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Abstract. This paper presents results of measuring evolution in a simple ALife 
system. Interpretation of these results is based on the notion of dynamical 
systems. This approach enables the discovery of periods of high evolutionary 
activity, which can be treated as evolutionary transitions. Attempts were also 
made to locate possible cycles of trajectory in the genome phase space, and it 
was concluded that there were no such cycles. These results demonstrate the 
usefulness of a dynamical systems approach in analyzing the dynamics of 
artificial evolution and provide suggestions for further development. 

1 Introduction 

When studying artificial life models, we wish to know the key features of an 
evolutionary process, such as its activity and stability, diversity and complexity. 
Measuring these features in ALife models is often complicated due to the nature of 
the models and the evolutionary processes themselves.  

There are no direct ways to measure the fitness of an agent, a subpopulation or a 
whole population, and therefore no obvious way to measure how progressive an 
evolutionary run was. At present, measuring adaptation and fitness is one of the main 
issues in evolutionary theory and artificial life. 

Another problem is the genotype-phenotype mapping. The diversity and 
complexity of the genotype are not strictly linked to the diversity and complexity of 
the phenotype and its behavior. It is also difficult to link elements at the level of the 
genotype of an agent with the acts at the behavioral level and, finally, with the 
consequences for survival.  

In this paper we treat a simple ALife model as a dynamical system and measure its 
most evident characteristics, without reference to fitness. 

2 Measuring Evolution 

There is no explicitly defined fitness in artificial life simulations, so adaptive fitness is 
estimated indirectly, using various criteria. One possible criterion is to consider larger 
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population size as indicating higher fitness of agents in the population. But 
competition between agents and arms races could reduce population size while agents 
co-adapt and become more fit. 

Another indication of evolutionary activity is the speed of replication. Although a 
higher speed of replication for the given genotype gives it an evolutionary advantage, 
there is a tradeoff with the resulting disadvantages of overpopulation and 
overspecialization. E.g., there may be a scarcity of vital resources and decreased 
tolerance to environmental perturbations. Thus we must be careful of the limitations 
of these straightforward criteria. 

Probably the most popular method for quantifying adaptive evolution in the ALife 
community is an evolutionary activity statistic proposed by Bedau and Packard [1,2]. 
The main assumption of this approach is that if a component of an evolutionary 
system persists, it is adaptive. One complication in applying this statistic at the 
genotype level is the possibility of hitchhiking. The authors suggest creating a 
"shadow" model to screen out neutral mutations: the shadow model is the same 
model, but without selection. With the aid of the shadow model, we can normalize 
evolutionary activities in the model and remove neutral components. However, it is 
not obvious for the approach, how to choose components to measure, whether they be 
parts of the genotype, phenotype, the agents' actions or the species. For example, if 
the behavior of an agent is dependant on a nonlinear interaction of genotype 
components, it is difficult to quantify the influence of the component on the behavior. 
In spite of these difficulties, the evolutionary activity statistic is a powerful method 
for estimating evolutionary processes, and it has been successfully applied in a 
number of studies [3,4].  

Adami [5] proposed measuring evolution in artificial systems in terms of the 
complexity of an agent.  In some ALife models, e.g. Avida [6], we can easily 
calculate the entropy per-site of an agent's genome; this measure can give some 
interesting insights into the dynamics of the system. Another measure based on 
complexity was introduced by Nehaniv [7]. This measure, called "exhibited 
evolvability", is proportional to the rate of increase of complexity in a population. The 
original measure of complexity was presented by Nehaniv and Rhodes [8] earlier. 

Several additional measures were developed by Cliff and Miller [9] to evaluate 
adaptive progress in cases in which fitness interdependence of co-evolving species 
changes the fitness landscape itself over time. E.g., the evolutionary arms races (the 
"Red Queen effect") mentioned in the beginning of this section. 

A lot of work has been done in the area of GA [10-15] to analyze the solution 
space as a dynamical system, but little has been done in the field of artificial life. It is 
difficult to find an appropriate measure of fitness in the latter case because fitness is 
not defined explicitly and the models are quite complex. 

In this paper I use a dynamical systems approach to quantify some aspects of the 
evolutionary dynamics of a system, without reference to the notion of fitness. 

If we consider the population in an artificial life simulation as a dynamical system 
we could try to answer the following questions: 
1. How is the speed of the system movement in the phase space changing? 
2. How stable is the trajectory of the system? 
3. Does the system persist in an attractor state, or undergo transition? 
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4. If the system persists in an attractor state, is the attractor a stable point or a limit 
cycle? 

5. How deep and how neutral is the basin of attraction? 
6. What are the control parameters of the system? Which parameters have the greatest 

effect on the system dynamics? 
Questions 1-4 are related to evolutionary transitions and stasis, questions 5-6 to 

neutrality and possibilities for diversification. This paper does not answer all these 
questions, but rather describes an approach that enables measurement of evolutionary 
activity of an Alife model as a dynamical system. The following section provides a 
description of the ALife model, and the subsequent section presents the results for a 
particular simulation. 

3 The Model 

The model belongs to a classic set of ALife models [16-19] with simple agents in a 
simple world. The model was developed to study the evolution of kin selection, but is 
used here as a testbed. 

The world in the model is a two dimensional grid which is closed to form a torus 
divided into knots on the grid. The world contains two kinds of objects: agents and 
grass, where grass is an energy resource for agents. The number of agents in any knot 
is unlimited, but at most one patch of grass can exist in any knot at a given point in 
time. Patches of grass appear randomly and are uniformly distributed on the torus. 

Each agent observes part of the local environment and performs certain actions. 
Specifically, each agent is oriented in space and has a field of vision. The field of 
vision consists of four knots: the knot the agent is in, the one in front of the agent, and 
the ones on the left and on the right. 

Agents live in discrete time. Each agent executes one of seven actions during each 
time step: to rest, to eat, to turn to the left/right, to move forward to the next knot, to 
divide, or to fight. 

When an agent rests, it changes nothing in the environment. If there is a grass 
patch in a knot with an agent and the agent executes the "eat" action, the patch 
disappears. If the agent divides, an offspring is created and placed in the knot. At any 
given time step, if there are other agents in the knot, the agent can interact with any of 
them. The agent can “fight” a randomly chosen agent in the knot. 

Each agent has a limited capacity to store the energy resource internally. When an 
agent performs an action, its internal energy resource decreases. If the agent executes 
the action "eat" and there is grass in the knot, the energy resource of the agent 
increases. When the agent produces offspring, the parent spends some amount of 
energy and gives half of the rest to the newborn. If the internal energy resource goes 
to zero, the agent dies. 

The behavior of each agent is governed by simple control system, which connects 
inputs to outputs: the output vector O is calculated by multiplying the input vector I 
by a matrix of weights W. Components of W are integers in the range [-Wmax,Wmax]. 
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The number of outputs of the agent’s control system equals the number of actions 
an agent can perform; at each step, the agent performs the action associated with the 
maximum output value. 

The weights of the control system are coded in the genome of the agent. 
The genome of the agent S consists of three chromosomes S = (B, W, M). The first 

chromosome codes the presence or the absence of individual inputs and outputs; the 
second one codes the weights of the control system transformation; the third 
chromosome codes the marker of the agent. 

If the agent executes the action "divide", an offspring appears. The genome of the 
offspring is a copy of its parent’s genome, modified as follows: 
1. for every gene corresponding to the weight of the control system, add a small 

random value uniformly distributed on the interval [-pw, pw], where pw is mutation 
intensity; 

2. with a small probability pb , change each bit for the presence of input or output; 
3. for every gene corresponding to the marker, add a small random value uniformly 

distributed on the interval [-pm, pm], where pm is the mutation intensity of the 
marker. 

4 Experiment 

The simulation was run with a grid size 30 x 30 and an initial population of 200 
agents. To speed up program execution, the weights of the W matrix took integer 
values in the range [-1000,1000] and the mutation intensity pw was set to 50. 

Each agent's generation gi, i.e. the number of ancestors, was traced. The change of 
the average number of generations g  in the population over time is presented in Fig. 
1b. The graph can be approximated by a few lines with different slopes. If we do this, 
we can segment the evolution of the system into several "epochs" with different and 
almost constant rates of evolutionary activity within epoch. Then the rate of average 
generation growth g∆  (Fig. 1c) could be treated as an evolutionary (or generational) 
rate, i.e., the rate of generation of new solutions: 

If we use dynamical systems approach, we could represent each agent as point in a 
genome phase space, and the evolution of whole population could be represented as 
the movement of a cloud of points. 

To see how the system moves in the genome phase space, one can calculate the 
centroid of the population C by averaging the weights over all agents and then 
plotting (Fig. 1d) the Euclidean distance t

CD covered by the centroid during the given 
time step τ : 

1−−=∆ ttt
g gg . (2) 



Measuring the Dynamics of Artificial Evolution      5 

 

∑=
N

ii w
N

C 1
, 

(3) 

∑ −−=
i

t
i

t
i

t
C CCD 2)( τ , 

(4) 

where i = weight number and N = population size. 

Fig. 1. Population size (a), average number of generations (b), first differences of average 
number of generations (c), speed of movement of the population centroid in the genome space 
(d), average variance of weights (e), average age of agents in the population (f). 

This measure reflects the integral displacement of the system in the genome phase 
space during defined time intervals. The plot shows that the speed of the system's 
movement was higher during epochs II, IV and V than during the relatively stable 
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epochs I, III and VI. If we consider the relatively stable states of the second set of 
epochs to be attractors, then the states of the more active first set of epochs are 
transitions between attractors. In the context of this model, we interpret epochs II, IV 
and V as evolutionary transitions. 

The average variance of weights in the population (Fig. 1e) can serve as an 
indicator of diversity in the population. Although the average variance of genes 
weakly correlates with jumps in phase space (peaks in Fig. 1f), it is hard to 
hypothesize how this variance of genes is connected with evolutionary processes in 
our model. 

 
Fig. 2. Centroid weights bitmap (a) [high negative values shown in black, high positive in 
white, midrange in grey], weights variance bitmap (b) [here and following plots, zero shown in 
white and positive values in black], first differences of centroid weights bitmap (c) and 
distances in phase space for different cycles (d) 

At the level of particular weights, evolution can be represented with the aid of 
bitmaps (Fig. 2). The first bitmap reflects the dynamics of the weights of the 
population centroid (Fig. 2a). On the bitmap, the weights are grouped by input; we see 
that incidents of appearance and disappearance of inputs often took place near the 
edges between epochs. 

The complete meaning of the bitmap of the weights variance over the time (Fig. 
2b) is not clear. However some vertical stripes are more uniform and brighter, i.e. 
have low constant variance, and perhaps the associated weights are more important 
for survival of agents. 

The Figure 2c is a detailed analog of Figure 1e. Here the first differences of the 
centroid weights are plotted. The bitmap shows that during evolutionary transitions 
(epochs II, IV and V), the system is changing rapidly in most dimensions. 
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The last bitmap was created to find cycles of the population centroid trajectory in 
the genome phase space. (A similar approach was proposed in [9].) Such a plot can be 
used to help identify periodic movements of the centroid in the phase space, since the 
plot identifies when the system approaches a future point. The bitmap consists of 
vertical lines, each line for a given cycle length L. The level of gray corresponds to 
the Euclidean distance between the current position of the population centroid and the 
position after a cycle of length L: 

∑ −= +

i

t
i

Lt
i

t
L CCd 2)( . 

(5) 

If there are cycles in the phase space, they should appear as light vertical bands on 
the bitmap. There are no such bands in Figure 2d, but there are dark horizontal lines 
concentrated inside epochs II and IV. When the system is situated at the points in its 
phase space corresponding to the dark lines it is equidistant from all preceding and 
following points. So we can infer that during evolutionary transitions, the population 
centroid can jump quite far from the areas where it usually persists, and never return 
to these points. 

5 Conclusions 

The evolutionary dynamics of a system can be represented by the movement of the 
system in a phase space, using a dynamical systems approach. Applying this approach 
to a simple ALife model, we identified epochs in the life of the system, which we 
characterized as periods of evolutionary transitions and periods of smooth 
development. During evolutionary transitions, the system moved rapidly in the 
genome phase space; we found no cycles in the trajectory of the system. 

The notion of splitting the evolution of the system into epochs presented here is 
consistent with the notion of "epochal evolution" proposed in [20]. Epochal evolution 
assumes existence of subbasins of attraction in the genome phase space; these are 
connected by portals. The population moves from one subbasin to another by 
tunneling through portals. By analogy, rapid movement of the system studied here 
corresponds to tunneling, and slow movement corresponds to persistence in a 
subbasin. Further investigation might include analyses of the behavior of the system 
in a phenotype space, as well as analyses of relationships between the behavior at the 
phenotype level and at the genotype level. 
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