body, 
more angular momentum is needed to be produced by 
reaction wheels. To obtain this idea. In this work ratio in (31) 
is assumed to be randomly in the domain 

( 0.5 3zz xx yy zzI I I I   ), which represent a cylindrical 

object. Fig. 15 shows how the new added condition increase 
the required angular momentum in comparison to Fig. 10. 
Fig. 16 shows the increased number of critical situation when 
the maximum angular momentum is outside the value of 
predefined limit value 1 Nms. 

Fig. 15. Angular momentum of reaction wheels for 200 numerical 
simulations with different choices of moment of inertial 
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Fig. 16. Angular momentum of reaction wheels for the point in the 

proposed area 

Fig. 17 shows how the increase of ratio affects the 
required maximum angular momentum. Here the ratio is 
assumed to be in the interval [0.5; 3]  and the other 

parameter are considered to be in the worst case. One can see 
that the minimum value of maximum angular momentum is 
in the case of nearly spherical body when the ration is close 
to 1. Increasing the elongation of the body (ratio more then 
1) or reducing it to a flat body (ratio tends to 0.5) leads to 
more required reaction wheels angular velocity at the same 
others simulation parameters.  

 
Fig. 17. Effect of moments of inertia ratio on the maximal reaction wheels 

angular momentum 

V. CONCLUSION 

In this paper a nonlinear SDRE-based control algorithm 
for a close range proximity to non-corporative debris is 
considered. For application of this algorithm aimed to 
capture the debris at off-center of mass point using a robotic 
arm the nonlinear coupled relative rotational and 
translational equation of motion are used. For angular motion 
control the reaction wheels as the most reliable actuators for 
attitude control are considered. The dependence of reaction 
wheels saturation on system and control parameters is 
obtained. It is shown that the initial angular velocity of 
target, its inertia tensor are among the critical parameters 
causing reaction wheels saturation, as well as thruster 
misalignments and control weighting matrices. The proposed 

technique allows to determine whether it is possible to track 
and capture a specific debris with given motion control 
restrictions of the chaser spacecraft. 
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