ХLV Академические чтения по космонавтике посвященные памяти академика С.П. Королёва и других выдающихся отечественных ученых – пионеров освоения космического пространства

30 марта—2 апреля 2021 г.

Геометрические методы проектирования WSB-траекторий перелета к Луне

Целоусова А.А.

Трофимов С.П. Широбоков М.Г.

Институт прикладной математики им. М.В. Келдыша РАН

От модели сопряженных конических сечений...

Credit: V.V. Ivashkin. Lunar trajectories of the spacecraft . – 2008.

Чтобы выйти на окололунную орбиту крупные космические корабли такие как Аполлон-11 должны выполнить LOI-маневр с большим ΔV Луна-10 (1966) первый искусственный спутник Луны

Credit: https://www.mpoweruk.com/Apollo_Moon_Shot.htm 2

...к низкоэнергетическим WSB-

траекториям

- По сравнению с высокоэнергетическими перелетами:
- более низкая стоимость
- расширенные окна старта
- увеличенное время перелета . Sn: nth Swingby Moon Orbit to Sun Earth 200.000 km Sun-Earth Line Fixed Rotating Coordinate (MSO-EC) Мисссия Hiten (1991)

Credit: Anderson R. L., Parker J. S. Targeting low-energy transfers to low lunar orbit. – 2011

 $\mu = m_M/(m_E + m_M); \ r_1 \ r_2 \ -$ расстояния от КА до Земли и Луны

Интеграл Якоб

би:
$$J(x, y, z, \dot{x}, \dot{y}, \dot{z}) = 2\Omega_3(x, y, z) - (\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$$

Бикруговая ограниченная задача четырех тел (BR4BP)

Эффективный потенциал:

Отлетный и подлетный участки: CR3BP

➢ Внешний участок: BR4BP

Регион преобладания системы Земля-Луна

Граница региона преобладания^{*}: точки конфигурационного пространства, где ошибка в правых частях уравнений движения КА будет одинаковой независимо от того влиянием какого тела, Солнца или Луны, пренебречь в системе Земля-Луна-Солнце

* R. Castelli, "Regions of Prevalence in the Coupled Restricted Three-Body Problems Approximation," Communications in Nonlinear Science and Numerical Simulation, Vol. 17, No. 2, 2012, pp. 804-816.

 Отлетный и подлетный участки: CR3BP

▶ Внешний участок: BR4BP

Проектирование подлетного участка

- Для любой точки *P* и [*x_P*, *ẋ_P*],
 ý_P определяется из выражения
 J(*x_P*, *y_P*, *ẋ_P*, *ý_P*) = *J_{EM}*,
 У_P принадлежит границе региона
 преобладания
- $\blacktriangleright P$ схлопывается в точку при $J_{EM} pprox 3.18$
- Необходимый LOI-импульс в перицентре может быть оценен из выражения $\Delta J_{EM} \approx \Delta v^2 + 2v\Delta v$

(соответствует NRHO 9:2)

 Отлетный и подлетный участки: CR3BP

▶ Внешний участок: BR4BP

Траектории, столкновительные с Землей

Преобразование Леви-Чивиты: $x + \mu + iy = (u + iv)^2, i^2 = -1$ $dt = rd\tau$

Уравнения движения

$$u'' = \frac{f_1(u,v)}{4} + 2(u^2 + v^2)v',$$

$$v'' = \frac{f_2(u,v)}{4} - 2(u^2 + v^2)u'$$

Столкновительные траектории зависят от двух параметров: угла вылета *\varphi* и константы Якоби *J*_{EM}

 Отлетный и подлетный участки: CR3BP

➢ Внешний участок: BR4BP

Построение плоских траекторий

- \blacktriangleright Переменные оптимизации: $J^0_{EM}, arphi, heta_0$
- \blacktriangleright В граничной точке $\mathbf{x}_p = [x_p, y_p, \dot{x}_p, \dot{y}_p]$: $f_1(x_p) \le \dot{x}_p \le f_2(x_p), \ x_{min} \le x_p \le x_{max}, \ y_p > 0,$ $J_{EM}(\mathbf{x}_p) = J_{EM}^f,$ $t_p = t^*,$ $\mathbf{x}_p = \mathbf{x}_p^*$
 - Апогей траектории должен находится во II или IV квадранте системы *Cx* '*y* '

Примеры плоских WSB-траекторий

 $J_{EM}^{f} = 3.06, \ r_{p} = 3141 \, \mathrm{km}, \ \omega_{p} = 119^{\circ},$ время полета 87 дней

 $J_{EM}^{f} = 3.06, r_{p} = 3141 \, \mathrm{km}, \omega_{p} = 92^{\circ},$ время полета 74 дня

Траектории получены в программе MATLAB (fmincon solver, опция sqp)

>Адаптация к эфемеридной модели

- Высокоточная модель: центральные гравитационные поля Земли и Луны, гравитационные возмущения от Солнца и планет Солнечной системы, давление солнечного излучения, гармоники GRGM1200A (8х8) для гравитационного ускорения Луны, эфемериды JPL DE430
- Метод адаптации: параллельная пристрелка
- Переменные оптимизации:
- эпохи и векторы состояния КА,
- финальный LOI-импульс,
- маневр коррекции траектории (ТСМ -маневр)
- Целевая функция:
 $\Delta V_{\Sigma} = \Delta V_{LOI}^2 + \Delta V_{TCM}^2 \rightarrow \min$

- Ограничения включают требования на
- высоту, наклонение и эксцентриситет стартовой околоземной орбиты,
- время старта,
- величину отлетного импульса (≤ 3.2 км/с),
- гладкость сшивки фазового вектора в узлах метода,
- условия выхода на целевую орбиту.
- Получение окна старта: продолжение по дате старта

WSB-траектории в эфемеридной модели

Перелет с круговой орбиты h = 200 км, $i = 51.6^{\circ}$ на южную NRHO 9:2 Окно старта определяется как $\Delta V_{\Sigma} \leq 100$ м/с

1: открытие окна старта, $\Delta V_{\Sigma} = 32.876 \text{ (TCM)} + 67.176 \text{ (LOI)} = 100.052 \text{ м/с,}$ дата старта 13 апреля, 2028, 12:00

2: оптимальная траектория, $\Delta V_{\Sigma} = 9.980 \text{ (TCM)} + 66.734 \text{ (LOI)} = 76.714 \text{ м/с,}$ дата старта 20 апреля, 2028, 7:00

3: закрытие окна старта, $\Delta V_{\Sigma} = 33.937 \text{ (TCM)} + 66.096 \text{ (LOI)} = 100.034 \text{ м/с,}$ дата старта 28 апреля, 2028, 4:00

Время прибытия фиксировано: 29.07.2028, 08:13:29

- Траектории получены в программе MATLAB (fmincon solver, опция sqp)
- Сходимость с начального приближения ~ 40 мин; шаг метода продолжения в 1 час по дате $_{18}$ старта \leq 10 с

Заключение

- С использованием представленных геометрических и аналитических инструментов получены плоские WSB-траектории перелета в модели BR4BP, соответствующие различным датам старта и времени перелета
- Адаптация плоских траекторий к эфемеридной модели продемонстрирована на примере перелета с космодрома Байконур на южную NRHO 9:2 для даты старта в апреле 2028 года. Сходимость с плоского начального приближения составляет не более 40 мин
- Семейство WSB-траекторий для окна старта с ΔV_Σ ≤100 м/с получено методом продолжения по времени старта с шагом в 1 час. Один шаг метода продолжения составил около 10 с