, ,
.
,
"" .
.
.
, .
, .
, ,
.
.
,
(
)
,
.
, " " ,
, ,
( ),
( ).
, ,
:
-
, ;
-
,
;
-
(, "
");
-
;
-
;
-
;
-
;
-
.
( ,
.. ).
.
D
. ""
. ""
(D) Dd, Dd . (N).
D, N .
, ,
() (
). , ()
D,
, N, .
, .., D N,
"" , , ,
(
), , D N.
(.. ) . D N
.
f .
, ():
, .
. , .
, ,
, ,
D N ( I), , II
, N D.
,
. ,
.
, .. D,
(), n(I)‑n(II) > D, n(I) n(II)
, , I II.
,
, .
8 . , 1985 .
"".
. 1. , ,
"
" (,
5‑20 .
|
, |
/ |
- |
|
M8 |
[1],
8.0 |
7/7 |
39% |
> 99% |
M8+C |
6/7 |
20% |
> 99% |
|
M8 |
[2],
7.5 |
20/30 |
42% |
> 99% |
M8+ |
11/30 |
12% |
> 99% |
,
.
. ,
() , ..
. , ,
( ), ,
.
,
.
() 3 R
( R = 4 . 1). 0
1. (i+1)‑ ,
() 3‑ i‑
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
.
(i)
() i‑ , (i+1) = F((i)). ,
F (
) (1)
. ,
i+1
i
, .. = 3.
F() = 3. = 0 = 1 , = 1 , = 0 .
, < 1,
0, ..
. (S).
= 1, ..
. F() = 1‑(1‑)3
: = 0
= 1,
, > 0
1. ,
. (C).
= 2,
F() = 32(1‑)+3.
: = 0,
= 1 = 0,5.
< 0,5
0, > 0,5 1 (. 2). = 0,5
, 0,5,
.
M(i) = i lg 3, ,
,
, .. , < 0,5,
.. , > 0,5
. , = 0,5
. (UC).
,
: , = 3, = 1. ,
. F(p) = 0,5(1‑(1‑p)3) + 0,5p3.
: = 0,
= 0,5 = 1
(. 3). = 0,5
, , ..
p ¹ 0;1
.
.