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Abstract. The propagation of small discontinuities (ε-breaks) is studied as applied to the multidimen-
sional multi-component filtration problem. The characteristic properties of the problem are investigated. The
canonical form of the governing system is presented and the concept of characteristic is specified in connec-
tion with the problem under consideration. This form consists of a “hyperbolic” subsystem and a “parabolic”
equation as well. Stability of the flow is discussed.
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1 Introduction

The presented work is devoted to the investigation of the multi-component filtration system which does not
belong to any standard class of differential equations (hyperbolic, parabolic etc). Nevertheless, some properties
of the solutions to this problem make it possible to consider in some sense the governing system as hyperbolic.
In fact, it was shown in [1] that the velocities of weak discontinuities of solutions are finite and they are the
eigenvalues of an eigenvalue problem with a linear restiction. For the case N = 2 — two-component model —
this result means that there exists a unique value of a weak discontinuity velocity. It has also been found in
[2] that the velocity of the ε−jumps (small amplitude breaks) is the same as that of the propagation of weak
discontinuities. These facts make it possible to determine the notion of characteristic. Using the above results
one can “split” the governing system into the “advection” and “parabolic” equations, see [2]. Such a form of
the system can be called canonical. Note that exactly this form can be used for the creation of high resolution
numerical algorithms because it is impossible to capture discontionuities without using characteristic properties
of the problem.

The main aim or this work is the extension of the results for the two-component problem to the
multicomponent case and the discussion of some questions connected with well-posedness of the corresponding
Cauchy problem.

We consider the filtration of an M-phase fluid consisting of N components. Let the pressure P be the
same for all phases. Then the governing system can be written in the form of N conservation laws:

∂

∂t

(
m

M∑
α=1

ciαnαsα

)
+Div

(
M∑
α=1

ciαnαuα

)
= 0. (1)

Here, m is the porosity, nα is the molar density of the αth phase, ciα is the molar concentration of the ith
component in αth phase, sα is the phase saturation (the volume concentration of the αth phase in the mixture),
and uα is a filtration velocity of the αth phase.

According to the Darcy law we have

uα = −K
µα
krα(sα)∇P, (2)

where K is the total permeability, krα and µα are the relative permeability and viscosity of theαth phase,
respectively.

The system (1)–(2) has to be supplemented with the two conditions:

N∑
i=1

ciα = 1,

M∑
α=1

sα = 1. (3)

Denote by ci the molar concentration of the ith component in the whole mixture. Let n be the molar
density of the mixture. Then we have

nci =

M∑
α=1

ciαnαsα. (4)

Since all the velocities ui are proportional to the common vector ∇P , it follows that by neglecting the
compressibility of the porous media (e. g. assuming m = Const) we can rewrite (1) as follows:

∂nci
∂t

+Div(ϕiQ) = 0, (5)

where

Q = −K
m
∇P, (6)

and

ϕi =

M∑
α=1

ciαnα
krα(sα)

µα
. (7)

The normalization condition is
N∑
i=1

ci = 1. (8)

Under the thermodynamic equilibrium assumption sα = sα(c1, ..., cN , P ). Hence one can simply consider n and
ϕi as known functions of c1, ...cN and P . Such a formulation makes it possible to study some general properies
of solutions.
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2 Characteristic directions and characteristic relations

For simplicity we shall consider in detail only the one-dimensional case. The corresponding results for multidi-
mensional problem will be given in § 1.

We start with the governing system of the form:

∂nci
∂t

+
∂ϕiQ

∂x
= 0, i = 1, ..., N, (9)

N∑
i=1

ci = 1. (10)

Here, ϕi, and n depend on c1, ..., cN , andP, and Q = −K(x)
∂P

∂x
.

Using (10) one can eliminate one of ci for example cN . Summing all the equations (9) and taking into
account (10) we obtain

∂n~c

∂t
+
∂~ϕQ

∂x
= 0, (11)

∂n

∂t
+
∂σQ

∂x
= 0. (12)

where ~c = (c1, ..., cN−1)∗, ~ϕ = (ϕ1, ..., ϕN−1)∗, ~ϕ = ~ϕ(~c, P ), n = n(~c, P ), σ =

N∑
i=1

ϕi. (Here and below the

arrow denotes a vector of the (N − 1)−dimensional concentration space and the astersk denotes a column
vector.)

Introducing ~ϕ = σ~ψ we obtain the final form of the governing system:

∂n~c

∂t
+
∂ ~ψσQ

∂x
= 0, (13)

∂n

∂t
+
∂σQ

∂x
= 0. (14)

Now we consider an ε−discontinuity line. The standard Hugoniot conditions are of the form:

D [n~c ]− [~ψσQ] = 0,
D [n]− [σQ] = 0.

(15)

Here, the brackets denote the jumps of the variables and D denotes the velocity of the ε−jump (that
is D = dx/dt, where x = x(t) is the equation of the line). It should be emphasized that [P ]=0 for any type of
breaks.

Replacing all [f ] by df one can rewrite (15) in the form

Dnd~c+D~c dn− ~ψ d(σQ)− σQd~ψ = 0, (16)

Ddn− d(σQ) = 0. (17)

It follows from (16)-(17) that

Dnd~c−D(~ψ − ~c)dn− σQd~ψ = 0. (18)

Taking into account dP = 0 we have

dn = ∇cn · d~c, d~ψ =
∂ ~ψ

∂~c
d~c.

Here, ∇c =
(

∂
∂c1

, ..., ∂
∂cN−1

)
.

It remains to introduce λ : D = λQ. Finally, we obtain the matrix form of (18):

(B − λA)d~c = 0, (19)
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where

B = {bij}, bij = σ
∂ψi
∂cj

, (20)

A = {aij}, aij = −(ψi − ci)
∂n

∂ci
+ nδij . (21)

(δij is the Kronecker delta).
This equation means that:
(i) each real eigenvalue λ(k) of the matrix BA−1 defines the kth ε−discontinuity direction: dx/dt =

D(k) = λ(k)Q;
(ii) the ε−jump d~c (or [~c ] ) is a right-side annihilator of the matrix B − λA for each real λ = λ(k).
Note that these D(k) coincide with the velocities of weak discontinuities mentioned in [1]. Such a

situation is typical for hyperbolic systems.
Below we consider only real eigenvalues. Note that if N is even, then at least one real eigenvalue exists.
By analogy with hyperbolic systems we call such directions “characteristi” dirctions. Following this

analogy we construct the corresponding characteristic relations. In the two-component case this problem has
been solved by means of the special way, see [2]. The key idea was based on the determination the function θ
such that the product θQ is continous on the ε−jumps: [θQ] = 0 . This function is a solution of some ordinary
differencial equation. Using the function θ an “advection” equation was singled out from the governing system.
In the multi-component case we will apply the same idea but now the implementation of it looks much more
complicated because of the existance of several characteristic directions. As is already clear, now the required
function θ has to be a vector: θ = ~θ.

Let us choose some eigenvalue λ(k) and represent the scalar σ in the form of a scalar product of
two vectors:

σ = ~θ(k) · ~µ, (22)

where ~µ is the same for all λ(k).
Let ~ϕ(k) be the left-side annihilator of B − λ(k)A:

~ϕ(k)(B − λ(k)A) = 0. (23)

We return to (13) and exclude
∂n

∂t
using (14). The result is

n
∂~c

∂t
+ (~ψ − ~c) ∂σQ

∂x
+ σQ

∂ ~ψ

∂x
= 0. (24)

Now we replace σ in the term
∂σQ

∂x
by ~θ(k) · ~µ, see (22).

n
∂~c

∂t
+ (~ψ − ~c)

(
~µ
∂~θ(k)Q

∂x
+ ~θ(k)Q

∂~µ

∂x

)
+ σQ

∂ ~ψ

∂x
= 0. (25)

But

σ
∂ ~ψ

∂x
= σ

∂ ~ψ

∂~c

∂~c

∂x
+ σ

∂ ~ψ

∂P

∂P

∂x
= B

∂~c

∂x
+ σ

∂ ~ψ

∂P

∂P

∂x
;

∂~µ

∂x
=
∂~µ

∂~c

∂~c

∂x
+
∂~µ

∂P

∂P

∂x
.

Hence (25) can be rewritten as follows:

n
∂~c

∂t
+Q(~ψ − ~c)

(
~θ(k)

∂~µ

∂~c

∂~c

∂x

)
+QB

∂~c

∂x
+ ~f (k) = 0, (26)

where

~f (k) = Q

(
(~ψ − ~c)

(
~θ(k)

∂~µ

∂P

)
+ σ

∂ ~ψ

∂P

)
∂P

∂x
+ (~ψ − ~c)

(
~µ
∂~θ(k)Q

∂x

)
. (27)

Since we intend to obtain the canonical form we add the term

nQBA−1 ∂~c

∂x
to both sides of (26). Finally, we have

n
∂~c

∂t
+ nQBA−1 ∂~c

∂x
= nQBA−1 ∂~c

∂x
−QB ∂~c

∂x
−Q(~ψ − ~c)

(
~θ(k)

∂~µ

∂~c

∂~c

∂x

)
− ~f (k). (28)
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Now we multiply (28) by ~ϕ(k) from the left. Because ~ϕ(k)BA−1 = λ(k)~ϕ(k)A we obtain

n~ϕ(k) ·
(
∂~c

∂t
+ λ(k)Q

∂~c

∂x

)
= g(k) − ~ϕ(k) · ~f (k), (29)

where

g(k) = n ~ϕ(k)λ(k)Q · ∂~c
∂x
−Q ~ϕ(k)B

∂~c

∂x
−Q

(
~ϕ(k) · (~ψ − ~c)

)(
~θ(k)

∂~µ

∂~c

∂~c

∂x

)
. (30)

But ~ϕ(k)B = λ(k)~ϕ(k)A . Hence,

g(k) = Qλ(k)~ϕ(k)(nE −A)
∂~c

∂x
−Q

(
~ϕ(k) · (~ψ − ~c)

)(
~θ(k)

∂~µ

∂~c

∂~c

∂x

)
.

Here, E is the identity matrix.
We introduce

ξ(k) = ~ϕ(k) · (~ψ − ~c), (31)

Ã = nE −A; Ã = {ãij}, ãij = (ψi − ci)
∂n

∂cj
. (32)

Then

g(k) = Q

(
λ(k)~ϕ(k)Ã− ξ(k)~θ(k) ∂~µ

∂~c

)
· ∂~c
∂x
.

Let us find ~θ(k) and ~µ so that g(k) = 0.
It means that the identity

λ(k)~ϕ(k)Ã− ξ(k)~θ(k) ∂~µ
∂~c
≡ 0 (33)

must be valid under the condition (22). It follows from (33) that

~θ(k) =
λ(k)

ξ(k)
~ϕ(k)Ã

(
∂~µ

∂~c

)−1

. (34)

Substituting (34) into (22) we obtain the main equation in the form

λ(k)~ϕ(k)Ã

(
∂~µ

∂~c

)−1

~µ = σξ(k), (35)

or in the form

~ϕ(k) ·

(
λ(k)Ã

(
∂~µ

∂~c

)−1

~µ− σ(~ψ − ~c)

)
= 0. (36)

The equation (35) (or (36)) is a non-linear first-order PDE with respect to ~µ(~c, P ) , that is N − 1
functions µi(c1, ...cN−1, P ), i = 1, ..., N − 1. Note that this equation does not contain ∂/∂P . Hence ~µ
contains P as a parameter.

Any solution of (35) or (36) gives us the required vector ~µ . The second multiplier ~θ(k) can easily be
found from (34). Since ~µ is independent of λ(k) and ~ϕ(k) , this vector is the same for all λ(k) .

Taking into account that g(k) = 0 for all (real) λ(k) we can write the kth characteristic relation
(corresponding to λ(k) , see (29)) in the form

n~ϕ(k) ·
(
∂~c

∂t
+ λ(k)Q

∂~c

∂x

)
+ ~ϕ(k) · ~f (k) = 0. (37)

The vector ~f (k) contains the term ~µ · ∂∂x (~θ(k)Q) . Let us clarify the meaning of the product ~θ(k)Q . We
consider the ε−jumps. Keeping in mind (22) we rewrite (17) in the form

λ(k)Qdn− d((~θ(k) · ~µ)Q) = 0.

That is,
λ(k)Q(∇cn · d~c)− ~θ(k) ·Qd~µ− ~µ · d(~θ(k)Q) = 0.

or

λ(k)Q(∇cn · d~c)− ~θ(k)Q
∂~µ

∂~c
d~c = ~µ · d(~θ(k)Q). (38)
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But ~θ(k)
(
∂~µ

∂~c
d~c

)
=

(
~θ(k)

∂~µ

∂~c

)
d~c =

λ(k)

ξ(k)
~ϕ(k)Ã , see (34). Hence the left side of (38) goes over to

λ(k)Q(∇cn · d~c)− ~θ(k)Q
∂~µ

∂~c
d~c = λ(k)Q(∇cn · d~c)−

λ(k)

ξ(k)
~ϕ(k)QÃd~c =

λ(k)

ξ(k)
Q(ξ(k)(∇cn · d~c)− ~ϕ(k)Ãd~c) =

λ(k)

ξ(k)
Q((~ϕ(k) · (~ψ − ~c))(∇cn · d~c)− ~ϕ(k)Ã d~c) = 0,

see (32). Therefore ~µ · d(~θ(k)Q) = 0 .

This means that
~µ · [~θ(k)Q] = 0 (39)

for the ε−jumps. (Recall that the brackets [∗] denote breaks).
This relation is the natural generarization of the two-component case: [θQ] = 0.

3 Canonical form

Let all λ(k) be real. (The situation arising when some λ(k) are complex will be discussed in § 5.) Then the
equation (37) considered for all values of k can be treated as a system. Denote by S a matrix whose rows are
the vectors ~ϕ(k) . Then the system (37) (k=1,...,N-1) can be written in the matrix form

n(S
∂~c

∂t
+ ΛQS

∂~c

∂x
) + ~F = 0. (40)

Here, Λ is a diagonal matrix with elements λ(k) : ~F = (f̂1, ..., f̂N−1)∗, f̂k = ~ϕ(k) · ~f (k) (~f (k) is defined
by (27)). It follows from the identity S(B−ΛA) = 0 that BA−1 = S−1ΛS . Muliplying (40) by S−1 from the
left we obtain

n(
∂~c

dt
+QBA−1 d~c

dx
) + S−1 ~F = 0. (41)

The system (41) (or (40)) can be considered as a ”hyperbolic” subsystem of the governing equations.
It remains to construct the missing ”parabolic” equation.

First, we rewrite the system (13)–(14) as follows:

n
∂~c

∂t
+ ~c

∂n

∂t
+ σ

∂ ~ψ

∂x
+ ~ψ

∂σQ

∂x
= 0.

∂n

∂t
+
∂σQ

∂x
= 0.

(42)

or, in more detail,

n
∂~c

∂t
+ ~c (nP

∂P

∂t
+∇cn ·

∂~c

∂t
) + σQ

∂ ~ψ

∂x
+ ~ψ

∂σQ

∂x
= 0,

nP
∂P

∂t
+∇cn ·

∂~c

∂t
+
∂σQ

∂x
= 0.

(43)

Now one can eliminate
∂~c

∂t
from (43). As the result we have

nnP
∂P

∂t
=
(
∇cn · (~ψ − ~c)− n

) ∂σQ
∂x

+ σQ(∇cn ·
∂ ~ψ

∂x
). (44)

Because Q = −K(x)Px, K > 0 the last equation can be treated as parabolic under the condition

∇cn · (~ψ − ~c) < n. (45)

Another form of (45) is
∇cn · (~ϕ− σ~c) < σn. (46)

(Note that the natural thermodynamic inequality nP > 0 is supposed to be valid.)
The resulting canonical form consists of the ”hyperbolic” subsystem (41) and the ”parabolic” equation

(44). We now explain the role of this form.
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(1). The equation (44) is parabolic with respect to P for a given concentration vector ~c ;
(2). The subsystem (41) is hyperbolic with respect to ~c (for the case of real eigenvalues) for a given

pressure P . Note that the terms ~µ · ∂
~θ(k)Q

∂x
do not change the velocities of weak discontinuities or ε−breaks

which are defined by λ(k) and Q , see also (39).
For the two-component case (more exactly for the Buckley-Leverett model) it was shown in [2] that the

ε−perturbations of the initial data propagate as the ε−perturbations of the solution only along characteristic
directions. As for non-characteristic directions the moving perturbations are of ε2−order. Apparently, this
feature takes place for the multi-component case as well.

The above mentioned canonical form is very convenient for the creation of high resolution numerical
algorithms besause precisely this form describes the propagation of perturbations in the right way.

4 Multidimensional case

We begin with an analysis of the ε−breaks. Let L be the surface of ε−discontinuity, L : Φ(t,X) = 0, X ∈ R3 .
Denote by n the normal to L : n = (Φt,∇Φ) . Then the Hugoniot conditions are

[nci]Φt + [ϕiQ] · ∇Φ = 0, i = 1, ..., N. (47)

or of the form (compare with (15))

[nci]Φt + [σψiQ] · ∇Φ = 0, (here i = 1, ..., N − 1.) (48)

[n]Φt + [σQ] · ∇Φ = 0. (49)

Introducing λ = Φt/(Q · ∇Φ) we obtain the eigenvalue problem (19–21). By definiton we have

Φt − λ(Q · ∇Φ) = 0. (50)

This equation means that the normal n is ortogonal to l = (1,−λQ). Therefore the concentracions ci
(more exactly some invariants of ci) propagate in the Q−direction (or in ∇P−direction which is the same.)
The eigenvalues λ define velocities of this process.

Now we turn to the characteristic relations and canonical form. The corresponding formulas can be
obtained in a formal way from the one-dimensional case. One only have to be careful when replacing the
operator ∂/∂x by Div or Grag . For brievity we simply shall associate the multi-dimensional formulas with
the corresponding one-dimensional prototypes.

Similary to the one-dimensional case we choose some real eigenvalue λ(k) . Let us use the same rep-

resentation σ = ~θ(k) · ~µ . Denote by
∂~c

∂s
the column vector with components

∂ci
∂s

= Q ·Grad ci and by

Div (~θ(k)Q) a row vector with components Div (θi
(k)Q) . (The definition of

∂ ~ψ

∂s
is completely analogous.)

It can be seen that

(24) −→ n
∂~c

∂t
+ (~ψ − ~c)Div (σQ) + σ

d~ψ

∂s
= 0. (51)

Since

Div (σQ) = ~µ ·Div (~θ(k)Q) + ~θ(k) · ∂~µ
∂~s
,

we obtain

(26) −→ n
∂~c

∂t
+ (~ψ − ~c)(~θ(k) ∂~µ

∂~c

∂~c

∂s
) +B

∂~c

∂s
+ ~f (k) = 0; (52)

(27) −→ ~f (k) =

(
(~ψ − ~c)

(
~θ(k) · ∂~µ

∂P

)
+ σ

∂ ~ψ

∂P

)
∂P

∂s
+ (~ψ − ~c)(~µ ·Div (~θ(k) Q)). (53)

(In (52) the matrix B = σ
∂ ~ψ

∂~c
, see (20)).

Formulas (52)–(53) are obtained from their prototypes by changing the term Q
∂~c

∂x
by

∂~c

∂s
and

∂

∂x
(~θ(k)Q) by Div (~θ(k) Q) .
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Thus,

(29) −→ n~ϕ(k) ·
(
∂~c

∂t
+ λ(k)Q

∂~c

∂s

)
= g(k) − ~ϕ(k) · ~f (k), (54)

where

(30) −→ g(k) = n ~ϕ(k)λ(k) · ∂~c
∂s
− ~ϕ(k)B

∂~c

∂s
−
(
~ϕ(k) · (~ψ − ~c)

)(
~θ(k)

∂~µ

∂~c

∂~c

∂s

)
. (55)

It is easily seen that equations (35) and (36) are unchanged. Concerning the characteristic relations
the multidimensional version has the form (compare with (37))

n~ϕ(k) ·
(
∂~c

∂t
+ λ(k)

∂~c

∂s

)
+ ~ϕ(k) · ~f (k) = 0. (56)

As for the “hyperbolic”subsystem we now have the analogies of (40), (41):

n(S
∂~c

∂t
+ ΛS

∂~c

∂s
) + ~F = 0, (57)

n(
∂~c

dt
+BA−1 d~c

ds
) + S−1 ~F = 0, (58)

where as before ~F = (f̂1, ..., f̂N−1)∗, f̂k = ~ϕ(k) · ~f (k) ( but now ~f (k) is defined in (53)).
It remains to represent the “parabolic” equation (see (44)):

nnP
∂P

∂t
=
(
∇cn · (~ψ − ~c)− n

)
Div (σQ) + σ(∇cn ·

∂ ~ψ

∂s
). (59)

Obviously, the parabolicity condition (45) (or (46)) remains the same.

5 Hyperbolicity and stability

Return to the complex eigenvalue case. To illustrate the essence of the problem we consider the following
system:

∂~U

∂t
+A(x, t, ~U)

∂~U

∂x
= 0. (60)

Here, ~U is a n−vector, A is an (n× n)−matrix.

The standard question is about the stability of the uniform stationary solution ~U0 or the well-posedness
of the corresponding Cauchy problem (which is the same). Evidently, if A has complex eigenvalues (non-

hyperbolicity), then ~U = ~U0 is an unstable solution. Applying the frozen coefficient principle one can extend
the stability condition to an arbitrary stationary solution.

A typical object for the application of this concept is the two-phase (or the multi-phase) flow system
with the common pressure. (Recall that unlike the Darcy law used in the filtration problems this model is based
on the momentum equation.) From the very beginning it has been found that the uniform one-dimensional
stationary two-phase flow of compressible media is stable only if some misterious inequality is fulfilled, see for
example [3]. Later it was shown that this condition arises in one-dimensional case only. If we take into account
multi-dimensional perturbations, then the flow becomes unconditionally unstable [4].

It seems that the same situation must take place in the multi-component filtration problems. However,
here the specific problem arises: the fact is that in the common case the procedure of singling out a subsystem
in the form (60) uses by itself a reality of all eigenvalues of the matrix C = BA−1 . Because of that one needs to
analize small perturbations of the mean flow for the original form of the governing equations. But we then now
have a new problem: there is no nontrivial uniform stationary sulution of this problem. In fact, if P = Const ,
then ∇P = 0 , which leads to the degeneration of the governing system. Therefore it is necessary to use another
stationary solution (not degenerated). However, there are the filtration problems, where the subsystem (60)
can be created directly. The question is about the incompressible filtration problem. In this case the system
(11)–(12) has the form:

∂~c

∂t
+
∂~ϕQ

∂x
= 0, (61)

∂σQ

∂x
= 0. (62)
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We obtained the required subsystem:

∂~c

∂t
+ σQ

∂ ~ψ

∂x
=
∂~c

∂t
+QB

∂~c

∂x
= 0. (63)

As the mean flow we take (~c0, P0) : ~c0 = Const, P = P0(x) is a linear function of x . Now it is clearly
seen that the stability condition completely coincides with the hyperbolicity condition of the system (63). There
are many problems where this condition is violated (at least in some domains of the mean flow parameters).
But there also exist unconditionally stable flows. As an example of such a flow we consider the three-component
filtration model in the form (61)-(62), where each ϕi depends only on ci : ϕi = ϕi(ci) .

Now we obtain the system
∂c1
∂t

+ σQ
∂ψ1

∂x
= 0,

∂c2
∂t

+ σQ
∂ψ2

∂x
= 0,

(64)

where ψi = ϕi/σ . Taking into account that here

σ = ϕ1(c1) + ϕ2(c2) + ϕ3(1− c1 − c2)

we obtain
σb11 = σϕ̇1 − ϕ1(ϕ̇1 − ϕ̇2) = ϕ̇1(ϕ2 + ϕ3) + ϕ1ϕ̇3;
σb12 = −ϕ1(ϕ̇2 − ϕ̇3);
σb21 = −ϕ2(ϕ̇1 − ϕ̇3);
σb22 = σϕ̇2 − ϕ2(ϕ̇2 − ϕ̇3) = ϕ̇2(ϕ1 + ϕ3) + ϕ2ϕ̇3.

(65)

Here, ϕ̇i denotes differentiation with respect to ci. It is easily seen that the eigenvalues of B are real
if and only if

D = (b11 − b22)2 + 4b12b21 ≥ 0. (66)

We introduce δ1 = ϕ̇1 − ϕ̇3, δ2 = ϕ̇2 − ϕ̇3 . Then

b11 − b22 = ϕ1(ϕ̇3 − ϕ̇2) + ϕ2(ϕ̇1 − ϕ̇3) + ϕ3(ϕ̇1 − ϕ̇2) = δ1(ϕ2 + ϕ3)− δ2(ϕ1 + ϕ3).

Hence,
D = (δ1(ϕ2 + ϕ3)− δ2(ϕ1 + ϕ3))

2
+ 4δ1δ2ϕ1ϕ2.

This is a quadratic form of δ1 δ2 . The discriminant 4 of this form is

4 = 4
(

(2ϕ1ϕ2 − (ϕ1 + ϕ3)(ϕ2 + ϕ3))
2 − (ϕ1 + ϕ3)2(ϕ2 + ϕ3)2

)
=

−16ϕ1ϕ2ϕ3σ ≤ 0.

Therefore D ≥ 0 and the roots of the characteristic equation are real. Hence the system (64) is
hyperbolic and the flow is stable.

The analyzis of the stability is the necessary procedure especially if numerical methods are used. The
fact is that often the “hysical” and “numerical” instability are indistinguishable. The main question connected
with the stability problem is what we have to do if the flow is unstable. Probably in this case the system has
to be somehow regularized. In particular, this instability can be removed by taking into account the cappilar
forces that leads to the two-pressure model (by analogy with the already mentioned two-phase problem).

It remains to note that the majority of one-dimensional stability conditions can formally be extended
to the multi-dimensional case. It follows from the fact that the multi-component filtration problem is essentially
one-dimensional (see § 4).
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