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Abstract — The paper considers two magnetorquers as the 

sole attitude control system unit used both for control and 

determination. An algorithm of the three-axis attitude 

determination is proposed. It utilizes the measurements of the 

electromotive force induced in magnetorquers during the free 

motion of the satellite when the control is not applied. The 

extended Kalman filter is used. The estimation of the state 

vector consisting of the vector part of quaternion and the 

angular velocity vector is used for the control calculation. 

Three axis attitude is achieved with the same magnetorquers 

using the Lyapunov control approach. The paper studies the 

accuracy of the developed algorithm, its dependence on orbit 

inclination and orbit altitude. 

Keywords — attitude control, attitude determination, 

magnetorquers, CubeSat 

I. INTRODUCTION 

Active magnetic attitude control system is the most 
common for micro- and nanosatellites in LEO. It is used for 
the angular velocity damping, stabilization along the 
geomagnetic induction vector, spin stabilization and even 
three-axis attitude acquisition. Proper stabilization requires 
the real-time determination of the attitude motion. It is 
obtained by processing the attitude sensors measurements. 
Sun sensors [1], [2], magnetometers [3]–[5], angular velocity 
sensors [6], [7] and even micro star tracker [8], [9] are 
commonly used for the attitude motion determination. 
However, tendency for the miniaturization and simplification 
leads to the control system with the minimal set of hardware. 
For example, the three axis attitude control is available with 
magnetometer and three magnetorquers for a CubeSat [10], 
[11]. Note that COTS sensors are prone to faults and small 
satellites rarely benefit from any backup measures. So there 
is a high risk of early mission loss because of the 
magnetometer failure. However, it is still possible to 
determine the angular motion using measurements of the 
induced electromotive force (EMF) in magnetorquers. 

This paper considers the satellite equipped with the 
solenoid magnetorquers, i.e. coils wound into a tightly 
packed helix. The magnetic flux enclosed by the non-
operating coil is changing due to the angular motion in the 
geomagnetic field. According to the well-known Faraday’s 
law, this causes the induced EMF in magnetorquers. It may 
be measured by the analog-to-digital converter and then 
processed by the extended Kalman filter. The attitude 
information is available during the uncontrolled motion of 
the satellite. Afterwards the necessary control torque may be 
implemented using the same magnetorquers. 

The paper is a continuation of the authors previous work 
[12], where the attitude determination and control is 
considered using three magnetorquers. In the current work 
the failure of one of the magnetorquers is considered. An 

extremely limited hardware set is used to achieve the three-
axis stabilization. This paper studies the accuracy of the 
proposed control scheme and its dependence on the orbit 
inclination and orbit altitude. 

II. ATTITUDE MOTION EQUATIONS 

Rigid spacecraft angular motion is considered. The 
satellite is equipped with three mutually orthogonal 
magnetorquers. Two reference frames are used: 

1 2 3OX X X  is the orbital reference frame located at the 

satellite center of mass. 
3OX  is directed along the satellite 

radius-vector, 
1OX  is directed along the orbital velocity, 

2OX  is directed so that the reference frame is right-handed; 

1 2 3Ox x x  is the body reference frame, its axes coincide 

with the principal axes of inertia of the satellite. 

Satellite attitude is represented using Euler angles 
, ,    (rotation sequence 1-2-3); direction cosines matrix 

A  and its elements 
ija ; and quaternion  0, q  q . 

Angular velocity may represent either the absolute motion 

(ω  and its components 
i ) or relative motion with respect 

to the orbital reference frame (Ω  and 
i ). The absolute and 

relative velocities are related by 

orb ω Ω Aω 

where  00, , 0orb ω  is the orbital reference frame 

angular velocity. Euler equations for the satellite with inertia 

tensor diag( , , )A B CJ  are 

  Jω ω Jω M 

The torque M  may contain the control part 
ctrlM  and the 

disturbing part. The latter is divided into the gravitational 

grM  and the unknown one 
distM  so overall 

ctrl gr dist  M M M M . The control torque is 

ctrl  M m B 

where m  is the dipole control moment of the satellite, B  is 
the geomagnetic induction vector in the bound reference 
frame. Gravitational torque is 

   2

0 3 33gr  M Ae J Ae 
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where  3 0, 0, 1e  is the satellite radius-vector in the 

orbital frame. Disturbing torque 
distM  is modeled as a 

random noise with the Gaussian distribution of the order of 
5∙10-8 N∙m.  

The dynamical equation for the relative motion is 

 gir orb   JΩ M M JΩ Αω  

where 
gir   M ω Jω  is the gyroscopic torque. 

Dynamical equations are supplemented with the 

kinematic relations. Quaternion kinematics is 
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The inclined dipole model is mainly used to represent the 
geomagnetic field [13]. It allows quite accurate field 
representation [14] paired with simple computational 
procedures. The geomagnetic induction vector is  

   2

5
3e r

r


 B k kr r  

where k  is the Earth’s dipole unit vector and r  is the 
satellite radius-vector, r  is the satellite radius vector 

magnitude, 67.812 10e    km3∙kg∙s-2∙A-1. The direct 

dipole model ( k  is antiparallel to the Earth rotation axis) is 
used for analytical approaches, the geomagnetic induction 
vector in the orbital frame in this model is 

 0

cos sin

cos

2 sin sin

orb

u i

B i

u i

 
 

  
  

B  

where 3

0 /eB r , u  is the argument of latitude, i is the 

orbit inclination. 

III. MAGNETORQUERS MEASUREMENT MODEL 

Magnetic coils, also referred to as magnetorquers, are 
especially valuable for CubeSat-class nanosatellites. They 
are commercially available in two typical configurations: in 
loose coils of flat wound wire and in tightly wound coils 
around a permalloy rod. Both magnetorquers configurations 
are often combined in one ready-to-use board. Such a board 
is used, for example, in Delfi-n3Xt CubeSat [15] (see Fig.1). 

It consists of a set of two x and y axis magnetorquer rods and 
one z axis air core magnetorquer. 

 

Fig. 1. Magnetorquers of Delfi-n3Xt [15] 

 
Consider the CubeSat with two orthogonal magnetorquer 

coils. In case of the passive attitude motion the 
magnetorquers do not produce any commanded control 
moment. Since the satellite rotates in the geomagnetic field, 
an EMF V  is induced in the coil according to the Faraday’s 

law: 


( , )

, 1, 2,i i

i

d d
V N NS i

dt dt


    

B n
 

where   is the magnetic flux passing through the coil with 

the area S  and with a number of turns N , 
in  are normal 

vectors to the coils planes. Assume that vectors 
in  are 

directed along the satellite reference frame axes. Then Eq. 
(4) can be rewritten as: 

 .
d

NS
dt

 
B

V  

In case of the magnetorquer rods it is necessary to take 
into account the auxiliary magnetic field H  inside the rod 
material. It is related to the geomagnetic field B  as 

 B H  

where   is the core permeability. Ferromagnetic core 

strengthens the external magnetic field in the coil and 
increases the output signal: 


d

NS
dt

 
H

V  

That is why despite of the small coil area of the 
magnetorquer rod compared to the air core coil, its EMF may 

be larger due to the large value of   (about 5

010  , 
0  is 

the magnetic constant). However, the relative permeability of 

the core 
c  may be much lower than the material 

permeability [16].  



 

 

To use the EMF measurements in the attitude 
determination process it is necessary to convert the analog 
signal V  into the digital value. The most critical feature of 

the analog-to-digital converter (ADC) is its sensitivity. If the 
reference signal of the ADC is 1 V then the 16-bit converter 
has the resolution of about 15 V  [17]. This is the minimum 

value that can be theoretically detected. However, the ADC 
are subjected to errors due to the thermal noise in electrical 
circuit, errors in temperature bias etc. At best the errors do 
not exceed 2 bits signal values. That is why digital measures 
are noisy, and the final measurement model is: 


V

d
NS

dt
  

B
V η  

where 
Vη  is the noise that is considered to be normally 

distributed. 

Note that according to the model (5) the residual 
magnetic dipole moment of the satellite does not affect the 
measurements in the case it is constant. So, the problem of 
taking into account constant satellite self magnetic field does 
not exist in the case of electromotive force measurements 
contrary to utilizing magnetometer measurements. However, 
there may be changing satellite magnetic filed caused by 
currents in the onboard devices on satellite which will 
increase the measurement errors. 

IV. EXTENDED KALMAN FILTER APPLICATION 

A. Kalman Filter Basics 

The Extended Kalman Filter (EKF) is a well-known and 
well-established algorithm. It is characterized by the 
relatively small computational cost and provides the 
estimation of the state vector that is not directly measured.  

Kalman filter is a recursive algorithm that uses the 
dynamical system model and sensor readings for the actual 
motion determination. The state vector estimation 

 1
ˆ ˆ

k kt


 x x  is calculated for each discrete time step 
kt  

when the measurements are available. The discrete Kalman 
filter utilizes the correction of the previous estimate [18]. 

Consider step 1k   along with the corresponding state vector 

estimation 
1

ˆ
k



x  and covariance matrix 
1k



P . The goal is to 

find the state vector estimation for the next step ˆ
k


x . First the 

a priory estimate ˆ
k


x  is formed using straight mathematical 

model integration. It is corrected using the sensor 

measurements vector 
kz  to obtain the a posteriori estimate 

ˆ
k


x . The covariance error matrix 

k


P  is also constructed from 

the previous step information using Riccati equation. It is 

then updated to 
k


P  using measurements. 

Kalman filter is designed for linear mathematical models 
and allows the best mean-square state vector estimation. 
However, it may be extended for any non-linear 
mathematical models of both the dynamical system and the 
measurements, 
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where  tw  is the Gaussian dynamical model error with the 

covariance matrix D , G  is the matrix of influence of the 

model error on the state vector,  tv  is the Gaussian 

measurements error with the covariance matrix R . 

EKF requires the decomposition of the right-side 

functions  , tf x  and  , th x  into the Taylor series in the 

vicinity of the current state vector. Only linear terms are used 
in the filter. The dynamical system matrix F  and 
measurements model H  matrix are 
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The discrete EKF uses the non-linear dynamical and 
measurements models for a priory estimate prediction and a 
posteriori correction [19]. The prediction phase is 


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where 
kQ  is the covariance matrix of the discrete-time 

process noise, it is calculated as 
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The correction phase is 
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where   = exp
k k k k -1

t tФ F  is the transition matrix 

between the states 1k   and k , E  is an identity matrix, K  

is the weighing matrix. 

B. Linearized Equations  

The EKF to obtain the satellite attitude in the orbital 
reference frame should be constructed. The state vector is 

  ,x q Ω  

Dynamical model of the controlled satellite angular 
motion is presented by Eq. (1), quaternion kinematic 
equation as in Eq.(2) is used. Equations of motion should be 



 

 

linearized in the vicinity of the current state vector. Rewrite 
Eqs. (1), (2) as 

     t t t x F x 

where  t x  is a small state vector increment,  tF  is the 

matrix of the equations of motion linearized in the vicinity of 

the current state. After linearization the obtained dynamics 

matrix F  is as follows 
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 2 .
orb orbgir  q

Jω Aω ω Aω
F W W W JW 
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Using the relation 
orbB AB  the magnetorquer 

measurements model Eq. (5) can be rewritten as: 

 
 0 ,

orb

V orb V

d
NS NS

dt
           

AB
z η Ω B A ω B η



where 
Vη  is a Gaussian geomagnetic induction vector error 

with zero mean. The measurements matrix after the 
linearization is as follows 

ˆ ˆ2 2
orb

NS     
 Ω ABB B

H W W W W 

The expression for measurement matrix is obtained for 
three magnetorquers [12]. Since in the paper only two 
magnetorquers are considered, then the dimension of the 
measurement vector z  is 2. In this case the measurement 
matrix Н  has just two rows from the expression above.  

The proposed attitude determination approach is 
supplemented with the attitude control algorithm. 

V. MAGNETIC CONTROL ALGORITHM 

Consider the Lyapunov-based control 


ak k    m B Ω B S  

where  23 32 31 13 12 21, ,a a a a a a   S , ,ak k  are the 

control parameters. This is the common approach when 
magnetorquers implement the Lyapunov control part that is 
perpendicular to the geomagnetic induction vector. This 
control ensures the necessary attitude [20]–[22] provided that 
the control parameters are small enough and carefully 
adjusted. The adjustment is conducted in two steps. First the 
equations of motion are linearized in the vicinity of the 

necessary attitude. These equations utilize the direct dipole 
geomagnetic field. They do not take into account any 
disturbances other than the gravity.  

Linearized equations introduce the derivative with 
respect to the argument of latitude. These equations are 
analyzed using the Floquet theory [23]. Fig. 1 represents the 
characteristic multipliers in the vicinity of the stability area 
of the linearized equations of motion. 

The satellite and its orbit parameters are as follows: 

- circular orbit, altitude 400 km, inclination 51.7°, Earth 
radius 6371 km; 

- inertia tensor  3 3 3
diag 5 10 , 6 10 , 7 10

  
   J  kg∙m2. 

Control parameters can be found from Fig. 2 only 
approximately. So the second adjustment step is necessary. 
Initial equations of motion (with some additional 
disturbances, more complex geomagnetic field model etc.) 
are modeled numerically with the control parameters close to 
the theoretically optimal ones. For the considered case good 

control parameters are 
040k  , 12ak   N∙m/T2. Note 

that they are very close to the optimal ones according to Fig. 
2. 

 

 
Fig. 2. Stability area 

In the case of two magnetorquers the full magnetic vector 
m  calculated from (7) cannot be implemented. Nevertheless 
the two of the three components are still tending the attitude 
to the orbital one, however, the accuracy of stabilization is 
worsened. To study the achievable attitude stabilization and 
attitude estimation accuracy the numerical study is 
performed. 

VI. NUMERICAL STUDY 

Consider the 1U CubeSat with the orbit and mass 
parameters provided above. It is equipped with two 

orthogonal magnetorquers with the rod diameter 5.7d   

mm, so the area is 
410S   m2, the rod relative permeability 

is 75000 and the number of turns is 6000N   each (these 

parameters are similar to the magnetorquer described in 
[24]). The magnetorquers are placed along the x and y axis in 
the body reference frame. 

Filter initialization requires definition of the 
measurements errors matrix R , motion equations model 



 

 

errors matrix Q  and initial estimation errors of the state 

vector matrix
0P . 

Consider the standard measurements deviation of the 

induced EMF to be 
meas =50 V . Then the measurements 

errors covariance matrix is assumed to be 

 2 2
,meas measdiag  R . 

The unaccounted disturbing torque is supposed to be 

random and of the order of 85 10d    N∙m, its distribution 

is Gaussian with zero mean. The model error covariance 
matrix is calculated using Eq. (6). Integration of the Eq. (6) 
is rather complicated, especially for the nanosatellite on-
board computer. It is reasonable to simplify this expression 
using the reduced and constant state transition matrix as: 
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The matrix of the influence of the model error on the 
state vector is determined as 
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Then, the model errors covariance matrix is derived from 
Eq. (6) as follows 
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where I  is the smallest inertia moment, t  is the 

measurements sampling interval, d  is the mean square 

deviation of the disturbance torque acting on the satellite.  

The initial state vector estimation is arbitrary. Suppose it 
to be zero (zero vector part of quaternion and zero angular 

velocity). Consider the maximum quaternion error 
0

1q   

and knowingly big velocity error 
0

10   deg/s. The initial 

error matrix is 

 
0 0 0 0 0 0

2 2 2 2 2 2

0 , , , , , ,q q qdiag        P 

Set the initial angular velocity 

 0 0 0( 0) 10 ,10 ,10t    ω , where the orbital angular 

velocity 
0 0.06 deg/s  , and initial quaternion 

 0 1 0 0 0  . The sampling measurements time is 1 s. 

Consider the application of the proposed attitude 
determination and control algorithms with two 
magnetorquers for the three-axis stabilization. The following 
simulation results are obtained for the ISS orbit. Fig. 3 shows 
the direction cosines between the body and orbital reference 
frames and relative angular velocity. The satellite is 
stabilized in the orbital reference frame with the accuracy of 
about 20 deg in 5 hours. Comparing to the case of three 
magnetorquers with the same parameters (see [12]) the 

attitude error is doubled. Nevertheless, at least coarse 
stabilization is achieved. 

 
Fig. 3. Angular velocity and direction cosines angles during control motion 

 
Fig. 4 shows the induced EMF in the two magnetorquers. 

One can see that the measurements are quite noisy, but the 
signal-to-noise ratio after the stabilization is close to 5. Fig. 5 
presents the EKF state vector estimation errors. The 
estimations finally converged after about 3 hours  and the 
accuracy is less than 8 deg. The difference between the 
estimated and obtained EMF measurements are shown in 
Fig. 6. After the convergence the residuals are close to the 
normal distributed random value with defined in the 

simulation 
meas =50 V . The EKF estimations are close to 

the adequate values. 

 
Fig. 4. Measurements of the induced EMF in the magnetorquers 

 
Fig. 5. Accuracy of the attitude motion estimation 



 

 

 
Fig. 6. Residuals of the measurements 

 
Covariance matrix of the state vector may be used to 

calculate the expected errors of the state vector estimations 
by EKF. Fig. 7 shows the 3  expected values calculated 

using the diagonal elements of matrix P . The actual errors 
are in the predicted area. The error for the second angle   is 

less than for   and   because of the absence of one of the 

magnetorquers. It is also should be noted that the estimation 
accuracy is also about 2 times worse than in the case of three 
magnetorquers. 

 
Fig. 7. Accuracy of the attitude motion estimation calculated using the 

covariance matrix 

 

Consider the dependence of the stabilization and 
estimation accuracy on the orbit inclination. The results are 
stochastic due to the random measurement errors and 
disturbances included in the simulation. A set of numerical 
experiments is carried out with the same parameters except 
for the inclination. The results are expressed in the box plots. 
Half of the results are inside the box, the dot indicates the 
mean value, and one quarter of the results lie below and 
above the box. Crosses indicate the values outside of 3  

(assuming that the data is normally distributed). Fig. 8 and 9 
provide box plots for the worst estimation and stabilization 
examples. Fig. 10 and 11 provide the box plots for the mean 
accuracies. Neither the three axis determination nor the 
stabilization was successful at orbit inclinations lower than 
30 deg. This is due to the well-known fact that the 
geomagnetic field is almost a constant vector. There is no 
torque in that direction and stabilization is not possible. 

Moreover, the three-axis motion is not observable in case of 
almost constant geomagnetic field vector. The three-axis 
stabilization is possible for the orbits with inclinations 
starting with about 40 degrees. The minimal mean and 
maximal stabilization and estimation errors are at about 60 
degrees. The errors increase slightly for the near polar orbits. 
The geomagnetic induction vector lies almost in the orbital 
plane with very small out of plane component. As a result, 
the torque is generally available both in plane and out of 
plane. However, with only two magnetorquers the variability 
in the control torque construction is limited which leads to 
the degraded accuracy.  

 

Fig. 8. The worst accuracy for the attitude estimation depending on the 

orbit inclination 

 

Fig. 9. The worst stabilization accuracy depending on the orbit inclination 



 

 

 

Fig. 10. Mean attitude estimation accuracy depending on the orbit 

inclination 

 

Fig. 11. Mean attitude stabilization accuracy depending on the orbit 

inclination 
 
Consider how the estimation and stabilization accuracies 

depend on the orbit altitude. The orbit inclination is assumed 
to be 51.7 deg. All the parameters of the numerical 
simulation are the same as for in the previous example. For 
each orbit altitude a set of numerical experiments is 
performed. Fig. 12 and 13 present box plots of the mean 
attitude estimation and attitude stabilization accuracy 
depending on the orbit altitude. Since the measurement errors 

are fixed at value 
meas =50 V  and the geomagnetic field 

decreases with increasing orbit altitude, then the signal-to-
noise ratio worsens. Starting from altitude of 4000 km the 
EKF does not converge, the errors of estimation are too large 
and as a result the three-axis stabilization does not achieved. 
Nevertheless, the two magnetorquers are still able to stabilize 
the satellite for orbits up to 3500 km of altitude. However, 
the mean estimation errors as well as mean stabilization 
accuracy are steadily increasing with altitude. 

 
Fig. 12. Mean attitude estimation accuracy depending on the orbit altitude 

 

 
Fig. 13. Mean attitude stabilization accuracy depending on the orbit altitude 

 

VII. CONCLUSION 

Satellite three-axis attitude estimation and stabilization 
algorithms using two magnetorquers are proposed. Attitude 
estimation and stabilization accuracy with the Lyapunov 
control depends on the orbit inclination. The best 
performance is observed for the moderately inclined and 
very low earth orbits. The stabilization error is about 20 deg 
while the estimation error is 10 deg in the worst case. This 
relatively low accuracy may suffice some CubeSat missions 
or act as a backup measure. 
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