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Asymptotic Efficiency of Two-Stage
Disjunctive Testing

Toby Berger Fellow, IEEE,and Vladimir I. LevenshteinMember, IEEE

Abstract—We adapt methods originally developed in informa- testing because of its importance in modern biological applica-

tion and coding theory to solve some testing problems. The ef- tions such as monoclonal antibody generation and cDNA library
ficiency of two-stage pool testing ofrn items is characterized by screening.

the minimum expected numberE(n, p) of tests for the Bernoulli . . N .
p-scheme, where the minimum is taken over a matrix that specifies We consider only “gold standard” tests characterized by zero

the tests that constitute the first stage. An information-theoretic false positives (i.e., unit sensitivity) and zero false negatives
bound implies that the natural desire to achieveE(n, p) = o(n) (i.e., unit specificity). In practice, of course, false positives and
asn — oo can be satisfied only ifp(n) — 0. Using random  fa|se negatives occur. In cDNA library screening, however, poly-
selection and linear programming, we bound some parameters of o a6 chain reaction (PCR) amplification techniques provide
binary matrices, thereby determining up to positive constants how S .
the asymptotic behavior of E(n, p) asn — oo depends on the tests whose reliability closely a.pproxmates_ that of gqld stan-
manner in which p(n) — 0. In particular, it is shown that for dard tests. In any event, determining the optimum efficiency at-
p(n) = n=P+°(1) ‘where0 < B < 1, the asymptotic efficiency tainable with gold standard tests provides an absolute standard
of two-stage procedures cannot be improved upon by generalizing with which to compare and a goal toward which to strive. For
to the class of all multistage adaptive testing algorithms. an approach to analysis of testing in the face of false positives
Index Terms—Cover-free codes, disjunctive testing, linear and negatives, see [13], [18].
programming, pool testing, random selection, reconstruction  There are many families of algorithms designed to ascertain
algorithms, screening. the value(z1, ..., £,) that has been assumed by apriori
unknown vectorX via application to this vector a succession of

|. INTRODUCTION permissible operations (tests). Among these, pool testing algo-
. - . rithms are those algorithms in which the only permissible op-
rEiaISt;r?gi/ g:ibtgt?itlji?tlic?ggo(:izg?ngfp?gfelzztrgsmﬁ:ga:t)f-raﬂons are pool tests as defined above. In gener_al, the stru_c-
. o . . 2 ) ure of the next test depends on the results of previous tests, in
ject of pool testing is to identify aa priori unknown subset which case we say the algorithm aslaptive Efficient recon-

of N,, = {1, ..., n} called the set ohctiveitems using as few . . . Y
; . . truction of X is connected with minimization of the number
queries as possible. Each query informs the tester about whether

) . . Given a pr ility distribution governin lection of
or not a certain subset d¥,, called apool has a nonempty in- qugests- Given a proIfgdista{ggoverning selection o

tersection with the set of active items. A negative answer 1o’ the expected number of tests required to ascertain the value
. . . ; ) B 9 ) Z1, ..., &p) thatX assumes depends, of course, on which test
this question gives information that all items belonging to t

) ! ) ; es are permissible. However, there exists a general informa-
pool are inactive. This approach has been used in many ap- : . L
L o : . . .tion-theoretic bound which depends only on the cardinality, call
plications beginning with an efficient blood testing problem

o . . ..t g, of the range of the tests and the probability distribution of
[7]. Other applications include (following [13] and [10]) qualltyX?This boundgis adirect Consequencgof Shanr{on’s theorem on

control in product testing [22], searching files in storage sys'ary prefix coding. First, we formulate this bound for general

tems .[12]’ eff|C|_ent accessing of comp_uter memor|e_s_[12], SrF!econstructlon algorithms and then consider in detail algorithms
guential screening of experimental variables [16], efficient con- . : L .

: . \ . ~~for reconstruction of binary vectors based on disjunctive tests.
tention resolution algorithms for multiple-access communic

tions, [3], [23], [17], and screening of clone libraries [2], [4]‘?n a recent paper [14], one of the authors investigates another

. problem of reconstructing an unknown vector using the min-
The books and review papers [6], [1], [8], and [13] also a'{%"num number of boundedly distorted versions thereof.

cpncerned W'th this IOp'C.' In this investigation, we use tradi- In Section Il, we present definitions and notations needed to
tional information-theoretic methods and emphasize two-stage . . )
€t the problem in more detail and then describe how the re-

mainder of the paper is organized and the main results that are

obtained.
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empty word. We assume that € H is selected accordingtoa The value of (H*(P), ¢) depends critically on what restric-
probability distribution”. This means that we, in fact, considetions are imposed on the functidi( X, S) and/or on the form
the reconstruction problem for the set of permissible tests. An important case considered in the paper
is characterized by a function
HY(P)={X e H!: P(X) > 0}. Q)

T

) _ ) _ G:H!xH; — H @)
This formulation allows us to consider not only probabilistic 1

problems, but also combinatorial problems in which it is knowg,,ch, that the result of the teB(X, S)

only thatX belongs to some specified subgtC H*. We call

a probability distributiorsymmetricif P(X) does not change

for any permutation of the componentsX¥f The Bernoulli dis- n

tribution on H%, which assigns to anX € H» composed of si=F(X,s15.0)=(X,2) =Y zi-z, (8

i ones anch — 4 zeros the probability?(X) = p'(1 — p)*—* i=1

where0 < p < 1,¢ =0, 1, ..., n, is an example of symmetric

distribution P for which H}(P) = H%. We call this distribu-

tion theBernoulli p-scheme X
Z

is defined as an “inner
product” of vectors

where

:(‘Tlv"'vxn)

Any reconstruction algorithm fod*( P) over H, based on .
(21, . Zn) = G(A, S1 - 'Si—l)

successive application of tests can be described by a partial func-
tion (X, S) in two variables

and the calculations are performed with respect to some choice
F:H!x H — H, 2) of summation and multiplication operations defined@j. In
particular, in the case = 2, the operations could be either
satisfying a property that follows. The wofd=s; --- s; € Hé real-field summation and multiplication, or summation and mul-
is called a (currentpyndromefor X (a connection with syn- tiplication in the field GR2), or the logical operations disjunc-

dromes for linear codes will be explained later) if tion v and conjunctiom\. These choices give rise, respectively,
. to the known problems of finding counterfeit coins on an accu-
si=F(X,s1--s—1), forandi=1,....1. (3) ratescale [9], finding additive noises for linear codes [19], and

finding active items using pool testing [12].
In this paper, we consider tests (8) for= ¢ = 2 and the
third alternative

(Heres; - --s;_1 is the empty word foi = 1.) The syndrome
S = s1 -+ - sy describes results of the firstests applied t&X. A
syndromes for X € H*(P) is calledcompletsf itis not a syn-
drome foranyy” € H*(P),Y # X.We assume that(X, 5) &

has the following property: for anX € H?(P) there exists (X, 2)=\[ i Az
a complete syndrome. This means that utilizing algoritiim =1
which consists of successive applicationfofX, S), enables
one to reconstruct any¥ € H(P). (The valueF (X, S) may
not be defined if a proper prefix &f is a complete syndrome
for X.) The expected numbé¢H"(P), ¢) of tests in this re-
construction algorithm is defined by

WHN (P a)= Y PEOUX) (4)

XeHn(P)

ForanyX = (z1,...,z,) € H¥, we shall also denote by
X the subset ofV,, = {1, ..., n} consisting of alk such that

z; = 1. Elements of the setX’ andNV,, \ X, respectively, are
called theactiveand thenactiveitems of the vectoX . Whether

we wantX to mean a vector or to mean a subset comprised
of this vector’s active items will be clear from the context. In
particular,(X, Z) = 1 if and only if the subset (pool¥ has
nonempty intersection with the sét.

wherel(X) is the minimum length of a complete syndrome The simplest testing procedurepae-stagelgorithm, is de-
for X. Note that minimum-length complete syndromes for afined by anm x n binary matrixA = (a;;) with rows 4; =

X € H®(P) form a prefix code over the alphabHt,. There- (@i1, ..., aim). The one-stage procedure consists of calculating
fore, (4) coincides with the expected length of the prefix coder any X € H3 the syndromeS = (s1, ..., sm) € HJ",
comprising the minimum-length complete syndromes, and wéeres; = (X, A;), i = 1, ..., m. We shall write it as

have the following consequence of Shannon’s theorem on prefix= X A™, whereT” denotes transposition and the logical op-
coding [21]. erationsv andA are used in the matrix product. (Formally, this

_ _ _ ... .. algorithmis a special case of (8) wheré¥.X, S) depends only
The Information-Theoretic BoundGiven a probability dis- on the length of the word.) For any vectoS € H3*, denote by

tribution P on H?, for any reconstruction algorithm fd* ( P) Q(A, S) the (possibly empty) set of all vecta € HZ, such
over H, thatS = XAT. If X € Q(A, S), thenS is a syndrome for
- X which is complete if Q(A, S)| = 1. Forj =1,2, ..., n,
WH(P), @)z = > P(X)log, P(X).  (5) let B; denote bcE)th th;tchz(co’lur1)1|n(a1j, ...;jamj)’ € H;’Z of
XCH(P) A and also the sefi: a;; = 1} C N, of its active items;
Specifically, in the case of the Bernouttischeme this notational convention is wholly analogous to that which we
B have earlier introduced of lettin§ € H3 denote both the un-
I(HY,2)>n(—plogep — (1 —p)logy(1 —p)). (6) known vector and the set of so-called active items which index
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whichever components df equall as opposed t6. Then this must be inactive in all vectors that belong@dA, S). An item

syndrome can be represented as 1 € N, is calledpositiveif B; C .S but
s=J B (9) U Bi#s
jex FEX(S)\{i}

Denote byH;“t the set of allX € H} with exactlyt active By this definition, all positive items must be active in all vec-
items and byH;" =" the subset of alll € H with ¢ or fewer tors of Q(A, S). The remaining items of,, are calledunre-
active items. A matrix4 (and its columns) is referred to as &solved This terminology is appropriate because, for any unre-

disjunctivet-codeif for any S € H}" solved itemi € N,, both X(S) and X(S) \ {i} belong to
Q(A, S). For eachX, denote byu(A, X) the number of un-
Q(A, S)N Hy St<. resolved items for the syndronse= X A7 for X, and letX be

a compressed notation for the sétS) C N,, defined by (11).
In other words, the syndromes of &l € H}"=" are distinct. Since all items ofX \ X are unresolved and comprises all
Hence, the one-stage algorithm defined by thignables one the positive and unresolved items, we have
to reconstruct any unknown vector By, ='; note that this im-
plies that it solves the combinatorial testing problem in which

H n, < . .
all vectors no_t 'nHQ =" have pro_bablhty?. Thisis analogou_s 0 Example 1, for the matrixi (whose columns are the Steiner
the fact that, ifA is a check matrix of a line&rerror-correcting triples) and syndrome — (111100111), we havet(A) = 2
binary code (i.e., ant columns of4 are linearly independent), =(A)=3, X(S)={1, 2, 5, 8, 12}, and la\llthese items are ;m-
then one can recover any error veciorfrom knowledge of its .

d lculated usi ansd2 q resolved; the remaining items, 4, 6, 7, 9, 10, 11} are neg-
syndrome calculated using operatiansd 2 (as opposed t& ative, and@( A4, S) consists of 10 vectors whose sets of active

andA used in the present paper) provided the number of eM0Ems are subsets of (S) of which four are of cardinality3,

does not_exceed see [19]. . five of cardinality 4, and one of cardinalitys. Also, for any
A matrix A (and its columns) is referred to ag-aover-free X €Q(A, 8), X = X(5), |X| =5 and|X\ X| = 5— | X| €

codeif for any X with ¢ active items and any inactive item

X\ X| <4, X) <[X]. (12)

0,1, 2}.
(i e Np\ X) { }
Example 1:
B; B;.
& g( ! X x1 xp w3 w4 x5 36 ¥7 ¥y Ty T T11 T12 | ST
J

Disjunctive and cover-free codes were introduced in [12] where gy ! 1 0 0 (0 0 O\m0d 0 !
it was also shown that g0 00 11 I'eg 0 0o 0 1
10 0 0 00 01 1 1 0 O 1
HA) <t7(A) < HA) +1 (10) 6 1001 0 01 0 0 1 O 1
0 o1 0 0 1 0 O 1 0 1 0 0
wheret—(A) is the maximum number such that a given ma- 00 01 001 00 1 1 0 0
trix A without zero columns is a disjunctivecode and(4) is 01 00 0 0 1 01 0 0 1 1
the maximum such that4 is a¢-cover-free code. There exists 0 001 01 0 1 o0 0 0 1 1
a trivial one-stage reconstruction algorithm 85 which con- 0o 01 010 0 00 1 0 1 1

sists of an individual test for each of theitems (the matrix4
is then the unit matrix or a permutation of it) and this number A two-stagereconstruction algorithm foi/s consists of:
of tests cannot be decreased in the class of one-stage algoriti$tige 1—applying to the unknowii € H} them tests given
(see, for example, [5]). by the rows of a fixedn x n matrix A, and Stage 2—resolving

In order to define two-stage reconstruction algorithms amghch of theu(A, X) items left unresolved after Stage 1 by
describe their capabilities, we introduce additional terminologgsting it individually. In many applications, it is possible to
and notation. Fix a binary matriA of sizem x n withrowsA;  conduct all the tests of either stage simultaneously, which is
and columnsB;, and a vectolS € HJ* such thatQ(A4, S) is what motivates the choice of the term “stage.” The expected
not empty. Note that if{ € Q(A, S), thenS = X AT and we numberi(A, P) of tests in a two-stage reconstruction algorithm
have (9). Set for H} is

X(S)=1{j:j € Nu, B; C S} (11) I(A, P) = m +a(A, P) (13)

and recall our convention thaf (.S) then also denotes the bi-ynhere
naryn-vector whose unit entries are in the positigns X (5).
Then we haveX(S) € Q(A4, S) and X C X(S) for any WA, P)= Y P(X)u(4, X). (14)
X € Q(Aa S) XCHY}

What information about vectors in the gt A, 5) can we
derive from their common syndrom&? An item: € N, is We writep instead ofP in notationsl(A, P) andi(A, P) in
callednegativelf B; ¢ S. By this definition, all negative items the case of the Bernoulli-scheme.
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The main aim of this paper is to investigate the minimum  1ll. UPPERBOUNDS TO THE EXPECTED NUMBER OF
expected number of tests, namely, UNRESOLVEDITEMS

. To boundi(A, p) from above for an arbitrary: x n matrix A
E(n, p) = minl(4, p) (15 and the Bernoullip scheme, we use the upper estimate in (12).
Although X consists of all unresolved and positive items, the
number of positive items is small; e.g., it is known (see [5]) not
to exceedﬁ. Therefore, to obtain sufficiently good upper
bounds toi(A, p) andE(n, p) one can use (12) to write

where the minimum is taken over all binary matricésvith

columns. In [5], we noted that, for any mattikand an unknown

X € Hy, one can determine from the syndroie= X A%

whether| X | < ¢(A) or | X| > t(A) and reconstrucK in the

firs_t case. This_giv_es rise to highly efficient two_-stag_e testing a(A, p) < Z IX|P(X) = Z Z P(X). (22

which uses for its first stagetacover-free code witlt slightly XcHy JCN, B,CXAT

larger than the expected numbey of active items. However,

we shall verify that there exist more efficient two-stage testiriglere B; S XA? means that the set of active items of the

algorithms based on proper Se|ection Of matriﬂes Column BJ Of the matriXA belongS to the set Of aCtiVe itemS
Inequality (6) shows that, unleggn) — 0 asn — oo, of the syndromeX AT for X). Continuing, we consider a prob-

two-stage testing cannot affect an asymptotic improvement odtlistic method to prove the existenceraf< n matricesA with

one-stage testing’s requiredtests in the sense of achievingsufficiently small valuesi(A4, p). Specifically, we choose their

E(n,p) = o(n). Our main result is to find the asymptoticbinary entries randomly and independently to be one with prob-

behavior of E(n, p) with accuracy up to positive constantgbility s, 0 < s < 1, and to be zero with probability — s. This

for a broad range of functions(n) — 0. This is not merely approach was also used in [13] to estimate from above the mean

a mathematical exercise; in particular, PCR techniques Afdue of inactive unresolved items, but we take all unresolved

permitting screening of ever larger cDNA libraries for eveitems into account.

longer sequences whpse probgbility of occurri_ng in arandomly| emma 1: For anyp ands, 0 < p, s < 1, there exists an

selected library !tem_ is becoming cc_)rres_pondmg_ly ever lowey, . ., matrix A such that

thereby generating increased practical interest in limiting be- ,

havior asn — oo andp(n) — 0. To determine the asymptotic (A, p) <ne *7HPE =1 L min{np, mnpse "7}, (23)

behavior ofE(n, p), we employ random selection to obtain an

upper bound tai(A4, p) and also use an explicit construction  F100f: We use (22) and estimate the mean valiief

in Section Ill. In Section IV, we give a lower bound #¢A, p) L
which allows us to improve upon the information-theoretic > > P(X)=>_>" > P(X)
bound (6) wherp < c% with any constant > 0. Precise JENw B;CX AT J=14=0 xem}*, B;CX AT

statements concerning the asymptotic behavioE6f, p) as
n — oo andp — 0 appear in Section V. The following special
cases convey the flavor of our asymptotic results:

over the class o£™" matrices whose entries are chosen with
respect to the probabilistic scheme above. For fikedV,, and
X belonging to the seif;,>* of all binaryn-vectors of Hamming
1 weights, the eventB; C X AT occurs for certain if > 1 and
E(n,p)~2  ifp~ 2 (16) j € X,whereasifi ¢ X thenB; C X AT occurs if and only if
I none of then columns of the randomly chosen matdX has a
log,(Inn) < E(n, p) < 2VInn, if p~ n_;l (17) 1linrowjand a0 in each of the rows indexed by the-entries
w of X. Hence,P(B; C XAT)equalsl if i > 1 andj € X and

log . N _oo\eym if
98211 <E(n, p) < 2lun, if prn? (18) equals(l — s(1 —s)))™ if j ¢ X. It follows that
log, ¢ (Inn)? (Inn)? . 1 M= Z(n —i)Pi)(1 = s(1—s))™ + Z iP(i)
<E(n,p) < , if p~— (19) — —
4 Inlnn Inlnn n g i
log: i 1 n ‘
2 (mn)® SE(n,p) S an)’, ifp~ == (20) =n Y P(i)(1—s(1 - s))" (24)
los . 1=
82¢  tn < E(n, p)54n% lnn, ifp~n2. (21) n ‘
+> P (1 - (1 - s(1—s)")™). (25)
Furthermore, forp(n) = n=t°@W) where0 < g < 1, we =0
show that the asymptotic behavior B{n, p), up to a positive Where
constant, is:’~“Inn. (In the special casé = 1, upper and , n\ i
lower bounds on said constant are given in (21).) Since the in- P) = Z _P(‘X) = <L> pL—p)"
formation-theoretic lower bound (6) also@n!~#1nn), the XcHy

asymptotic efficiency of two-stage algorithms cannot be ess%\hce(l _s) > 1—isforanyi=0, 1, ... ands 0<s <1
tially improved upon whemp(n) = n7+°() even if one were we have - B ’ '
to broaden the domain of algorithms under consideration to in-

clude all adaptive schemes with arbitrarily many stages. (1—s(1—5))" < (1—s(1—is))" < e~*7m,
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Therefore, (24) does not exceed

= n @ n—i _—s(l—is)m
”Z(i)p(l—p) ()
=0

e (1) (22)

_ . —sm (1 _ szm)n < —smnp(e®” ™ —1)
=ne p+pe < ne .

Since

(1 s(1—s)iy™

>0
and
(1—s(1—35)")">1—ms(l—s)

we can upper-bound (25) both by and by
" /n—1 i
mns; <L B 1)p (1
n—1 n—1
st =) 3 ("7 ) - pr - sy
=0

—nps

—p)" (1 —s)

= mnps(1 — s)(1 — ps)™ ! < mnpse

This completes the proof since there exists a matrfar which

with ¢ > 0 as small as one wishes, and a certain choice of

k = k(n) > 1 we have

np = o(m(n)) (30)

and

m

% —i—lnn—i—np( ¥ — 1) <(—e+0o(1))lnn.

For a suitable choice of = k(n), we use the fact that the
minimum overm of the exponent in (29) is attained when

k .
m=k1n %, if k> np. (31)

For the case in which > 12—5 and £~ — 0, we put

nn)?
m = ’7(1—1-45) (ilé-‘

np

and definek by the condition

1
=(1—¢e)k’In nn
np
Note thatk > 1, since otherwise, for any > 0
(Inn)? Inn
(1+ 4e) B = m < (1 —E)IHW

np

which contradicts the condition > 12—2" We can assume that
is sufficiently small (any < £ will suffice) that (1+4e)(1—¢)

u(A, p) does not exceed the meadh of this value over the class = (1 + e)?. Then

of matrices under consideration. O

One easily checks thatinpse="?* < = and, for some
values of parametersy < np holds. However we shall see

thatnp = o(m) asn — oo for the numbern of rows of
matricesA which minimize E(A, p).

m? = m(1+ de) (lnn)? /(m 1“—”)

np
=(1+4e)(1 — &)k*(Inn)? > (1 + €)%k*(Inn)?

som > (1 + e)klnn. Therefore,

Now we give asymptotic estimates which follow from

Lemma 1 and show how the asymptotic behavio#if:, p)
depends on the functiop = p(n). For a constant > 0,

consider the functiorfi(z) = 1+« — z In % — c and note

that f;(x) decreases for increasing> ¢ from fi(¢) = 1to

—oo; hence, forr > ¢, fi(x) has a unique zero which will be

denoted by; = pi(c).

Theorem 1:Letc > 0, u1 = p1(c), andn — co. Then

2
E(n, p) < (hll”) . ifp> —hl d— —~0 (26)
np
Inn
E = In—} (1 if p=c— 27
(n, p) (uln )(nn) if p=c— (27)
E(n, p) S4nplun, it 2% . (28)
lnn

Proof: By Lemma 1, for anys = % with & > 1 there
exists anm x n matrix A of any sizem x n such that£'( 4, p) =
m + 4(A, p) where

u(A, p) < exp{—% +Inn + np (Ckmz — 1)} +np. (29)

Therefore, to prove that(n, p) < m(n) wherem(n) — oo as
n — oo itis sufficient to show that forn = [(1 + 4e)m(n)],

m m
—E—i—lnn—i—np( k2 1)

1 1—e
<—(Q+e)lnn+lnn+np <M>
np

b ( e+ (11117)1)5) Inn = (—e+ o(1)) lnn.

Since!2 — oo, we haveln 2 = o( 1), Hencenp = o
and (30) holds, which estaghshes (:26)
Moving to the cas@ = c!22, ¢ > 0, we put

m= L(l +e)?*(Inn)*uiln %J

lnn)

and consider
k=(14¢)mlnn

wherep; = p1(c). Note thatm + 1 > (1 +¢)(Inn)kpy In £
andm < k%1n £1. Therefore, using the definition pf we have

_I —i—lnn—i—np( W 1)

(—(1+5)u11n—1 + 14 —c) lnn
c

/\wl

—epy 111 o1 )) lnn < (—e+o(1)lnn.
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In this case, we havep = O(17%) and hence (30) holds, estab- Example 2: The matrixA(11, 5) has the following form:
lishing (27).

; ; n 111 000O0O0O0O0 O
Finally, in the casgX™- — oo we put 0001110000 0
m=|4(1+¢e)nplnn] and k= 2np. 00000011100
00 0 0O0O0OO0OO0OO0OT1I1
Then, 2t > 2(1+¢)Innand % < (1 —1—5)12—;, so — 0.
Usinge* — 1 = z(1 + o(1)) for z — 0, we get We remark that this explicit construction in fact achieves the
asymptotically optimal form oE/(n, p) in cases in whickp(n)
_% +lnn+pn (ek% _ 1) < % F(=2(14e)+1 decays td) sufficiently rapidly as» — oo, e.g., wherp(n) ~

n~2. Toward verifying this, we first establish that far> 2
+(1+)(1+0(1)))Inn

= (—e+o(1))lnn. E(n, p) 2min(2, 1+n(1-(1-p)")).
In this case, we also havey = O({2%), so again (30) holds, Indeed, lett(n, p) be.attaingd atam xn matrix A. If m > 2,
which establishes (28) and completes the proof. O thenE(n, p) > 2, soitremains to consider only the case when

_ . _ this A consists of one row. If this row hds > 2 active items

In particular, forp = =, (26) improves upon [13, Theorem(the case of = 1 is trivial), thenE(A, p) = 1 +n — h(1 —
4.1] by afactor ot. It should be noted that, for the functioms= ;) This function is unimodal ir viewed as a positive real
p(n) considered, we take into account all unresolved items, Niriable, assuming a minimum of 11 ate = —; 11 )
justinactive unresolved ones as in [13]. Although the number gf,.eh < 1 it follows that. ifn < ehllrp) then the iagte_glgm
active unresolved items does not excegdthis value tends to y- o =)
S . ' -~ that minimizesl +n — h(1 — p)"* ish = n, giving E(A, p) >
infinity in the last two cases and also in the first case prowdel " .

. +n(l - (1—p)™). This leaves only the case>
p is not too small. in whichwé have

In Theorem 1, the restrictign > 12—2" reflects the requirement
that the probabilitys in Lemma 1 must be less thanNow we E(A, p)>14n+
give a simple explicit construction which is valid for alland B
better than random selection for sufficiently small

T In(l-p)’

n
— = >14n—=>2
eln(l—p) = tn e -
for n > 2, so the inequality is established. This, in turn, gives
Lemma 2: For anyn, m,andp, 1 <m <n,0<p <1 the following corollary to the effect that (32) withh = 1 is
asymptotically tight ifp(n) ~ 2.

n
E(n, p) <m+pn {E} ’ (32) Corollary 1: If n — oo, then
Proof: Puth = [2], k = [#], and note thak > 2 and 1
m ' m E ~ 2 whenp = ~ . 4
% S k S n—l—;:—l' Hence, (7’L, p) whenp p(?’L) n2 (3 )
E<m and (k—1)h+1<n<kh (33) Settingm = [n./p] in (32) so thatm < n,/p + 1 and

. _ . _ (2] < % + 1, we get the following statement.
Consider the matrid = A(n, m) with k& rows given by spec- v

ifying the subsets afV,, that comprise their active items as fol- Corollary 2: For anyn andp, 0 < p < 1

lows: E(n, p) <14 2np+np. (35)
Ai={(E - Dh+1, ..., (i—1)h+h}, i=1,..., k-1
and Corollary 2 implies thatZ(n, p) < 2¢+ 1if pn? — 2 as
n — oo wherec > 0. Forp = (c2)2, (35) givesE(n, p) <
Ar={(k=Dh+1, ..., n}. 2¢1nn which improves upon (26) for < % In fact, (35) also
(The matrix A(11, 5) with h = 3 andk = 4 is given in Ex- improves on (26) for any smallgrthat meets the conditions of
? - - H _[(eN\2
ample 2.) From (33), it follows that the number of rows.bf (26)-In partlf:ular, fop = ,(ﬁ) Inn, (35) shows thaﬁ(@, p) =
does not exceesh and that the numbei, of active items of 2¢VIn7, while (26) applies only for: > 1 where it gives the
row k satisfies the inequality < ko < A. Itis clear that an item Weaker resuli&(n, p) < Inn.
j € A, isunresolved if and only if4;| > 2 and at least one of

the active items oft; is positive. Hence, using_"_, |4;| = n, IV. UNIVERSAL BOUNDS TO THEEXPECTED NUMBER OF
we have UNRESOLVED ITEMS
- . LA By universal bounds we shall mean bounds valid for all (two-
WA, p) = ‘ Z |Ail (1 —(1-p) ) stage) reconstruction algorithms. In particular, the information-
i A 22 theoretic bound (6) is universal. Another universal bound can
< Z 1A (1= (1= p)") < pnh. be obtained with the help of averaging and linear programming;
i A >2 this approach was introduced by Knill [13].

We fix a probability distributior” on the sef{} and a binary
Lemma 2 is proved. O matrix A of sizem x n. For any subseX C N,, of active items,
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we have defined{ = X(S) using the syndromé& = XA? minimum is obtained at» = 1 and the case in which differ-
(see (11)). By (12) and (14) we have entiation with respect ta: reveals that the minimum occurs at

7 X m = log,(n?pln 2), we get the following statement.
WA, P) > > PX)(IX]-|X]). g(n°pln2), we g 9

XeHy Corollary 3: If pn = o(1) asn — oo, then
A function F': H} — HJ is called acoveringoperator onH% 14 $n2p, if n?p < 2log, ¢
if X C F(X) forany X € H}. Using averaging and linear E(n, p) = . o (42)
programming, one of the authors recently [15] proved that for log, (er n P) J if n°p > 2logy e.
any covering operataf’ on Hy andanyi =1, ..., n
1 n In particular, (42) implies that if% — —a (e, ifp =
ﬁ Z (X 2 S n~1-ate()) whered < « < 1, then
rer E(n, p) = (1 - a)log,n. (43)

whereM; = [{F(X): X € Hy"'}|. Note thatF'(X) = X is a
covering operator o5 = |J;_, Hy’" and that for anyn x n

matrix A and anyi, M; < 2™ whenF(X) = X. Therefore, we
get the following statement.

Now we shall see that this bound can be strengthened for
o < 1 by proper selection of > 2.
For a constant > 0 note that the function

e . f2(.’1’):l’—2{1’1n£—c+1
Theorem 2: For any symmetric distributio® and matrixA4 c

of sizem x n decreases for increasing> ¢ from f(¢) = 1 to —oo. Hence,
n ™ for x > ¢, f2(z) has a unique zero which will be denoted by
u(A, P) > nz P(i)277 — Z iP(4) (37)  p2 = po(c). We shall also use the fact thatln £2 < 1 because
i=1 i=1 r —xln Z — c decreases for increasing > c and hence is
whereP(i) = > P(X),andforanyintegek,1 < k <n negative wher: > c.
xed; Theorem 3:Letc > 0, in = ia(c), 0 < o < i, and
WA, P)> P(k) (n2”% — k). (38) n — oo. Then
11 ) . Ilnpn
The inequality (38) is a minor improvement of [13, The- E(n, p) ~35 |24 logy n, if nn (44)
orem 3.2] ’ (lun)? .
og, e (Inn . lnpn n
m 4 b 4
W(A, P) > P(k) <n2—r <1_E> —k) . @y Ppz— Inln " on 7% g 0
(45)

However, as distinguished from (39), one can use (38) when the
maximum member in (37) is obtained foE k£ < 4, as we do CRU 2 : Inn

. E zZ log, — ) (1 , fp=c—. (46
in the following. Note also that the ratio of two successive mem- (n, ) (NQ 082 ) (Inz) wh=c n (46)
bers of the sum in (37) shows that for finding this maximizing  Proof: Due to (41), to prove thak(n, p) = I(n) where

k one can use the asymptotic equality I(n) — oo asn — oo, it suffices to show that
Plk+1) s np = ol 47
SALELPAVGE, b o= 4 p = o(l(n)) (47)
P(k) ' (40)

] ) . and there exist integefs= k(n) > 2 such that the inequality
Now we give asymptotic results for the Bernoylbscheme ,,, < (1 = &)l(n) with e > 0 impliesi(n) = o(nP(k)2~ %) or

whenp — 0 asn — oc. Note that in this case equivalently
. ) n m
P(i) = <7z> pi(1— p)yn, Z iP(i) = np (1nn + lnP(k)—Z ln2— lnl(n)) — 00, (48)
=1

Note that, for any integek = k(n) > 1,if n — oo, £ — 0,

and (40) means that p — 0,and hencé‘—;_"lj“ — 0, then

k ~ np2i¥ if k> np, k=o(n), andk — oo 1 5
- nifon (1) L
(compare with (31)). From (38) and the definition (15) it follows ~ oark \np n—k

that for any integek, 1 < k < n

N by the Stirling formula, and
E(n, p) > 1inig (m+P(k)(n2™% —k)). (41)

N n—k
<1 n k— np> > ok—np)(1+o())
Note that this remains valid if we consider the minimum over n—=k -

all (not necessarily integer) numberg 1 < m < n. Thus, for these asymptotics
As an example, in the cage= 1 we have

k 1
NS> ] A . _ - . .
E(n, p) 2  nin (m+np(l—p)"~'(n27" - 1)) . I P(k) 2 —kIn np + (k= np)(1+o(1)) 2 Ik A+ O((14)9)

The dominant portion of the quantity to be minimized here is In the case®™Z? — —q (orp = n - 2t°W) 0 < o« < 1,

Inn

m + n2p2~™. Considering separately the case in which thee puti(n) = 3|;-]log,n and k(rn) = [5=]. Then
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np = o(l(n)), k(n) does not depend on, k(n) > 2, -callyequal to(1+a)nplog,2n This is onlyo(1) whene > 0.
andlnP( ) > (—ka + o(1))lnn, by (49). Therefore, for If « = 0and£% — 0, thenlZ — oo, In -2 = o(2), and,
< (1 —¢)l(n) we have hencepn = of 1“1,?” ). This means that (45) is also asymptoti-
In (np(k)g—%) > <1 _ ka—l (1—¢)+ 0(1)> lnn cally better than (52) In the cage= c &2 1“" , (52) takes the form
E(n, p) = clog, e(Inn)? and has the same order of magnitude
€ as (46). However, one can verify that (46) is still asymptotically
= (5 + 0(1)) Inn. better since
In the second and third cases, we denote the right-hand sides 2 1n LR foralle > 0. (53)
of (45) and (46) by(n) and putk = [h] where, respectively, c
lnn Indeed, by the definition of> (x) andus = _m(c), (_53)_ is eq_ui\_/-
= Sl Inm and h=p2lnn. alenttou? — (c— 1)pz — 2¢ > 0. The last inequality is satisfied
np if u2 > v wherer = v(c) is the largest root of the quadratic

Next we check that in both casésand tend to infinity equationz? — (¢ — 1)z — 2¢c = 0 (¥ > ¢). Since fo(zx) de-
and (47) holds. It is clear for the third case. In the second cageeases for increasing > ¢, f2(c) = 1, and fo(u2) = 0, we
In 12—; = o_(lnn) since np: — 0; hen_ce,h — oo andlnn = haveps > v if fQ(l/) > 0. Usingc = ( +1 we get
o(I(n)) while pn = o(lnn). Note that in both cases

I(n) = Chlogyn,  With0 < C < 1, By =v—2h " —c+t1

where, respectively, >y —2v (— - 1) —c+1
1 C
0_5 and C'=puzln ? 2 1/(1/+1)+1 2 50
=vV— —_———— = - .
Therefore, forn < (1 — ¢)I(n), we obtain v+1 v+2 (r+D(r+2)
n2~ % >p2 % > pltCHCe, (50) Thus, the information-theoretic bound (52) is weaker than the

bounds (44)—(46). However, the information-theoretic bound
does give the proper asymptotic behavior wh}gg — -4,
0 < B < 1; see (60).

Now we show that it — oo we, in fact, can replack = [A]
in (49) byh throughk — 1 < h < k. Sinceln & < 2=k < L

and

k h k

—kln — = —-kln — —kln 7 V. ASYMPTOTIC BEHAVIOR OF THE MINIMUM EXPECTED

pr pr NUMBER OF TESTS

we have i 5 Now we summarize results on asymptotic behavior of
—kln — > —(140(1))hln — +O(1). (51) E(n, p) which follow from the upper and lower bounds proved
pn pn in the previous sections.
In the case wheg”- — 0 andh=o(lnn), we havek=o(Inn) First we note an inference which follows from the informa-
and tion-theoretic bound (6) and Corollary 2.
—hln i > —hln ln_” = ol Inn. Corollary 4: If n — oo, then
pn pn )

E(n, p)= , ifand only if p = 0. 54
Therefore, using (49)—(51) we get (n., )= e(n) yitp =pn) = %)

In (P(k)n2_%) > (g + 0(1)) lnn From Corollary 2 it also follows that

. 1
while I(n) grows slower thar{lnn)2. In the case whep = E(m,p)~1, ifp=o <§) : (55)

clon using (49)—(51) we get _ _
In the casepn? — ¢, ¢ > 0, the valueE(n, p) is restricted

from above and below by constants which can be defined from
Corollaries 2 and 3. In the case whet? — oo and‘ﬁl—f’: — -1
(i.e.,p = n=2t°() these corollaries give

> (sug ln ? + 0(1)) Inn 2log, (ny/p) < E(n, p) < 2n\/p (56)
and do not allow us to determine the order of magnitude of
E(n, p). However, now we show that Theorem 1, Theorem 3,

In conclusion, we verify that all asymptotic lower bounds o&nd (52) allow us to determine it outside the range considered
Corollary 3 and Theorem 3 are better than the information-th@henlﬁlf’: — v (i.e,p= n—1+v+o(1)) where—1 < v < 1.

oretic asymptotic lower bound

nZ_%)

2( o In ——i—ug—c—i—l (1—&)pzln N_02+0(1)) Inn

while I(n) grows aglnn)?.

Theorem4:Letc > 0, 1 = pa(e), g2 = p2(e),0 < a < 1,

1 . .
E(n, p) = nplog, —, asn — oo andp —0 (52) clo) =1-aifi<a<lca)=34]f0o<a<i
p 0 < 8 < 1,andn — co. Then
which follows from (6). Indeed, if% — —qa,0< a < 1,then Inp

1 . n
p = n 1o and the right-hand side of (52) is asymptoti- ¢(@)loga n < E(n, p) = —Inn,  if 3 == — —a (57)
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. 2 2
ot W < pin, ) < 0P 2
n n nn—p [12]
1
it =2 o and 2% —~0 (58)
Inn Inn [13]
2100 M2 2 < < (21 2
(3102, ™) (mm)? = Bn, p) = (43l 22 ) (lum)?, 14
itp= ™ (59) [
n

L lnp [16]

Bnplog,n < E(n, p) < 4dnplnn, |if n —/. (60) a7

Proof: Since®2 — —q where0 < « < 1 implies that
In 12—; ~ «lnn, the upper asymptotic bound in (57) follows [18]
from (26) and the upper asymptotic bounds in (58) and (59) co-
incide with those in (26) and (27). The lower asymptotic bounds; g
in (57)—(59) coincide, respectively, with those in (43)—(46). Fi-
nally, the condition’2 — —3 where0 < 3 < 1 implies that
it~ — oo and L~ Blnn. Therefore, the upper asymptotic
bound in (60) follows from (28) and the lower one follows from [21]
(52). O

It is significant that the lower asymptotic bound in (60) was
obtained by using the information-theoretic bound and hence ig3)
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F. K. Hwang and V. T. Sgs“Non-adaptive hypergeometric group
testing,”Stud. Sci. Math. Hungvol. 22, pp. 257-263, 1987.
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of such algorithms (up to a positive constant) can be reached in
the class of two-stage algorithms. _
The important special cases (16)—(21) presented in Sect@ﬁy Berger (S8-M'66-SM'74-F78) uggaborn in WeipYork, NY, on

. ptember 4, 1940. He received the B.E. degree in electrical engineering from
Il follow from (34), (56)—(60) by noting thai1 (1) = ¢ and  vyale University, New Haven, CT, in 1962 and the M.S. and Ph.D. degrees in

N2(1) = \/E We earlier noted that the bounds (19) were olapplied mathematics from Harvard University, Cambridge, MA, in 1964 and

tained by Knill [13] with the extra factor ofin the upper bound. 1966, respectively.
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