

9th International Conference on Recent Advances in Space Technologies Istanbul, Tyrkey, 11-14 June 2019

Satellite Relative Motion SDRE-based Control for Capturing a Noncooperative Tumbling Object

Mahdi Reza Akhloumadi, Danil Ivanov

Moscow Institute of Physics and Technology (National research university) Keldysh Institute of Applied Mathematics RAS

MIPT at a glance

MIPT

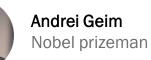
Rankings

#48

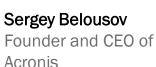
THE Physics

#67

THE Computer Science

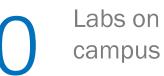

QS Physics & Astronomy

Alumni


Alexander Kaleri Pilot astronaut. Hero of the Russian Federation

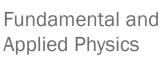
Konstantin Novoselov Nobel prizeman

David Yan Founder and Director of the board of ABBYY

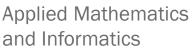


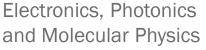
Numbers

Nobel prizemen among professors and alumni


Students

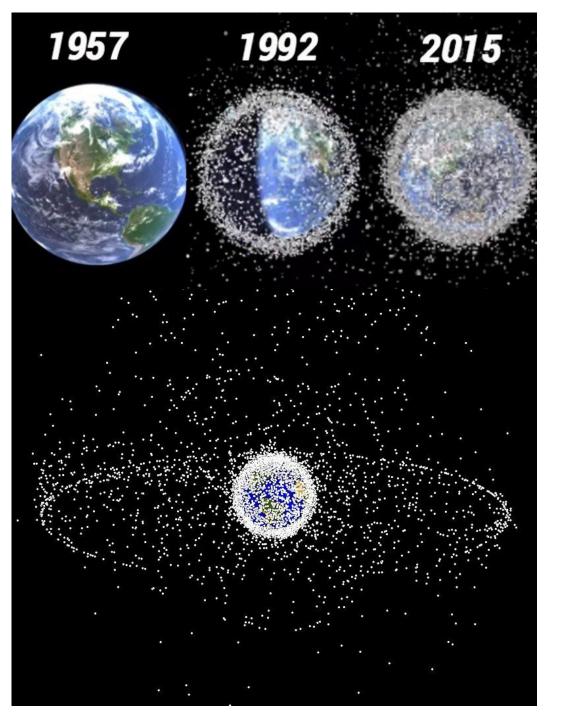
Phystech Schools





Aerospace Technology

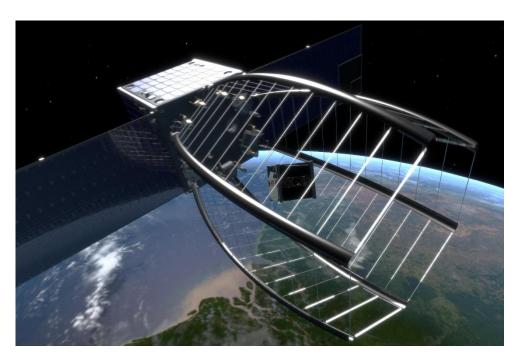
Biological and **Medical Physics**



Content

- 1. Space debris
- 2. Motion and control algorithm of removal
- 3. Results of the study
- 4. Conclusion

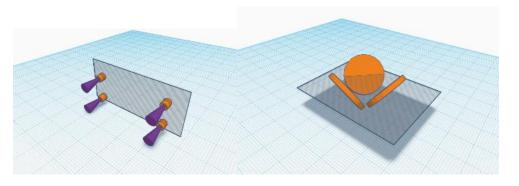
Introduction


- Space Debris
- Treat of space debris
- Kessler effect
- Importance of debris removal

MIPT

Different Solutions

- 1. Protect spacecraft
- 2. Destroy or deorbit debris using lasers
- 3. Remove debris
 - Passive removal
 - Active removal


Problem Statement

Assumed:

- Uncontrolled tumbling object
- Relative motion of the object is known
- Spacecraft is equipped with
 - Thrusters
 - Reaction wheels
 - Capturing system
- The thrusters have misalignment
- The reaction wheels have limited maximal angular momentum

It is necessary

- to develop a relative motion control algorithm to capture the object
- to study the possibility to capture the object

Coupled Motion Equations

Relative rotational motion

$$I_{T}\dot{\boldsymbol{\omega}}^{T} = I_{T}D(\mathbf{q})I_{C}^{-1}\mathbf{S} - I_{T}\boldsymbol{\omega}_{T}^{T} \times \boldsymbol{\omega}^{T} + [\boldsymbol{\omega}_{T}^{T} \times I_{T}\boldsymbol{\omega}_{T}^{T}]$$
where
$$\mathbf{S} = -D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \boldsymbol{\omega}_{T}^{T}\right) \times I_{C}D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \boldsymbol{\omega}_{T}^{T}\right) - D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \boldsymbol{\omega}_{T}^{T}\right) + I_{C}D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \mathbf{\omega}_{T}^{T}\right) - D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \boldsymbol{\omega}_{T}^{T}\right) + I_{C}D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \mathbf{u}_{T}^{T}\right) - D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \boldsymbol{\omega}_{T}^{T}\right) + I_{C}D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \mathbf{u}_{T}^{T}\right) - D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \boldsymbol{\omega}_{T}^{T}\right) + I_{C}D(\mathbf{q})^{-1}\left(\boldsymbol{\omega}^{T} + \mathbf{u}_{T}^{T}\right) - \mathbf{u}_{WC} - \mathbf{h}_{WC} + \mathbf{T}_{C} + \mathbf{N}_{C} + \mathbf{N}_{T}$$
Relative translational motion
$$\ddot{x}_{ij} - 2\omega_{OT}\dot{y}_{ij} - \dot{\omega}_{OT}y_{ij} - 3\omega_{OT}^{2}x_{ij} = a_{x} + p_{x}$$

$$\ddot{y}_{ij} + 2\omega_{OT}\dot{x}_{ij} + \dot{\omega}_{OT}x_{ij} = a_{y} + p_{y}$$

$$\ddot{z}_{ij} + \omega_{OT}^{2}z_{ij} = a_{z} + p_{z}$$
Capturing system
$$\mathbf{z}_{ij} + \omega_{OT}^{2}z_{ij} = a_{z} + p_{z}$$

SDRE-based Control Algorithm

Dynamical system:

$$\dot{\mathbf{x}} = \mathbf{f}\left(\mathbf{x}(t)\right) + \mathbf{g}\left(\mathbf{x}(t), \mathbf{u}(t)\right)$$

Linearization:

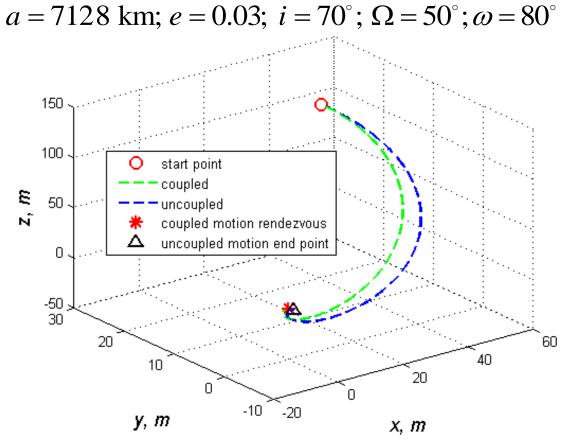
$$f(\mathbf{x}) = A(\mathbf{x})\mathbf{x},$$
$$g(\mathbf{x}, \mathbf{u}) = B(\mathbf{x}, \mathbf{u})\mathbf{u}.$$

State Dependent Riccatti Equation:

 $P(\mathbf{x},\mathbf{u})A(\mathbf{x})+A^{T}(\mathbf{x})P(\mathbf{x},\mathbf{u})-P(\mathbf{x},\mathbf{u})B(\mathbf{x},\mathbf{u})R^{-1}B^{T}(\mathbf{x},\mathbf{u})P(\mathbf{x},\mathbf{u})+Q=0$

Optimal control law

$$\mathbf{u}(\mathbf{x}) = -R^{-1}B^{T}(\mathbf{x},\mathbf{u})P(\mathbf{x},\mathbf{u})\mathbf{x}$$

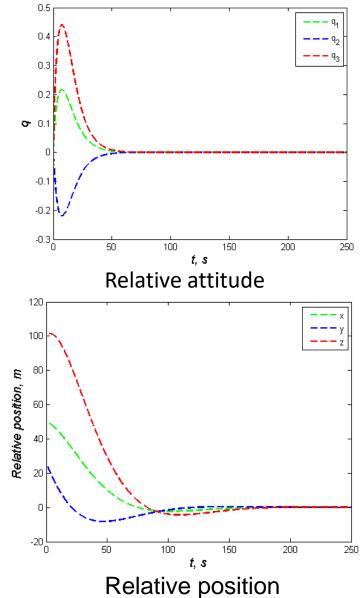

Functional to be minimized:

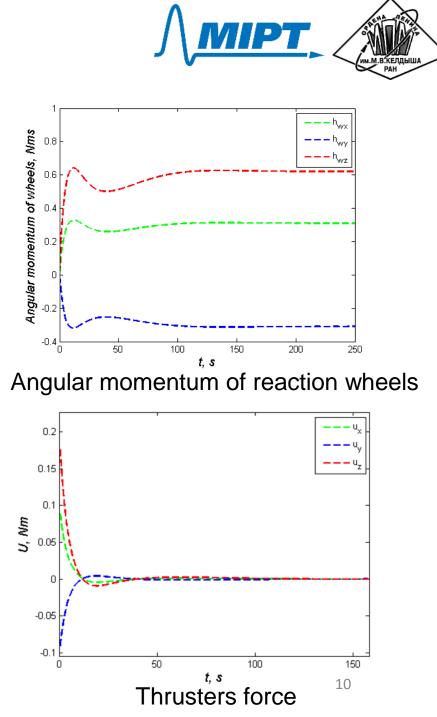
$$J = \frac{1}{2} \int_{0}^{T} \left[\mathbf{x}(t)^{T} Q \mathbf{x}(t) + \mathbf{u}(t)^{T} R \mathbf{u}(t) \right] dt,$$

Numerical Simulation

System parameters and initial conditions: $I_T = I_C = 2.2 I_{3\times 3} \text{kg} \cdot \text{m}^2$ $m = 50 \,\mathrm{kg}$ $\mathbf{q}_0 = [0, 0, 0, 1]^T$ $\omega_T^T = [10, -10, 20]^T \text{deg/s}$ $\mathbf{\rho}_0 = \mathbf{r}_0 = [x_0, y_0, z_0]^T = [50, 27, 100]^T \text{ m}$ $\dot{\mathbf{p}}_0 = \dot{\mathbf{r}}_0 = [0, -2, 0]^T \,\mathrm{m} \,/\,\mathrm{s}$ $\mathbf{\rho}_{i1} = [1, 1, 0]^T \,\mathrm{m}$ $\mathbf{\rho}_{io} = [1, 0, 1]^T \mathrm{m}$

Orbital elements of the target:

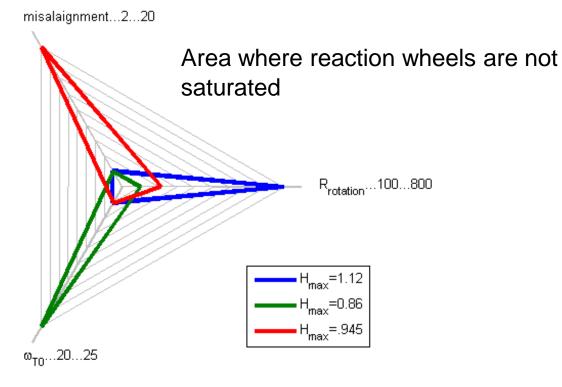



Translational trajectory of spacecraft with respect to the debris

DT

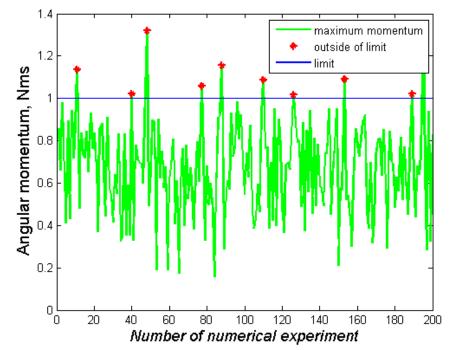
Numerical Simulation

- Relative attitude and relative position of the points coincide after the maneuver
- Due to target angular velocity and thrusters misalignment the reaction wheels accumulated angular momentum
- It is necessary to study of the acceptability area of the system parameters



Study of the Acceptability Area

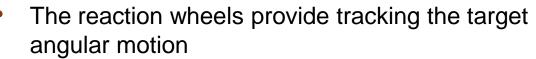
Consider parameters:


- Maximum of reaction wheels angular momentum
- Thrusters misalignment
- Angular velocity of object
- Control algorithm parameters
- Tensor of inertia of the object

Random parameters for the Monte-Carlo simulations:

MIPT

- angular velocity of target
- misalignment of thrusters
- algorithm parameter

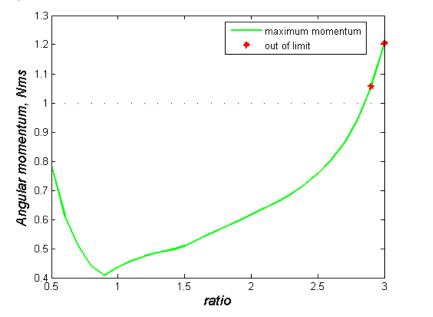

Maximal angular momentum of reaction wheels

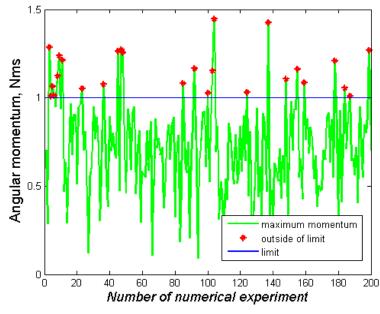
Case of Cylindrical Target

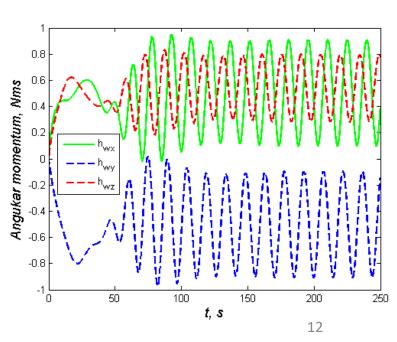
Target tensor of inertia:

$$\begin{bmatrix} I_{x} & 0 & 0\\ 0 & I_{y} & 0\\ 0 & 0 & I_{z} \end{bmatrix} = \begin{bmatrix} ratio * I & 0 & 0\\ 0 & ratio * I & 0\\ 0 & 0 & I \end{bmatrix}$$

Dependence of the maximal reaction wheels angular momentum on inertia moments ration




 Increasing the elongation of the target body (ratio more then 1) or reducing it to a flat body (ratio tends to 0.5) leads to more required reaction wheels angular velocity at the same others simulation parameters


Maximal angular momentum

Reaction wheels angular momentum

DT

Conclusions

- SDRE-based control algorithm for a close range proximity to non-corporative debris is proposed
- The dependence of reaction wheels saturation on system and control parameters is obtained
- The effect of inertia tensor of target on reaction wheels saturation is studied
- The proposed technique allows to determine whether it is possible to track and capture a specific debris with given motion control restrictions of the chaser spacecraft

Thank you for attention!