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Asymptotic Efficiency of Two-Stage
Disjunctive Testing

Toby Berger, Fellow, IEEE,and Vladimir I. Levenshtein, Member, IEEE

Abstract—We adapt methods originally developed in informa-
tion and coding theory to solve some testing problems. The ef-
ficiency of two-stage pool testing of items is characterized by
the minimum expected number ( ) of tests for the Bernoulli

-scheme, where the minimum is taken over a matrix that specifies
the tests that constitute the first stage. An information-theoretic
bound implies that the natural desire to achieve ( ) = ( )
as can be satisfied only if ( ) 0. Using random
selection and linear programming, we bound some parameters of
binary matrices, thereby determining up to positive constants how
the asymptotic behavior of ( ) as depends on the
manner in which ( ) 0. In particular, it is shown that for
( ) = + (1), where0 1, the asymptotic efficiency

of two-stage procedures cannot be improved upon by generalizing
to the class of all multistage adaptive testing algorithms.

Index Terms—Cover-free codes, disjunctive testing, linear
programming, pool testing, random selection, reconstruction
algorithms, screening.

I. INTRODUCTION

WE study the theory and design of efficient combinato-
rial and probabilistic pool testing procedures. The ob-

ject of pool testing is to identify ana priori unknown subset
of called the set ofactiveitems using as few
queries as possible. Each query informs the tester about whether
or not a certain subset of called apool has a nonempty in-
tersection with the set of active items. A negative answer to
this question gives information that all items belonging to the
pool are inactive. This approach has been used in many ap-
plications beginning with an efficient blood testing problem in
[7]. Other applications include (following [13] and [10]) quality
control in product testing [22], searching files in storage sys-
tems [12], efficient accessing of computer memories [12], se-
quential screening of experimental variables [16], efficient con-
tention resolution algorithms for multiple-access communica-
tions, [3], [23], [17], and screening of clone libraries [2], [4].
The books and review papers [6], [1], [8], and [13] also are
concerned with this topic. In this investigation, we use tradi-
tional information-theoretic methods and emphasize two-stage
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testing because of its importance in modern biological applica-
tions such as monoclonal antibody generation and cDNA library
screening.

We consider only “gold standard” tests characterized by zero
false positives (i.e., unit sensitivity) and zero false negatives
(i.e., unit specificity). In practice, of course, false positives and
false negatives occur. In cDNA library screening, however, poly-
merase chain reaction (PCR) amplification techniques provide
tests whose reliability closely approximates that of gold stan-
dard tests. In any event, determining the optimum efficiency at-
tainable with gold standard tests provides an absolute standard
with which to compare and a goal toward which to strive. For
an approach to analysis of testing in the face of false positives
and negatives, see [13], [18].

There are many families of algorithms designed to ascertain
the value that has been assumed by ana priori
unknown vector via application to this vector a succession of
permissible operations (tests). Among these, pool testing algo-
rithms are those algorithms in which the only permissible op-
erations are pool tests as defined above. In general, the struc-
ture of the next test depends on the results of previous tests, in
which case we say the algorithm isadaptive. Efficient recon-
struction of is connected with minimization of the number
of tests. Given a probability distribution governing selection of

, the expected number of tests required to ascertain the value
that assumes depends, of course, on which test

types are permissible. However, there exists a general informa-
tion-theoretic bound which depends only on the cardinality, call
it , of the range of the tests and the probability distribution of

. This bound is a direct consequence of Shannon’s theorem on
-ary prefix coding. First, we formulate this bound for general

reconstruction algorithms and then consider in detail algorithms
for reconstruction of binary vectors based on disjunctive tests.
In a recent paper [14], one of the authors investigates another
problem of reconstructing an unknown vector using the min-
imum number of boundedly distorted versions thereof.

In Section II, we present definitions and notations needed to
set the problem in more detail and then describe how the re-
mainder of the paper is organized and the main results that are
obtained.

II. RECONSTRUCTIONALGORITHMS

We denote by the set all vectors over
the alphabet , . We also write

, considering as a word of length over ,
and put ; here, is a singleton containing the
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empty word. We assume that is selected according to a
probability distribution . This means that we, in fact, consider
the reconstruction problem for the set

(1)

This formulation allows us to consider not only probabilistic
problems, but also combinatorial problems in which it is known
only that belongs to some specified subset . We call
a probability distributionsymmetricif does not change
for any permutation of the components of. The Bernoulli dis-
tribution on , which assigns to any composed of

ones and zeros the probability
where , , is an example of symmetric
distribution for which . We call this distribu-
tion theBernoulli -scheme.

Any reconstruction algorithm for over based on
successive application of tests can be described by a partial func-
tion in two variables

(2)

satisfying a property that follows. The word
is called a (current)syndromefor (a connection with syn-
dromes for linear codes will be explained later) if

for and (3)

(Here is the empty word for .) The syndrome
describes results of the firsttests applied to . A

syndrome for is calledcompleteif it is not a syn-
drome for any , . We assume that
has the following property: for any there exists
a complete syndrome. This means that utilizing algorithm,
which consists of successive application of , enables
one to reconstruct any . (The value may
not be defined if a proper prefix of is a complete syndrome
for .) The expected number of tests in this re-
construction algorithm is defined by

(4)

where is the minimum length of a complete syndrome
for . Note that minimum-length complete syndromes for all

form a prefix code over the alphabet . There-
fore, (4) coincides with the expected length of the prefix code
comprising the minimum-length complete syndromes, and we
have the following consequence of Shannon’s theorem on prefix
coding [21].

The Information-Theoretic Bound:Given a probability dis-
tribution on , for any reconstruction algorithm for
over

(5)

Specifically, in the case of the Bernoulli-scheme

(6)

The value of depends critically on what restric-
tions are imposed on the function and/or on the form
of permissible tests. An important case considered in the paper
is characterized by a function

(7)

such that the result of the test is defined as an “inner
product” of vectors

(8)

where

and the calculations are performed with respect to some choice
of summation and multiplication operations defined on. In
particular, in the case , the operations could be either
real-field summation and multiplication, or summation and mul-
tiplication in the field GF , or the logical operations disjunc-
tion and conjunction . These choices give rise, respectively,
to the known problems of finding counterfeit coins on an accu-
rate scale [9], finding additive noises for linear codes [19], and
finding active items using pool testing [12].

In this paper, we consider tests (8) for and the
third alternative

For any , we shall also denote by
the subset of consisting of all such that

. Elements of the sets and , respectively, are
called theactiveand theinactiveitems of the vector . Whether
we want to mean a vector or to mean a subset comprised
of this vector’s active items will be clear from the context. In
particular, if and only if the subset (pool) has
nonempty intersection with the set.

The simplest testing procedure, aone-stagealgorithm, is de-
fined by an binary matrix with rows

. The one-stage procedure consists of calculating
for any the syndrome ,
where , . We shall write it as

, where denotes transposition and the logical op-
erations and are used in the matrix product. (Formally, this
algorithm is a special case of (8) wherein depends only
on the length of the word.) For any vector , denote by

the (possibly empty) set of all vectors , such
that . If , then is a syndrome for

which is complete if . For ,
let denote both theth column of

and also the set of its active items;
this notational convention is wholly analogous to that which we
have earlier introduced of letting denote both the un-
known vector and the set of so-called active items which index
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whichever components of equal as opposed to. Then this
syndrome can be represented as

(9)

Denote by the set of all with exactly active
items and by the subset of all with or fewer
active items. A matrix (and its columns) is referred to as a
disjunctive -codeif for any

In other words, the syndromes of all are distinct.
Hence, the one-stage algorithm defined by thisenables one
to reconstruct any unknown vector in ; note that this im-
plies that it solves the combinatorial testing problem in which
all vectors not in have probability . This is analogous to
the fact that, if is a check matrix of a linear-error-correcting
binary code (i.e., any columns of are linearly independent),
then one can recover any error vectorfrom knowledge of its
syndrome calculated using operations (as opposed to
and used in the present paper) provided the number of errors
does not exceed; see [19].

A matrix (and its columns) is referred to as a-cover-free
codeif for any with active items and any inactive item

Disjunctive and cover-free codes were introduced in [12] where
it was also shown that

(10)

where is the maximum numbersuch that a given ma-
trix without zero columns is a disjunctive-code and is
the maximum such that is a -cover-free code. There exists
a trivial one-stage reconstruction algorithm for which con-
sists of an individual test for each of theitems (the matrix
is then the unit matrix or a permutation of it) and this number
of tests cannot be decreased in the class of one-stage algorithms
(see, for example, [5]).

In order to define two-stage reconstruction algorithms and
describe their capabilities, we introduce additional terminology
and notation. Fix a binary matrix of size with rows
and columns , and a vector such that is
not empty. Note that if , then and we
have (9). Set

(11)

and recall our convention that then also denotes the bi-
nary -vector whose unit entries are in the positions .
Then we have and for any

.
What information about vectors in the set can we

derive from their common syndrome? An item is
callednegativeif . By this definition, all negative items

must be inactive in all vectors that belong to . An item
is calledpositiveif but

By this definition, all positive items must be active in all vec-
tors of . The remaining items of are calledunre-
solved. This terminology is appropriate because, for any unre-
solved item , both and belong to

. For each , denote by the number of un-
resolved items for the syndrome for , and let be
a compressed notation for the set defined by (11).
Since all items of are unresolved and comprises all
the positive and unresolved items, we have

(12)

In Example 1, for the matrix (whose columns are the Steiner
triples) and syndrome , we have ,

, , and all these items are un-
resolved; the remaining items are neg-
ative, and consists of 10 vectors whose sets of active
items are subsets of of which four are of cardinality ,
five of cardinality , and one of cardinality . Also, for any

, , , and
.

Example 1:

A two-stagereconstruction algorithm for consists of:
Stage 1—applying to the unknown the tests given
by the rows of a fixed matrix , and Stage 2—resolving
each of the items left unresolved after Stage 1 by
testing it individually. In many applications, it is possible to
conduct all the tests of either stage simultaneously, which is
what motivates the choice of the term “stage.” The expected
number of tests in a two-stage reconstruction algorithm
for is

(13)

where

(14)

We write instead of in notations and in
the case of the Bernoulli-scheme.
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The main aim of this paper is to investigate the minimum
expected number of tests, namely,

(15)

where the minimum is taken over all binary matriceswith
columns. In [5], we noted that, for any matrixand an unknown

, one can determine from the syndrome
whether or and reconstruct in the
first case. This gives rise to highly efficient two-stage testing
which uses for its first stage a-cover-free code with slightly
larger than the expected number of active items. However,
we shall verify that there exist more efficient two-stage testing
algorithms based on proper selection of matrices.

Inequality (6) shows that, unless as ,
two-stage testing cannot affect an asymptotic improvement over
one-stage testing’s required tests in the sense of achieving

. Our main result is to find the asymptotic
behavior of with accuracy up to positive constants
for a broad range of functions . This is not merely
a mathematical exercise; in particular, PCR techniques are
permitting screening of ever larger cDNA libraries for ever
longer sequences whose probability of occurring in a randomly
selected library item is becoming correspondingly ever lower,
thereby generating increased practical interest in limiting be-
havior as and . To determine the asymptotic
behavior of , we employ random selection to obtain an
upper bound to and also use an explicit construction
in Section III. In Section IV, we give a lower bound to
which allows us to improve upon the information-theoretic
bound (6) when with any constant . Precise
statements concerning the asymptotic behavior of as

and appear in Section V. The following special
cases convey the flavor of our asymptotic results:

if (16)

if (17)

if (18)

if (19)

if (20)

if (21)

Furthermore, for , where , we
show that the asymptotic behavior of , up to a positive
constant, is . (In the special case , upper and
lower bounds on said constant are given in (21).) Since the in-
formation-theoretic lower bound (6) also is , the
asymptotic efficiency of two-stage algorithms cannot be essen-
tially improved upon when even if one were
to broaden the domain of algorithms under consideration to in-
clude all adaptive schemes with arbitrarily many stages.

III. U PPERBOUNDS TO THEEXPECTED NUMBER OF

UNRESOLVEDITEMS

To bound from above for an arbitrary matrix
and the Bernoulli- scheme, we use the upper estimate in (12).
Although consists of all unresolved and positive items, the
number of positive items is small; e.g., it is known (see [5]) not
to exceed . Therefore, to obtain sufficiently good upper
bounds to and one can use (12) to write

(22)

(Here means that the set of active items of the
column of the matrix belongs to the set of active items
of the syndrome for ). Continuing, we consider a prob-
abilistic method to prove the existence of matrices with
sufficiently small values . Specifically, we choose their
binary entries randomly and independently to be one with prob-
ability , , and to be zero with probability . This
approach was also used in [13] to estimate from above the mean
value of inactive unresolved items, but we take all unresolved
items into account.

Lemma 1: For any and , there exists an
matrix such that

(23)

Proof: We use (22) and estimate the mean valueof

over the class of matrices whose entries are chosen with
respect to the probabilistic scheme above. For fixed and

belonging to the set of all binary -vectors of Hamming
weight , the event occurs for certain if and

, whereas if then occurs if and only if
none of the columns of the randomly chosen matrix has a

in row and a in each of the rows indexed by the-entries
of . Hence, equals if and and
equals if . It follows that

(24)

(25)

where

Since for any , and , ,
we have
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Therefore, (24) does not exceed

Since

and

we can upper-bound (25) both by and by

This completes the proof since there exists a matrixfor which
does not exceed the meanof this value over the class

of matrices under consideration.

One easily checks that and, for some
values of parameters, holds. However, we shall see
that as for the number of rows of
matrices which minimize .

Now we give asymptotic estimates which follow from
Lemma 1 and show how the asymptotic behavior of
depends on the function . For a constant ,
consider the function and note
that decreases for increasing from to

; hence, for , has a unique zero which will be
denoted by .

Theorem 1: Let , , and . Then

if and (26)

if (27)

if (28)

Proof: By Lemma 1, for any with there
exists an matrix of any size such that

where

(29)

Therefore, to prove that where as
it is sufficient to show that for ,

with as small as one wishes, and a certain choice of
we have

(30)

and

For a suitable choice of , we use the fact that the
minimum over of the exponent in (29) is attained when

if (31)

For the case in which and , we put

and define by the condition

Note that , since otherwise, for any

which contradicts the condition . We can assume that
is sufficiently small (any will suffice) that

. Then

so . Therefore,

Since , we have . Hence
and (30) holds, which establishes (26).

Moving to the case , , we put

and consider

where . Note that
and . Therefore, using the definition of we have
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In this case, we have and hence (30) holds, estab-
lishing (27).

Finally, in the case we put

and

Then, and , so .
Using for , we get

In this case, we also have , so again (30) holds,
which establishes (28) and completes the proof.

In particular, for , (26) improves upon [13, Theorem
4.1] by a factor of . It should be noted that, for the functions

considered, we take into account all unresolved items, not
just inactive unresolved ones as in [13]. Although the number of
active unresolved items does not exceed, this value tends to
infinity in the last two cases and also in the first case provided

is not too small.
In Theorem 1, the restriction reflects the requirement

that the probability in Lemma 1 must be less than. Now we
give a simple explicit construction which is valid for alland
better than random selection for sufficiently small.

Lemma 2: For any and ,

(32)

Proof: Put , , and note that and
. Hence,

and (33)

Consider the matrix with rows given by spec-
ifying the subsets of that comprise their active items as fol-
lows:

and

(The matrix with and is given in Ex-
ample 2.) From (33), it follows that the number of rows of
does not exceed and that the number of active items of
row satisfies the inequality . It is clear that an item

is unresolved if and only if and at least one of
the active items of is positive. Hence, using ,
we have

Lemma 2 is proved.

Example 2: The matrix has the following form:

We remark that this explicit construction in fact achieves the
asymptotically optimal form of in cases in which
decays to sufficiently rapidly as , e.g., when

. Toward verifying this, we first establish that for

Indeed, let be attained at an matrix . If ,
then , so it remains to consider only the case when
this consists of one row. If this row has active items
(the case of is trivial), then

. This function is unimodal in viewed as a positive real
variable, assuming a minimum of at .
Since , it follows that, if , then the integer
that minimizes is , giving

. This leaves only the case ,
in which we have

for , so the inequality is established. This, in turn, gives
the following corollary to the effect that (32) with is
asymptotically tight if .

Corollary 1: If , then

when (34)

Setting in (32) so that and
, we get the following statement.

Corollary 2: For any and

(35)

Corollary 2 implies that if as
where . For , (35) gives

which improves upon (26) for . In fact, (35) also
improves on (26) for any smallerthat meets the conditions of
(26). In particular, for , (35) shows that

, while (26) applies only for where it gives the
weaker result .

IV. UNIVERSAL BOUNDS TO THEEXPECTEDNUMBER OF

UNRESOLVEDITEMS

By universal bounds we shall mean bounds valid for all (two-
stage) reconstruction algorithms. In particular, the information-
theoretic bound (6) is universal. Another universal bound can
be obtained with the help of averaging and linear programming;
this approach was introduced by Knill [13].

We fix a probability distribution on the set and a binary
matrix of size . For any subset of active items,
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we have defined using the syndrome
(see (11)). By (12) and (14) we have

A function : is called acoveringoperator on
if for any . Using averaging and linear
programming, one of the authors recently [15] proved that for
any covering operator on and any

where . Note that is a
covering operator on and that for any
matrix and any , when . Therefore, we
get the following statement.

Theorem 2: For any symmetric distribution and matrix
of size

(37)

where , and for any integer,

(38)

The inequality (38) is a minor improvement of [13, The-
orem 3.2]

(39)

However, as distinguished from (39), one can use (38) when the
maximum member in (37) is obtained for , as we do
in the following. Note also that the ratio of two successive mem-
bers of the sum in (37) shows that for finding this maximizing

one can use the asymptotic equality

(40)

Now we give asymptotic results for the Bernoulli-scheme
when as . Note that in this case

and (40) means that

if and

(compare with (31)). From (38) and the definition (15) it follows
that for any integer

(41)

Note that this remains valid if we consider the minimum over
all (not necessarily integer) numbers, .

As an example, in the case we have

The dominant portion of the quantity to be minimized here is
. Considering separately the case in which the

minimum is obtained at and the case in which differ-
entiation with respect to reveals that the minimum occurs at

, we get the following statement.

Corollary 3: If as , then

if

if .
(42)

In particular, (42) implies that if (i.e., if
), where , then

(43)

Now we shall see that this bound can be strengthened for
by proper selection of .

For a constant note that the function

decreases for increasing from to . Hence,
for , has a unique zero which will be denoted by

. We shall also use the fact that because
decreases for increasing and hence is

negative when .

Theorem 3: Let , , , and
. Then

if (44)

if

(45)

if (46)

Proof: Due to (41), to prove that where
as , it suffices to show that

(47)

and there exist integers such that the inequality
with implies or

equivalently

(48)

Note that, for any integer , if , ,
, and hence , then

by the Stirling formula, and

Thus, for these asymptotics

(49)
In the case (or ), ,

we put and . Then
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, does not depend on, ,
and , by (49). Therefore, for

we have

In the second and third cases, we denote the right-hand sides
of (45) and (46) by and put where, respectively,

and

Next we check that in both casesand tend to infinity
and (47) holds. It is clear for the third case. In the second case,

since ; hence, and
while . Note that in both cases

with

where, respectively,

and

Therefore, for , we obtain

(50)

Now we show that if we, in fact, can replace
in (49) by through . Since
and

we have

(51)

In the case when and , we have
and

Therefore, using (49)–(51) we get

while grows slower than . In the case when
using (49)–(51) we get

while grows as .

In conclusion, we verify that all asymptotic lower bounds of
Corollary 3 and Theorem 3 are better than the information-the-
oretic asymptotic lower bound

as and (52)

which follows from (6). Indeed, if , , then
and the right-hand side of (52) is asymptoti-

cally equal to . This is only when .
If and , then , , and,
hence, . This means that (45) is also asymptoti-

cally better than (52). In the case , (52) takes the form
and has the same order of magnitude

as (46). However, one can verify that (46) is still asymptotically
better since

for all (53)

Indeed, by the definition of and , (53) is equiv-
alent to . The last inequality is satisfied
if where is the largest root of the quadratic
equation . Since de-
creases for increasing , , and , we
have if . Using we get

Thus, the information-theoretic bound (52) is weaker than the
bounds (44)–(46). However, the information-theoretic bound
does give the proper asymptotic behavior when ,

; see (60).

V. ASYMPTOTIC BEHAVIOR OF THE MINIMUM EXPECTED

NUMBER OF TESTS

Now we summarize results on asymptotic behavior of
which follow from the upper and lower bounds proved

in the previous sections.
First we note an inference which follows from the informa-

tion-theoretic bound (6) and Corollary 2.

Corollary 4: If , then

if and only if (54)

From Corollary 2 it also follows that

if (55)

In the case , , the value is restricted
from above and below by constants which can be defined from
Corollaries 2 and 3. In the case when and
(i.e., ) these corollaries give

(56)

and do not allow us to determine the order of magnitude of
. However, now we show that Theorem 1, Theorem 3,

and (52) allow us to determine it outside the range considered
when (i.e., ) where .

Theorem 4: Let , , , ,
if , if ,

, and . Then

if (57)
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if and (58)

if (59)

if (60)

Proof: Since where implies that
, the upper asymptotic bound in (57) follows

from (26) and the upper asymptotic bounds in (58) and (59) co-
incide with those in (26) and (27). The lower asymptotic bounds
in (57)–(59) coincide, respectively, with those in (43)–(46). Fi-
nally, the condition where implies that

and . Therefore, the upper asymptotic
bound in (60) follows from (28) and the lower one follows from
(52).

It is significant that the lower asymptotic bound in (60) was
obtained by using the information-theoretic bound and hence is
valid for all adaptive reconstruction algorithms. This means that,
for where , the optimal efficiency
of such algorithms (up to a positive constant) can be reached in
the class of two-stage algorithms.

The important special cases (16)–(21) presented in Section
II follow from (34), (56)–(60) by noting that and

. We earlier noted that the bounds (19) were ob-
tained by Knill [13] with the extra factor of in the upper bound.
By (58) they remain valid for any function
(we have if ).

An interesting open problem is to strengthen the bounds (56).
One can expect that the upper bound in (56) based on the explicit
construction of Lemma 2 and Corollary 2 is asymptotically tight
for .
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