ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ им. М.В.КЕЛДЫША РОССИЙСКОЙ АКАДЕМИИ НАУК

Гинзбург С.Л., Дьяченко В.Ф., Палейчик В.В., Судариков А.Л., Чечеткин В.М.

ПЛАЗМЕННАЯ НЕУСТОЙЧИВОСТЬ В РЕЛЯТИВИСТСКИХ ДЖЕТАХ

Москва

Ginzburg S.L., Dyachenko V.F., Paleychik V.V., Sudarikov A.L., Chechetkin V.M.,

PLASMA INSTABILITY IN THE RELATIVISTIC JETS.

Abstract

Last time the grate interest is seen to the processes in the relativistic jets. Hard radiation of x-ray and γ -ray are connecting with these objects.

The possible mechanisms of plasma instabilities are considered in the frame of the equations of Maxwell-Vlasov. The cause of development of plasma instabilities is small difference in velocity of protons and electrons. Hard radiation of x-ray and γ -ray is consequence of these processes.

Гинзбург С.Л., Дьяченко В.Ф., Палейчик В.В., Судариков А.Л., Чечеткин В.М.

ПЛАЗМЕННАЯ НЕУСТОЙЧИВОСТЬ В РЕЛЯТИВИСТСКИХ ДЖЕТАХ

<u>Аннотация</u>

Последнее время в наблюдениях виден большой интерес к развитию процессов в релятивистских джетах. С этими объектами связывают появление жесткого рентгеновского и γ - излучения.

В данной работе в рамках уравнений Максвелла – Власова рассматриваются возможные механизмы появления жесткого излучения за счет развития плазменных неустойчивостей из-за маленькой разницы в скоростях электронов и протонов.

§1 Введение

В последние годы большое внимание привлечено к релятивистским джетам, связанным с активными ядрами галактик и других объектов. Наблюдения таких объектов (например, BL Lacertae) свидетельствуют о мощной гамма - светимости в GeV и Tev - диапазонах энергий для фотонов с переменностью от дней до часов [1,2]. Обычно переменность в Tev-диапазоне не связывают с переменностью в GeV-диапазоне [3,4]. Однако, корреляционный мониторинг свидетельствует, что γ - излучение, как правило, сопровождается активнос- тью в оптическом и радио-диапазонах [5,6].

Опубликованные модели данных явлений обычно базируются на использовании обратного Комптон-эффекта для рассеяния мягких фотонов, например, идущих от аккреционного диска, на релятивистских электронах джета [7,8]. Для этих моделей необходимо предположение об оптической прозрачности вещества джета для мягких фотонов, а проблема модели фокусируется на радиационных проблемах, оставляя без рассмотрения вопрос о природе рождения релятивистских электронов.

В последнее время появились две модели, объясняющие появление релятивистских электронов. В работах [9-11] используются модели адронного происхождения высокоэнергичного γ - излучения, но не выяснена причина рождения самих адронов. Важное значение для будущего имеет обоснование появления адронов различного вида. В нашей работе будут показаны возможные механизмы их рождения в релятивистских джетах в условиях плазменной неустойчивости. Кроме того, в существующих моделях есть расхождения во временных вариациях излучения. Возможно, в дальнейшем мы сможем решить эту проблему.

В работах [12,13] предлагаются механизмы высокоэнергичного γ- излучения на основе ускорения частиц во взрывных ударных волнах или двухпотоковой неустойчивости в протон-электронных пучках. Но здесь снова встает вопрос о природе данных явлений. В работе [14] был исследован механизм ускорения джетов до релятивистских энергий за счет взаимодействия веще ства с фотонами от центрального источника. Интересно отметить, что в структурах джетов возможно возникновение косых ударных волн [15]. Структуры, похожие на поперечные ударные волны и поперечное магнитное поле, наблюдаются в релятивистских джетах [16].

§2 Постановка задачи

Взаимодействие плазмы с электромагнитным полем описывается системой уравнений Максвелла-Власова. При указанном ниже выборе единиц измерения она имеет вид

$$\begin{split} \frac{\partial \mathbf{E}}{\partial t} - \nabla \times \mathbf{H} + \mathbf{j} &= \mathbf{0}, \ \nabla \bullet \mathbf{E} = \rho, \\ \frac{\partial \mathbf{H}}{\partial t} + \nabla \times \mathbf{E} &= \mathbf{0}, \ \nabla \bullet \mathbf{H} = 0, \\ \frac{\partial f_{e,p}}{\partial t} + \mathbf{v}_{e,p} \bullet \frac{\partial f_{e,p}}{\partial \mathbf{x}} + q_{e,p} \Big(\mathbf{E} + \mathbf{v}_{e,p} \times \mathbf{H} \Big) \bullet \frac{\partial f_{e,p}}{\partial \mathbf{p}} &= 0, \end{split}$$

где **E**(*t*,**x**), **H**(*t*,**x**) – электромагнитное поле, $f(t, \mathbf{x}, \mathbf{p}) - \phi$ ункции распределения, $\mathbf{v} = \frac{\partial w}{\partial \mathbf{p}}$ - скорости, $w = (m^2 + \mathbf{p}^2)^{1/2}$ - энергии, m – массы покоя, q – заряды, соответственно, электронов (*e*) и протонов (*p*). Плотности заряда и тока

$$\rho = \sum q \int f d^3 p, \quad \mathbf{j} = \sum q \int \mathbf{v} f d^3 p,$$

с суммированием по сортам частиц.

Здесь и далее используется следующая система единиц:

длина - *L* - характерный размер,

скорость - c - скорость света,

время – L/c, частота – c/L,

масса частицы – *m* - масса покоя электрона,

импульс частицы - *тс*,

энергия частицы - mc^2 ,

поле - mc^2/eL , где e – элементарный заряд,

концентрация частиц - $mc^2/4\pi e^2 L^2$,

плотность заряда - $mc^2/4\pi eL^2$,

число частиц - $mc^2 L/2e^2$,

функция распределения по энергии – $L/2e^2$, энергия - $m^2c^4L/2e^2$.

В этих единицах масса протона $m_p=1836$, электрона $m_e=1$, а заряды q – плюс и минус единица, соответственно.

В задаче предполагается осевая симметрия $\partial/\partial \phi \equiv 0$ и используются цилиндрические координаты *r*, ϕ , *z*. Хотя задача ставится во всем пространстве, реальный расчет ведется в ограниченной области, на поверхности которой ставятся искусственные граничные условия, имитирующие открытость границы для выхода частиц и излучения, но закрытость для входа извне их и любых видов энергии. Физическая обоснованность таких граничных условий предполагает, что плотность энергии в пучке (как в частицах так и в излучении) много больше энергии вне его. Поэтому в расчетах внешняя энергия не учитывается.

Задача решалась численным методом, основные принципы алгоритма которого (разностная схема для уравнений Максвелла и метод макрочастиц для уравнения Власова) изложены в [17].

§3 Результаты расчета

В начальный момент поле отсутствует, а плазма, состоящая из электронов

и протонов равной концентрации $n_{e0}=n_{p0}=200$, заполняет цилиндр радиуса $R_0 = 1$ и высотой $\Delta Z=1$, расположенный внутри расчетной области. Скорости частиц имеют только осевую компоненту, электроны - $v_{e0}=0.99995$, что означает кинетическую энергию $k_{e0}=w_{e0}$ - $m_e=99$, протоны, соответственно, $v_{p0}=0.9$, $k_{p0}=w_{p0}$ - $m_p=2377$.

Довольно быстро происходит существенная перестройка начального состояния. Представление об этом дает рис.1, изображающий перераспределение энергии со временем.

Рис.1 Перераспределение начальной кинетической энергии электронов K_{e0} : K_e - энергия электронов, ΔK_p - энергия, переданная протонам, U - энергия . электромагнитного поля.

Здесь K_e – общая кинетическая энергия электронов - падает за 4 единицы по времени в несколько раз (с $K_{e0} = 10^4$ до $K_e = 1670$). Чуть меньше половины ее передается протонам $\Delta K_p = 4460$, остальное идет на возбуждение электромагнитного поля (частоты ~ 27) до энергии U = 3733. В дальнейшем достигнутое соотношение между добавленной энергией протонов и энергией электронов, порядка двух, сохраняется.

Рис.2 демонстрирует положение электронного облака в момент t=10, разумеется в меридианальном разрезе r,z. Заметен в виде диска передний слой электронов, успевших оторваться от протонов. Остальные, активно взаимодействуя с протонами, отстают и рассыпаются.

Рис.2 Электронное облако и протонное ядро на момент t=10Для сравнения показан сдвинутый вправо «черный квадрат», образуемый протонами. В дальнейшем электронное облако сохраняет свою шарообразную форму, концентрируясь около протонного ядра в головной части и увеличиваясь в размерах. Важно отметить, что данная конфигурация bubbl'a сохраняется в окрестности летящей почти со скоростью света головной части релятивистского пучка.

На рис.3 и 4 даны проекции: (P_z , z), (P_r , z), (P_z , r), (P_r , r) фазового портрета электронной фракции на момент t=10.

Рис.3 Проекции ($P_z z$), ($P_r z$) фазового портрета электронов при t=10

Рис.4 Проекции (*P_z*, *r*), (*P_r*, *r*) фазового портрета электронов при *t*=10

Заметим, что уменьшение импульса электронов в 10 раз, от 100 до 10, означает падение скорости всего лишь от 0.99995 до 0.995. И лишь уменьшение импульса в 50 раз уравнивает скорости электронов и протонов.

Описанное выше начальное состояние означает дельта-образный вид функций распределения по энергии, $f \sim \delta(k-k_0)$. На рис. 5 даны распределения $F_e(k_e)$ для всего ансамбля электронов, т.е. интеграл от f_e по пространству, на некоторые моменты времени.

Рис.5 Распределение $F_e(k_e)$ электронов по энергиям на моменты времени t=0 - 4

Они показывают начальную стадию размывания функции распределения по

энергии. Последующую эволюцию распределений электронов $F_e(k_e)$ и протонов $F_p(k_p)$ демонстрируют рис. 6-9

Рис.8 Распределение $F_e(k_e)$ электронов по энергиям при t=50.

Рис.9 Распределение $F_p(k_p)$ протонов по энергиям при t=50.

На рис.7 и 9 вертикальной чертой обозначено начальное значение энергии протонов равное 2377. К моменту t=50 энергия протонов k_p находится в диапазоне 2000 - 2800, т.е. отличается от начальной не более чем на 17%. В дальнейшем эта величина достигает 25%.

На рис.10 изображена конфигурация протонного ядра, а на рис.11,12 его фазовые портреты (P_z , r), (P_r , r) на момент t=50.

Рис.10 Протонное ядро на момент *t*=50.

Рис.11 Проекция (*P*₂, *r*) фазового портрета протонов при *t*=50.

Рис.12 Проекция (P_r , r) фазового портрета протонов при t=50.

§4 Заключение

Проведенные расчеты показывают новую возможность для моделирования высокоэнергичного γ - излучения. Полученные функции распределения протонов и электронов позволяют оценить скорость рождения адронов различных сортов и прямое высокоэнергичное γ - излучение. Для механизма ускорения джета, предложенного в работе [14], необходимо рождение мягких фотонов в самом джете, так как окружающее джет вещество может поглощать фотоны от аккреционного диска. Хотя даже в этом случае существует возможность прохождения от диска очень мягких фотонов, так как в работе [14] рассматривается отражение жестких фотонов, идущих от центрального тела. В последующем необходимо рассчитать на основе полученных функций распределения протонов процесс γp , который также ведет к рождению жесткого γ - излучения. Интересно отметить, что максимум этого излучения из-за учета форм-фактора лежит в районе GeV энергий.

Список литературы

[1] von Montigny C., Bertsch D.L., Chiang J. et al. 1995, Astrophys. J., v440, p 525

- [2] Mukherjee R., Bertsh D.L., Bloom S.D., et al, 1997, Astrophys. J., v 490, p116
- [3] Mattox J.R., Wagner S.J., Malkan M. et al, 1996, Astrophys. J., v 476, pp692
- [4] Gaidos J.A., Akerlof C.W., Biller S. et al., 1996 Nature, v 383, pp 319
- [5] Lin Y.C., Chiang J., Michelson P.f. et al. In Proc Second Compton Symposium, ed C .E. Fichetel et al., AIP cnf. Proc. 304, pp582
- [6] Buckley J.H., Akerlof C.W., Biller S., 1996, Astrophys. J., Lett., v472, p9
- [7] Reich W., Steppe H., Schlickeiser R. et al., 1993, Astron, Astrophys., v273, p65
- [8] Mecke A.,Pohl M., Reich P. et al., Astron, Astrophys., Suppl. Ser, v120, p C541
- [9] Wagner S.J., 1996, Astron, Astrophys., Suppl. Ser, v120, p C495
- [10] Dermer C.D., Schlickeiser R., Mastichiadis A., 1992, Astron, Astrophys. Lett, v256, p27
- [11] Dermer C.D., Schlickeiser R., Astrophys. J.,v416,p 458
- [12] Pohl M., Schlickeiser R., 2000, , Astron, Astrophys
- [13] Pohl M.,1999, Plasma Turbulence and Energetic Partcles in Astrophysics, p311

[14] Галанин М.П., Торопин Ю.М., Чечеткин В.М. Радиационное ускорение порций вещества в аккреционных коронах около астрофизических объектов.

Астрономический журнал 1999г, Т.76, стр.143-160

[15] Савельев В.В., Торопин Ю.М., Чечеткин В.М. Возможный механизм образования молекулярных потоков.

Астрономический журнал 1996г,. Т.73, стр.543-558

- [16] Gabuzda D.C., 1999, Plasma Turbulence and Energetic Partcles in Astrophysics, p301
- [17] В.Ф. Дьяченко «О расчетах задач бесстолкновительной плазмы» ЖВМ и МФ 1985г №4 стр.622-627.