Когда Вы имеете дело с выборкой экспериментальных данных, то они, чаще всего, представляются в виде массива, состоящего из пар чисел (xi,yi). Поэтому возникает задача аппроксимации дискретной зависимости y(xi) непрерывной функцией f(x). Функция f(x), в зависимости от специфики задачи, может отвечать различным требованиям.
¤ Функция f(x) должна проходить через точки (xi,yi), т. е. f(xi)=yi ,i=1...n. В этом случае говорят об интерполяции данных функцией f(x) во внутренних точках между xi, или экстраполяции за пределами интервала, содержащего все xi.
¤ Функция f(x) должна некоторым образом (например, в виде определенной аналитической зависимости) приближать y(xi), не обязательно проходя через точки (xi,yi). Такова постановка задачи регрессии, которую во многих случаях также можно назвать сглаживанием данных.
¤ Функция f(x) должна приближать экспериментальную зависимость y(xi), учитывая, к тому же, что данные (xi,yi) получены с некоторой погрешностью, выражающей шумовую компоненту измерений. При этом функция f(x), с помощью того или иного алгоритма уменьшает погрешность, присутствующую в данных (xi,yi). Такого типа задачи называют задачами фильтрации. Сглаживание - частный случай фильтрации.
Различные виды построения аппроксимирующей зависимости f(x) иллюстрирует рис. На нем исходные данные обозначены кружками, интерполяция отрезками прямых линий - пунктиром, линейная регрессия - наклонной прямой линией, а фильтрация - жирной гладкой кривой.