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M.YO. 3acnaBckuii. AIrOpUTMBI pelIeHUs] MapadOINYEeCKUX YpaBHEHHM Ha
KPUBOJINHEHHBIX CETKaX.

AHHOTAanMsA. PaccMOTpEHBI pa3iMYHbIE YUCIEHHBIE METOJIBI JJISl IBYMEp-
HBIX KpaeBBbIX 3aja4 ISl napaboinyeckux ypaBHeHud. [Ipeamnonaraercs, 4ro Ko-
b dULeHTl YpaBHEHU pa3pbhIBHBI U JIMHUK PA3phIBOB HE COBMAJAIOT C KOOPAH-
HAaTHBIMH. DTO TMPUBOJUT K HEOOXOAMMOCTH HUCIOJIb30BaHUS HEOPTOTOHAIBHBIX
CETOK. PaccMOTpeHbl NOJIHOCTBIO HESIBHAs, PETYJSPU30BAaHHAS U aJJUTHUBHBIC
cxeMbl. CrienMaiabHBIA METOJ Peryisipu3allii, YUUTHIBAIOUINN pa3pbiBbl B KO (-
¢dunueHTax, MO3BOJSET MOCTPOUTH CXEMBI 0oJiee, YeM MEPBOr0 MOPSIKA anmpoK-
CUMAalUU N0 BPEMEHH, KOTOPBIE JIETKO pacnapalieINBatOTCS.

M.Yu. Zaslavsky. Algorithms of solution of parabolic equations on curvilin-
ear grids.

Abstract. The different computational methods for 2D parabolic boundary
problems have been considered. It is assumed the coefficients of the equations are
discontinuous and the lines of discontinuity don’t coincide with coordinate ones. It
results in the necessity of using the non-orthogonal grids. The fully implicit, addi-
tive and regularized schemes have been developed. The specific method of regular-
ization taking into account discontinuity of coefficient allows constructing the
schemes more than first order of time approximation, which are easily parallelized.
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Introduction

Now there are many difference schemes for the heat conductivity parabolic
equations with discontinuous coefficients, if the surfaces and lines of discontinuity
being not coincident with coordinate ones. The discontinuity of coefficients in a
heat conduction equation means that normal (to a discontinuity surface) derivatives
are discontinuous. In this case, attempts of approximating the equations by means
of the difference schemes without the taking into account the position of disconti-
nuities may reduce the accuracy of approximation. For the best method of describ-
ing the phenomena it is expedient to use grids adapted to the media structure. Be-
sides the schemes should satisfy the requirements of stability, monotonicity and
conservativity. At the same time because of the usage of multiprocessing systems,
it needs to provide the possibility of effective parallelezation of the difference
schemes. But the explicit schemes, most simply parallelized, are not considered
because of hard limitation of a time-step for schemes stability.

In the present work some methods of solution of the posed problem for the
2D equation are considered

oT g
—+d =0, 1.1
ot +div(Q) (1.1)

where
Q=-k(x, y)gradT, (1.2)
in domain Q2. It is supposed that the coefficient k is a piecewise continuous

function. Boundary conditions may be general. The examined examples corre-
spond to zero boundary conditions of the second type

Q‘F =0, (1.3)
where I" is the boundary of domain. Further, for simplicity we shall consider
square domain 2 = [0;1] X [O;l].

The cells of examined grids have a form of tetragons, though it should be
noticed, that the proposed schemes might be generalized easy for grids containing
triangles. The well-known support operator method has been used for a spatial ap-
proximation of the problem. The feature of this method is a definition of the diver-
gence and gradient difference operators by using the difference analogy of the
known identity:

jdeivde+”(p’;gradT)dQ=ij’df. (L.4)
Q Q r
If the operators of the divergence and gradient are in accordance with the differ-
ence approximation of (1.4), the approximation orders of both operators are
matched.
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Let (ﬁ, ﬁ)‘F =0. The equality (1.4) allows a definition of the divergence

operator if the operator of gradient (or the flux operator (j) Is being determined. It

Is the reason of the method denomination. Really, the support operator method ap-
proximates the system (1.1), (1.2) instead of the approximation of the equation

%r =div(kgradT) only. It is analogous to the ideas developed in the known arti-

cle (Glowinski R., Wheeler M.F., 1988).

Five difference schemes were compared: fully implicit scheme on the basis
of a of the support operators method (Samarskii A.A., Koldoba A.V., Poveshchen-
ko Yu.A., Tishkin V.V., Favorskii A.P., 1996; Koldoba A.V., Poveshchenko
YUu.A., Popov Yu.P., 1985), the scheme with regularizator (Samarskii A.A., 1989),
two modifications for curvilinear grids of the scheme proposed by Yu.B. Rad-
vogin, and also a variant of the locally one-dimensional scheme based on a varia-
tional-difference principle (Goloviznin V.M., Korshunov V.K., Samarskii A.A.,
Chudanov V.V., 1985). The results of comparison in midpoint of the process evo-
lution and in a final are represented in the tables.

The main aim of the article is to create the effective methods of the 2D and
3D problems solution for the parabolic equations with piecewise continuous coef-
ficients. There are many methods for rectangular grids but usually the surfaces and
lines of the coefficients discontinuity don’t coincide with coordinate ones. The
parabolic equations have standard forms of the balance equations connecting the
time derivatives of value with the flow divergence. The evident method is fully
implicit but it results in the solution of the linear system of the large order. One
possibility is determine the flow components at the intermediate moments of the
time and following divergent closure of the system. This idea had been realized by
Radvogin Yu.B. only for rectangular grids. The problem of the mixed derivatives
for nonrectangular grid had not been discussed in the article. In this work it was
shown that the contravariant component of flux (DFM) or covariant components
(VDFM) are sufficient to be calculated. Then using the balance equation for each
cell the divergence expression may be obtained. The closed equations for the flux
components may be constructed if the mixed derivatives being omitted. The flux
components equations are of the order O(1). However, it is sufficient for the final
approximation of the second order for rectangular grid and of the first order for
non-orthogonal grid. Similar principles are used for VLODM. It is a sample of the
additive scheme, i.e. there is no approximation of each stage but only total.

The method considered is a regularization method based on Samarskii idea
analogous to preconditioning the algebraic linear system. The difference approxi-
mation of the  equations  (1.1), (1.2) may  be rewritten

B,B, - —1 = DIV (KGRADT), where T=T(t+z), T=T(t), DIV and
T

GRAD are finite difference approximation of the operators by support operators
method, B, and B, are positive one-dimensional operators, described below. It is
essential the scheme is effective because it does not need to solve the complicated
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linear algebraic equations, as the elliptic operator is determined on the explicit lay-
er. Besides, this scheme is easily parallelized.

The calculations for heat conductivity coefficients with different analytical
properties have been realized for tasks on rectangular and curvilinear grids when
the analytical solution being known.

It is evident the proposed schemes may be generalized on a 3D case.

Fully implicit scheme
and support operator method

Now we describe the most obvious way of approximation: a fully implicit
scheme and a method of operator div(k(x,y)grad(:)) approximation. Let's
mark, that hereinafter the temperature is considered in cell-centers and correspond-
ing fluxes - in cell-edges. This method of discretisation allows the natural approx-
imation of boundary conditions of Neumann type. Besides, it simplifies the con-
struction of difference scheme near the surfaces or lines of coefficients discontinui-
ties, since the fluxes normal to these lines are continuous (it is supposed that lines
of discontinuities coincide with grid lines).

The fully implicit scheme has a form

T-T -
— =k (T) (2.1)

where T isavalue T on an implicit time-layer, Lh () - difference approximation

of the operator div(k(X, y)grad(-)) by the support operator method.
Support operators method is a version of the finite volume method. The last

one is based on the known identity IdiVQdS:andl for a vector

Q =—kgradT . Thus it needs to know components of vector Q in the same
points of cell edges, but it is inconvenient, since the values of gradient different
components are usually determined in different edges. It is offered to average the
component values by usage of four neighbor bases (in a 2D case). Besides the inte-
gral identity (1.4) will be used instead of the standard formulation of the Gauss—
Ostrogradskii theorem for calculating the divergence if the gradient vector being
known. The last one allows constructing a difference scheme not on an initial grid,
but on arbitrary one providing the best approximation.

The operator grad(-) was considered as the support operator. Let £ and 77

be curvilinear coordinates, under level lines passing through cell-centers or their
corresponding edges, and the distance between cell-centers for coordinates (§ ; 77)

coincides with the distance in coordinates (X; y). Besides it is supposed, that un-



7

der transformation {f :x,y —&,n} the domain Q is mapped into unit square
(see fig. 2.1). The numbers of a grid points along coordinate lines are designated
with N, and N, accordingly. Then the covariant components of a flux Q in local

basis (é’g,é’n) look like

T, .,-T.,.
1+ 2,j+% 1— 2,j+%

Q.; oy = —ki,j% n (2.2)
i,j+%
T ., .,-T ., .
Q77,i+ 2,J' :_ki+ 2’1 - 2’J+% I+%’J_% ’ (2'3)
i+ 2,j
_ ki+%,j+%ki—%,j+%
iy = (L- )k +7K | &9
71 i+12,j+% 71 i-1.i+%
ki+ 2,j+%ki+%,j—% (2.5)

i+ 2,j

) (1_7/2)ki+%,j+% +7/2ki+%,j_%
y, and /2 are equal to the parts of  segment
(=75 ) Yeie ) and (i i )= i+ 1)

lying inside a cell (|+%;|+%), hi,j+% and hi+%,j are the lengths of these
segments.

1

X

Fig. 2.2
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Suppose, that the grid lines are orthogonal to the boundary of the domain
(Fig. 2.1). Then we have according the boundary conditions (1.3)

Q§,O,j+% = Qef,Nl,j+% - Qn,i+%,0 - Qn,i+%,N2 (26)
For approximating the second term of the left hand part of (1.4) the addi-
tional grid M ' has been constructed. The edges of the grid M ' connect the cell
centers of the grid M . For covering of whole area €2 we shall add some cells

formed by segments of boundary and normals to it (see a fig. 2.2, the continuous
lines bound cells of agrid M , dashed - M ).

Let's consider an internal cell (i; J) of grid M '. Its vertices are denoted
with F, G, H, I. The notation of angles is represented in the fig. 2.3. Then the inner
product of vectors P and Q in the vicinity of vertex F has a form

(ﬁ;(j)p - sin2 F ( pFGQFG + pFIQFI _( pFGQFI + pFIQFG )COS F) (2.7)
Similarly in vertex G:
= 1
(:Q), = =5 (PreQro * PouQis = (ProQun + PuQec )05G) (29

Fig. 2.3

Using (2.6), (2.7) and analogous expressions for vertices H and | the quanti-
ty of integral over the cell may be represented

I (ﬁ;(j)dQ:SF (ﬂQ)F +SG(E;(§)G +35, (r),(j)H +S, (r),(j)l (2.9

Here Sp, Sg, Sy, S, are some non-negative values, the sum of which
equals the square of FGHI. Let the vertices F, G, H, | have indexes

(i-25i-1) (i+25:0-1). (i+ 2505+ 15). (i- Y350+ 1)

respectively. Then the expression (2.9) may be rewritten
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| (p:Q)aa=w, = > [p Qi y+P 1y, Q 1 -
o ’ Wl sin? E g gii-Yy <eii-Y, 0 Tni-gi T ni-Yi
( p;i,j—%Qn,i—%,j * pn,i—%,ij,i,j—% )(COS - )i,j } *
SG
(p«:,i,j—%Qn,n%,j TP Z,ij,i,j—%)(COSG)i.j}L
SH
+(sin2 H j j [pf’i’H%Qf,i,i% PPy Qs
( pg,i,j+%Qn,i+%,j + pn,i+%,jQ§,i,j+% )(COS H )i,j } +
SI
+(Sin2 I ji'j |:p§'i’j+%Q§’i’j+% " pn’i_ 2’jQ77’i_%’j B
(pm%Qm_%j +P, z,ijli'j%)cos Ii,j:l (2.10)
For boundary cell, but not for an angular one, the sum (2.10) will include on-

ly two terms. For example, for a cell (i;O) we obtain the following according to
(2.6):

= S, i
Fé[HI ( p;Q)dQ =W,, = (siﬂ2 H ji'o - pf,i,%Qg,i% —

- pn,i+%,OQ§,i,% (COS H )i,o_ T

S,
+(Sin—2|ji,o [ pé,i,%Qg,i,% - pn,i—%,OQg,i,% (COS | )i’o:l (2.11)

For angular cells there will be only one term, which equals to 0 owing to
(2.6).

The integral over domain I(ﬁ;@)dQ:ZV\/i'j , Where summation is
Q
performed over all cells of M .
Let grid vector P be a difference gradient:
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V. ., ., =V . . V. ., ., =V . .
. I+%,j+% I—%,j+% _ 1+ 2,J+% I+%,j—% It ) .
P, 1= Py = . It is possi
gii+Y) h ni+ Y51 h
i,j+ 5 i+ 2,j

ble to consider, that vector P component normal to boundary is equal to 0, i.e.

pg,o,j+% - pg,Nl,j+% - pn,i+%,0 - pry,i+%,N2'

Then

DWW, =D v iy, %J 3y (2.12)

Where

G spiyy =Ly Qg Qg 'i—%,iji%,j “hoa Qe

Here for 1 >0, ] >0

S 1 SF _
Qi’j_% i-% {(Sinz Fji,j (Qg'i'j_% Qn’i_ 2 (COSF)”)+

i
Se
’ sin? Gj (qu% in+21( OSG) )
S, B
’ Siniji]j 1(Q5’i’j% Qn,i+ 2,J'—l(COSH)i,j—l)_i_
S, B
J{sinz | jhj_l(Qf,i,j% Q)i144€08 Ii,jl)i| (2.13)
1 ( S, j
g i — Qni_ j—Qij_ cosFijJr
2 Ii%,-hi%[ sin*F i,j( =i %( ))

Sl
+(Sin—2|ji,j (Q’”—%,j _ch,i,j+% (COS I )i,j )+
S, )
+(Sin2 H ji—l,j (Qn,i—%,j Qé,i—l,j+% (COS H )i—l,j ) 4

S -
+(Sin2 G )i—l,j (Qﬂ,i— 2,] Qf,i—l,j—% (COSG )i—l,j )i| (2.14)

Remark, the sum (2.12) does not include expressions with
4 < n n e
Q0,1'+%’QN1,J'+%’ 141407 DN, that corresponds to boundary conditions
(1.3).
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Here | . and | _are length of some segments. For example, they ma
iy S0 i1y g g ple, they may

be the segments connecting centers of gravity of cells (i; J +1), (i; J) and

(i; j), (i +1, j) of grid M ' accordingly. Then it’s natural to consider the ex-
pression

. = di+ 2,j+}é
(dva)H%,j% VR (2.15)
i+ 2,j+}é

as a difference analogue of the operator div(-), where Vi+y Ty are squares of
2 2

some domains, associated with nodes (i + %; ]+ %) They may be squares of

a tetragon with vertices in centers of gravity of cells (i; J +1), (i; J) (i +1; j)

and (i +1; +1) of grid M ' (it is assumed that for boundary cells these vertices
coincide with centers of boundary segments, and for angular - with its angle ver-

tex). It is possible to lie Vi+y Ty = N
2 2 1N

for simpler variant. In fact it means

the theorem of Gauss-Ostrogradskii for this domain, and the grid functions ij 1
/2

and QZ Y are contravariant components of a flux on cell edges of a grid M .

The finite volume method was used in works of Edwards M.G. and Aa-
vatsmark 1. for investigation of single-phase and multiphase problems of under-
ground hydrodynamics (M.G. Edwards, C.F. Rogers, 1998; Aavatsmark I., Barkve
T., O. Boe, T. Mannseth, 1996). They define the divergence using the Gauss
therem for one cell. The feature of the support operator method is a definition of
flux Q from an equality (1.4). It results to the following: the order of the diver-

gence and gradient operators approximations is the same. This method of differ-
ence schemes construction based on reviewing of the system (1.1), (1.2) instead of

the equation % =div(kgradT), that is similar to work Glowinski R., Wheeler

M.F., 1988, where the same representation is used for a mixed finite element
method.

The regularized scheme

The following type of scheme is developed as the regularized scheme:
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T-T
BhT: Lh(T)’ (3.1)

where B, operator is a regularizator (Samarskii A.A., 1989).
As known, for an absolute stability of the scheme it is sufficient to examine

0° 0°
Bh = E — O'5Tkmax 5 E — 0'57'-kmax 7 (32)
OX N ))

with boundary conditions

0 _9 =0 (3.2

8X x=0;1 6y y=0:1
for the heat conductivity equation with a variable coefficient on a rectangular grid
(Samarskii A.A., 1989). Here E is a unit operator, kmax Is @ max value of a heat
conductivity. The obtained scheme is a scheme of the first order of approximation

by time. Under drawing an analogy with rectangular grids it is possible to use the
regularizator of the following form for curvilinear grids

— 0 = o?
B, =|| E-0.57K Koy = || E—0.57k K ., — (3.3),
oa B )),

with boundary conditions

oy _9
0al, o1 OP

where (a;,b’) are curvilinear coordinates. Coordinate lines of the system (a;ﬂ)

=0 (3.3

p$=0:1

coincide with lines of coordinates (5;77), but the initial grid maps into uniform

rectangular one in a plane (a;ﬂ) with steps ha and hﬂ (see fig. 2.1), Iza and Eﬂ

are factors depending on "irregularity" of a grid and for a rectangular grid equaling
1.

However, the regularizator of the type mentioned above gives unsatisfactory
results of calculations for the discontinuous coefficient of the heat conductivity, as
it does not provide the necessary order of the approximation in the vicinity of the
discontinuity line.

Because of this fact the following form of the regularizator B, is offered:

; {(E_o.srgai(kij](E_o.sf@i(ki]j] o
oa\ Oa oB\ oB)))

with boundary conditions (3.3 ).
Usually regularized schemes are schemes of the first order of approximation
by time. The exception are the schemes on rectangular grids being the schemes of
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the second order of approximation, if L, =L, , + L, , and operators B; =—L, ;.

Therefore it is possible to expect that the schemes of the type mentioned above
with regularized operators similar to main one of the problem near coefficients dis-
continuity lines will be by more precise, than additive schemes described below.

It is easy to find expressions for factors k and k , corresponding to ab-
solute stability of the scheme (3.1) with regularizator (3.4), for a concrete grid. Let

T" =T (n7) be a grid function, obtained on N-th time step (N = 0..N ). Under
stability the following will be understood

(_LhTN;TN )xy J{T ;T ;T ;T jxyt +(T0;T0)xy :
+(T°;T0) (*)

s(—LhTO;TO)Xy o

Here is an inner product in the space of grid functions, defined in cells of a
grid M (the summation is performed over all cells of a grid M ):

( f ;g)Xy - IZJ: fi+%:j+%gi+%,j+%vi+%,j+% (3.5)

as well as
n+1 n+}/ ,
Z f'+ 2]+}/ i+ 2]+}/ i+ 2]+}/ (3.5)

i j n
It should be noted that it needs to introduce last terms in both parts of (*). It
is concerned with the fact the expressions in the (*) without terms are not a norms,
but just as semi-norms. So the left part is a norm in solution space and right part is
a norm in space of initial data.
Let's prove, that the satisfaction of the inequality

B, >-0.57L, +0.5E. (3.6)

is sufficient for stability of the scheme (3.1) (in sense of (*)).

T—
Really, having multiplied both parts of (3.1) by 27
T

(in inner product

(-; -)Xy), we have:

OzZr[BhT LIt +21[—LhT;T _T) =
Xy Xy

T

_o, BhT_T;T_T £2r| -L, T+T rT —T ;T—T _
T T " 2 2 2 T o
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~

T-T.T-T . e _
= 22| (B, +0.50L, )~ — Xy+(—Lh(T+T),T—T)Xy—
T-TT-T -
=27 (B, +0.57L,)——i— +(—LhT;T)Xy—(—LhT;T)Xy
Xy
Thus, if (3.6) is fair, then (—th;f) +T[T —T.T-T J <(-LT:T)
Xy T T

from which (*) immediately follows.
Besides the inner product (-; )Xy we shall introduce

(f:9),,= .Z,: LIVRTETL TEVRETALALY
where the summation is performed over all cells of a grid M . It should be
marked, that norms induced by inner products (,) and (,) are equivalent:

ofp
min,;V. max; ;V. ., .
\/ Ny ZJ}/(f f) (fif)xyﬁ\/ i 21}/(]: f)
h,h, h,h,
Then,
B=B +B,, (3.8)

B, = E+0.257%k k 88 [k ; [53 (k ;/JD , (3.9)
a| O
h

B, =-0.57 Eai(kijﬂ?ﬂﬁ ki . (3.8)
oa\ oa) "op\ op))

and

Tyou-To oY
B,T;T)  =0.5zh,h k,k e Tie MG it N
( 2 )aﬁ a’'p Z (& |J+}/ h

iJ

T -T 2
— A i+3.5-%
k /,ki%j [ hﬂ J (3.10)

I+}/j+}/ %]+}/ ] .:k2ki+%,j+%l:(i+%,j—%
i .+y1+y _y y %" el Ny

Here k'
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For approximation of (—O.Sz'LhT;T) it is assigned in (1.4) p=gradT
Xy

just as it was done in support operator method. Then the right part of (1.4) becomes
0 and according to the formulas (2.13), (2.14)

(-0.57L,T:T)_ =05¢(kgradT;gradT) =

OSTZKsm Aj ( ) o) -
ley -1 )COSAJ)—I—

.,y
J{sm Bj i) P! 'Jy k. 2'1'(-|-il+ 2’1)_
T

&
G
ye” u+%(kuy )COSB *
O
|

+(Sln C) 5 7 '”y k. 2"'(1-"+ 2'1)2_

TI J+}/ i+75,] kI J+}/ )COSCLJ—)_{_
2
+[sm Djil ( 'JW( 'JW) (Ti—%’i) -
_Ti j+yT-_%,( u+y y )cosD )} (3.11)

where T. . Hy J+y y J+y T i+% j+y Hy y and

] % |J+y % H—yj
the summation is performed over all cells of a grid M .

Thus,
2 2

(-0.57LT;T), 30.2570102;[&’]% (Tilj_%) +Ky, (Ti+ 2,1) ;

ki,j% (Ti:j+%)2 +k_ . (Ti'_%,j )Zj (3.12)

where
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S S S S
_4 N A B |2 | D
€, =4max; ;| max [sin2 Alj’[sin2 Blj {smzclj [sm2 Dlj
[ki’j%+ki%’jJ‘cosA’j‘ (ki’j%+ki+%j}‘c038i,j
\/ki,j—%ki—%,j ki,j—%ki+%,j

(ki’j% + ki%,J‘COSCi,j Lki’”% + ki%,j]‘cos D, ;
\/ki,j+%ki+%,j \/ki,j+%ki—%,j

Since each edge appears twice in the sum (3.12) except the boundary ones, it
is sufficient to suppose

C2 =1+ max”.

k
k, = ¢ max 2t
h,h, “2" "Lk h?
g SN (3.13)
K 2
C i-12,j h
kﬂ:haﬁ C,ma; ;- %_ h?ﬂ _
g 2l ] (3.14)
for satisfaction of (B,T;T) ~>(-05¢L,T;T)
Let's assume V., ., = L =h,h,. Then both introduced inner
|+%,]+% N1N2
products coincide and it is necessary to prove B, = 0.5E
B, =E+0.257°k k,LL,, where L, :—i(kﬁj ,
oa\ OJa ),

0 0
L, = ——(k —j with boundary conditions (1.3). Since both operators L, are
h

0B\ ap

non-negative determined (with respect to inner product (-;-)aﬂ, which coincides

with (-;-)Xy in a considered case), all their eigenvalues ﬂ,,j , corresponding to eigen-
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functions goij , are non-negative. Consider the case K =const. Since all grid func-

tions are decomposed by basis " = @i ps: T = ZTk,wk' , then
k.l

(BTiT)y = (T )y + (A ATy "iT),, 2(TiT),,, 205(TiT),,.

Thus, we have proved, if having selected regularizing factors according to
the formulas (3.13) and (3.14) the scheme (3.1) will be absolutely stable. As sever-
al tests without analytical solution have shown it will be also stable for variable K .
In other cases the regularizator (3.3) should be used.

It should be noted, that for the considered class of problems the scheme (3.1)

with Vi+ Yy, equal to squares of tetragons with vertices in center of gravity of
cells (i; | +l), (i; J) (i +1; j) and (i +1; j +l) of grids M ', was also abso-
lutely stable (with some Iza and Eﬂ). Moreover, the scheme (3.1) with regulariza-
tor of the form

_ 9 0 — 0 0
B, :{[E_OIST&Z%@(%B[E_OIETk"%(k%Dl (3.15)

with boundary conditions

9
05
was absolutely stable for some lzg and kn.

Let's remark, that the scheme (3.1) with regularizator (3.4) or (3.15) is eco-
nomic, since the corresponding system of linear equations may be easily inverted
by two sweep methods.

0

=—| =0 3.15
on (3.15)

n=0;1

£=01

Difference flux method

Flux method is understood as the scheme of following sort: at the first step
(predictor) the fluxes on edges of cells are calculated on "a intermediate time layer

using the equations for each component of a vector Q. Usually they are difference

. . 10Q -
approximations of the equation for a flux EEQ = grad(divQ) by some methods.
The second step (corrector) is a divergent closure due to initial equation.

Let's remind the scheme proposed by Yu.B. Radvogin for a heat conductivi-
ty equation with variable coefficient on a rectangular uniform grid.

Predictor
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Qypyy = Qs * ”;“y { Qe =20+ Q) 00

~Y _0OY it T _20)Y ~Y
i+%,j+l B i+%,j+1+ 2 ( |+}/ j+2 2(gi+}é,j+l+ i+%,j)
Corrector
X ~ X T y
|+ 2j+}/ |+ 2]+}/ h (Qi+1,j+% _Qi,j+%)+h_( i+ 2]+1_QI+ 2])
y

4.3
. ~ X _y
Here hX and hy are grid steps, QLH% and Qi+%’j are fluxes normal to the

(4.2)

cell edges. If o > 2 the scheme is absolutely stable, i.e. the scheme with surpas-
sing definition of fluxes is stable.

On a step of predictor we effectively calculate components of fluxes normal
to the cell edges referred to intermediate time layer. It should be noted, that each
equation of (4.1) and (4.2) approximates equation for a flux with zero order, i.e. it
IS supposed that for each layer of cells the flux through its lateral boundaries is
equal to zero. On a step of corrector using these values we calculate values of tem-
perature for an implicit time layer.

The natural generalizing for curvilinear grids of the scheme proposed by
Yu.B. Radvogin looks like the following:

predictor
= . |+1 J+}/ -
Qf,i+l,j+% _Q &+, J+}/ 2 h,+1 J+}/
| (divd —(divG ] (4.4)
[( )i+%,j+% ( )i+%,j+%
_ GTk|+ Jj+l
Qn,i+%,j+1 :Qq,i+ 2,j+1 2 h : ’
I+ 75 Jj+l
| (divQ —(div@ 45
[( Q)i+%,j+% ( Q)i+ 2,j+%} ( )

Here div(j is defined by support operators method for each layer along di-
rections & and 77 under the following assumption. It is supposed that flux along

the same direction in other layers and flux along other direction are equal to O.
Corrector
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T, ,-T,.
I+ 75, ]+ I+ 75, ]+ gy g
21t} 21+ % =L (Qé’Qn)
T (4.6)
The operator L, is defined by a support operator method: using contravari-

ant components of a flux we calculate the covariant ones by a method depicted
above. The equations (4.4) and (4.5) also may be solved effectively.

Variational difference flux method

Let the operator grad(-) be employed to both parts of (1.1) and then out-
come be multiplied by K(X, Y). Then due to (1.2) the equation for flux is obtained

%% _ graddiv(G) =0 (5.1)
Discretising in time Wi'@ the help of the implicit scheme (7 = o), we have
% Q=Q _ yraddiv(G) =0 (5.2)
T

Multiplying (5.2) by an arbitrary variation 5@ and integrating over arbitrary

domain G we obtain due to boundary conditions (1.3), if boundary fluxes being
equal to zero:

” 1Q dQ=0. (5.3)
Thus, functlonal ) .

_ 3-Q

@(Q):jj<%( — ) += (dva) LdO (5.4)

reaches its stationary value on a solution of the equations (1.1) and (1.2) with
boundary conditions (1.3).

Let the curvilinear coordinates (a;ﬂ) in domain Q be introduced by the
same way as in the third item. For a definiteness we suppose that a Jacobian

_o(xy)

CY)

and S respectively, the expressions in (5.4) may be rewritten in local contravari-

> 0. Designating N, and N, number of cells along directions ¢

ant base of a curvilinear coordinate system (a; p )
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The orts of contravariant base look like

-
| \6a' da o’ op

where |, =\/(ﬁj2+(ﬂ)2, |, = \/( ax] (gj are Lame coeffi-
oa oa op op

cients of a curvilinear coordinate system.
Since

1 X 1( oy oy
Q=———Q —1,Q" |, Q" =-=| =1.Q"+—=1,Q” |,
op oo’ Jlop ™ oa ”
where Q“ and Qﬂ are contravariant components of flux then having made substi-
tution Q% =—-Q%, Q¥ =—-Q” we obtain
2

@ -(@) (') -

1%]2 2 2
- jf((@“) Q") +2( (f; jygé)@ Q11 j 59)
diVQzéQx +aQy zi (ﬂQIB)+a(IaQa) (5 7)
ox oy J| oa o | |

As well as in a difference flux method, we suppose that for each layer of
cells the flux through its boundary is equal to zero. Let's consider the approxima-
tion of a functional (5.4), having taken into account of any layer of cells along &

or 3 as G (see fig. 5.1).

For a layer j+}/ along o we have:

v (Q-Q
Py Q- Z <27kl+>l+ 2;/%

where

~ 1
hl>.
Q>|+ 2]+}/ S g i+ 2]+}/ ﬂ ,B|+}/ J+}/
i+ 2]+}/

rOlI

(
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X%((Qi,j% ) +(@ )] =2

.= 1 =5 B =5 )
(dIVQ)i+ i+ o g » (hﬂlﬂ,i+1,j+%Qi+l,j+% hﬂlﬂ,i,j+%Qi,j+% (5.10)
I+ 2 + 2

L YRS TR
ﬂ B, J+}/ \/ Ij+l Ij) (yl j+l yi,j)2 = Li,j+% (5-12)
h‘?‘Ioz,i+ 2] - \/(X”l’j i J) (y'+1J yi,j )2 = I_i+}é,j (5.13)

(5.11)

=
o
Fig. 5.1
Then functional CI)J.+ Y (6) may be represented as
2
- N, -1 1 2
CI)J'+% Q)= ; {GH A E((le Y Q|+1 J+}/)
2
(QI J+}/ QI J+}/) j
oY _ oY
+Pi+ 2,j+%(Li+1,j+%Qi+1,j+% Li,j+%Qi,j+%)}’ (5.14)

where
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P L 5.15
i+ 2]+}/ 28 ( ) )
I+ 75 j+}/
2 2
1 (Li+1,j+% i J+}/)( i+ 2 L Li+%,j)
GI+ J+}/ >k 1S : (5.16)
2 4 i+ 2]+}/ i+ 2,j+}é
The difference analogue of the equation (5.1) follows from a condition of a
minimum of a functional (5.8): (Q) =0or

Q'
(G” 217 G z'i%)(q,ﬁj% _Qi,ﬂj%)_

2P ., L L. .Q° . -L .QF )+ 5.17

I+%,j+% I,j+% ( |+1,J+%Q|+1,J+}/ |,J+}/Q|,J+% ( )

+2P ., L. . (L ,0Of )

- 2,j+% I,j+%( I’E%Qhﬁ% —1J+}/Q—1J+}/

Using boundary conditions QoﬁHy = Qﬁ i = =0 the equation is solved
’ 2 a’ 2

by sweep method.
For a layer | +% along A the reasonings are similar, therefore we list on-

ly finite outcome - difference equation'

2P, L L « QY |+ (.18
i+ 2,]+% I+ 2,]( I+ 2,j+lQI+ 2,J+1 I+%,1QI+%,1) ( )

+2P| +10.i- y i 2;("i+ 2,j(jii ] _Li+ 2,j—1(§ii 2,j—1)
and boundary conditions Qi+%,0 = (ji‘i%,Nﬁ =0
For diyergent closure we use the initial equation (1.1) and formula (5.7):
Ti+ i+ % _Ti+%,j+% _ 1 (L (jﬂ B
r Si+%,j+% i+1,j+ 30 S, j+ 1)

_ oY oY oL
Li,j+%Qi,j+% o I_i+ 2,j+1(gi+ 2,j+1 |+ o jQI+ > j) (5'19)
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The variational locally one-dimensional method

The developed scheme is very similar with previous one. Let's specify their
differences. In a flux method using known distribution of temperature the fluxes on
an intermediate time layer are calculated, and then divergent closure is performed.
In the given scheme using known temperature covariant component of a flux only
along one direction (for example, along /) is calculated, then the temperature on
an intermediate time layer is obtained under supposition that the fluxes along o
are equal to zero. Then using the new distribution of temperature on an intermedi-
ate time layer covariant component of a flux along ¢ is calculated. Finally, the
temperature on an implicit time layer is obtained under assumption that of a com-
ponent of the flux along £ is zero. Since the calculations coincide with one de-

scribed above we represent only final formulas — the difference equations:
(Bussnss Cusgnss (@i~ i)

Pi+ 50+ Y Li,j+}/ (Li+1,j+}/(ji€1,j+}/ N Li,j+}/(ji,ﬁj+% ) +

AT (A ET Sv

T, T
i+ 2,j+}é i+ 2,j+}é _ 1 ( <5 )
T N S _ i+1 j+}/Q|+1 j+}/ LH%QLH% (6.2)
|+%,]+%

(6.1)

(Gi+ 2,j+% I+%] }/) i+ 2] |+ 2]
—2P

i+ 2,j+% i+ 2,j( I+ 2J+1 i+ 2J+1 |+ 2]

~ ~

Q )+ (6.3)
i+ 2]

o a

+2F i+30,j- y i+ 2;("i+ 2,jQi+ ] -L, 2,j—1Qi+ 2,j—1)
T o-T.
1+ 2,J+% 1+ 2,j+% _ 1
S ..
¢ 43,141

(.+y ,+1Q.+y 41 Li+;/2,,-(5£%,j) (6.4)
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Calculation results

All five algorithms were tested on a rectangular grid, scalene grid (see fig.
7.1) and sine grid (see fig. 7.2). The square €2 was divided into 10x10, 20x20 and
40x40 of cells. The exact solutions were the following

1. T=e""cos(ry), k=1
2. T=e""cos(3ry), k=1
3. T=e""cos(3ry)cos(rx), k =1

e cos(y,y<05
1, y<0.5

4. T =3 COS , : {01 Y205
cos/ , Yy=>0.5
COS— /

where A is obtained from the equatlon

(R
(ki =y Jsin = (( fj 7

Besides, the problem with sources have been tested too. Instead of (1.1) the

. _ _ oT . ~ _
following equation have been considered E +divQ = f . At the same time the

regularized and fully implicit schemes have been developed. These schemes were
also tested on solution

5. T =sin(t)x*(L—x)?, k=1, f =cos(t)(2—-12x+12x°)
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Fig. 7.1 Fig. 7.2

The middle of calculation Final moment
Rectang. | Scalene Sine | Rectang. | Scalene Sine

Implicit | 0.002543 | 0.005791 | 0.017498 | 0.004267 | 0.004786 | 0.005831
Regul. |0.001028 | 0.005610 | 0.018306 | 0.001701 | 0.002891 | 0.004672
10| DFM [0.003288|0.009470 | 0.044702 | 0.005555 | 0.006121 | 0.007731
VDFM |0.003288 | 0.006604 | 0.015847 | 0.005555 | 0.005988 | 0.006746
VLODM | 0.003288 | 0.006745 | 0.017656 | 0.005555 | 0.006006 | 0.006412
Implicit | 0.001802 | 0.002757 | 0.003224 | 0.003002 | 0.003170 | 0.002974
Regul. |0.000255 | 0.002479 | 0.002564 | 0.000419 | 0.001269 | 0.001628
20| DFM ]0.002562 |0.014380 | 0.068315 | 0.004299 | 0.004519 | 0.008980
VDFM |0.002562 | 0.003858 | 0.009687 | 0.004299 | 0.004412 | 0.004330
VLODM | 0.002562 | 0.003945 | 0.010538 | 0.004299 | 0.004419 | 0.004205
Implicit | 0.001614 | 0.001661 | 0.001674 | 0.002684 | 0.002732 | 0.002675
Regul. | 5.910e-5 | 0.001393 | 0.001048 | 9.692e-5 | 0.001078 | 0.001036
40| DFM ]0.002378|0.037927 |0.043497 | 0.003983 | 0.005954 | 0.006813
VDFM |0.002378 | 0.003501 | 0.003585 | 0.003983 | 0.003988 | 0.003924
VLODM | 0.002378 | 0.003427 | 0.003743 | 0.003983 | 0.003990 | 0.003912

Table 7.1
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The middle of calculation

Final moment

Rectang.

Scalene

Sine

Rectang.

Scalene

Sine

10

Implicit

0.060256

0.084513

0.052579

6.954¢-9

0.003246

7.405¢-4

Regul.

0.035828

0.066245

0.034633

1.694e-9

0.004266

0.001353

DFM

0.076859

0.099951

0.093450

1.642¢-8

0.003478

7.715e-4

VDFM

0.076859

0.100001

0.064092

1.642¢-8

0.003300

0.001186

VLODM

0.076859

0.100644

0.062796

1.642¢-8

0.003302

0.001289

20

Implicit

0.042323

0.049574

0.039917

2.493¢-9

7.776e-4

9.130e-5

Regul.

0.016587

0.024491

0.021972

4.006e-10

0.001244

4.014e-4

DFEM

0.059831

0.069960

0.087101

6.660e-9

9.922e-4

1.112e-4

VDEM

0.059831

0.066459

0.058264

6.660e-9

8.126e-4

6.367¢-4

VLODM

0.059831

0.066603

0.058629

6.660e-9

8.135¢e-4

6.438e-4

40

Implicit

0.037857

0.039757

0.037575

1.895e-9

1.930e-4

4.612¢-6

Regul.

0.011800

0.015915

0.017438

2.436e-10

6.094¢-4

1.101e-4

DFM

0.055590

0.062290

0.072428

5.273e-9

4.033e-4

5.492e-6

VDFM

0.055590

0.057125

0.055641

5.273e-9

2.220e-4

1.999¢-4

VLODM

0.055590

0.057186

0.055720

5.273e-9

2.223e-4

2.004e-4

Table 7.2

The middle of calculation

Final moment

Rectang.

Scalene

Sine

Rectang.

Scalene

Sine

10

Implicit

0.058951

0.080214

0.038918

9.32¢-10

0.002992

2.058e-4

Regul.

0.033464

0.060647

0.042225

1.762e-10

0.004628

2.669e-5

DFM

0.058421

0.077163

0.055781

9.03e-10

0.003042

1.950e-4

VDFM

0.058421

0.079921

0.045288

9.03e-10

0.003015

2.455¢e-4

VLODM

0.066577

0.087797

0.048211

1.468e-9

0.003015

2.640e-4

20

Implicit

0.043829

0.050063

0.040376

3.47¢-10

7.128e-4

1.048e-5

Regul.

0.017012

0.024025

0.020200

4.493e-11

0.001601

3.104e-5

DFM

0.043922

0.051174

0.065077

3.49¢-10

7.568e-4

2.731e-5

VDFM

0.043922

0.050462

0.045016

3.49¢-10

7.251e-4

3.991e-5

VLODM

0.052266

0.058096

0.050214

5.93e-10

7.254e-4

4.490e-5

40

Implicit

0.040019

0.041671

0.039675

2.68e-10

1.760e-4

4.102e-7

Regul.

0.012873

0.016171

0.015776

2.893e-11

8.474e-4

7.318e-6

DFM

0.040273

0.048669

0.055690

2.72e-10

2.191e-4

6.596¢e-6

VDFM

0.040273

0.042710

0.042085

2.72e-10

1.856e-4

9.758e-6

VLODM

0.048662

0.050290

0.050019

4.69¢e-10

1.864¢-4

1.131e-5

Table 7.3
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The middle of calculation Final moment
Rectang. | Scalene Sine | Rectang. | Scalene Sine
Implicit | 0.029916 | 0.139758 | 0.111295 | 0.068440 | 0.132269 | 0.068473
Regul. ]0.027471|0.143325|0.117483 | 0.062569 | 0.126339 | 0.071540
10| DFM [0.031644|0.139261 | 0.118225 | 0.072636 | 0.136601 | 0.066644
VDFM |0.031644 |0.143370 | 0.119056 | 0.072636 | 0.137619 | 0.070704
VLODM | 0.031644 | 0.144451 | 0.117742 | 0.072636 | 0.137898 | 0.071240
Implicit | 0.010815 | 0.152431 | 0.024321 | 0.022945 | 0.056930 | 0.016478
Regul. |0.008049 | 0.153958 | 0.021091 | 0.017029 | 0.051391 | 0.012137
20| DFM ]0.012768|0.147452 | 0.068678 | 0.027176 | 0.060852 | 0.021627
VDFM |0.012768 | 0.155467 | 0.025705 | 0.027176 | 0.061600 | 0.021214
VLODM |0.012768 | 0.157788 | 0.025298 | 0.027176 | 0.061783 | 0.021195
Implicit | 0.005784 | 0.097919 | 0.006320 | 0.012025 | 0.028871 | 0.011572
Regul. |0.002941 | 0.096378 | 0.003688 | 0.006122 | 0.023593 | 0.006318
40| DFM ]0.007790 |0.092611|0.042937 | 0.016247 | 0.032853 | 0.017442
VDFM |0.007790 | 0.098255 | 0.008891 | 0.016247 | 0.033321 | 0.015941
VLODM | 0.007790 | 0.100245 | 0.008740 | 0.016247 | 0.033407 | 0.015942
Table 7.4
The middle of calculation Final moment
Rectang. | Scalene Sine | Rectang. | Scalene Sine
10 Implicit | 8.242¢-5 | 8.480e-5 | 6.975¢-4 | 0.010368 | 0.010438 | 0.014873
Regul. | 2.162e-5 | 2.398e-5 | 4.494e-5 | 3.519e-4 | 3.905¢-4 | 0.001466
20 Implicit | 2.250e-5 | 2.959¢-5 | 8.245¢-5 | 0.002562 | 0.002585 | 0.002981
Regul. | 2.452¢-5 | 2.536e-5 | 2.656e-5 | 9.644e-5 | 1.422¢-4 | 2.441e-4
40 Implicit | 4.942¢-6 | 9.133e-6 | 6.943e-6 | 6.071e-4 | 6.142¢-4 | 6.127¢-4
Regul. | 2.552e-5 | 2.574e-5 | 2.532e-5 | 6.182e-5 | 7.687e-5 | 7.351e-5
Table 7.5

The results of calculations are represented in tables 7.1...7.5 according to

T
number of the test (1...5). Final time for tests 1...4 was 0.25, for the test 5 was E

Numbers of steps by time are 100 and 600 respectively. Factors k§ and K are

n
supposed to be equal to 1.5 in the scheme with regularizator (3.15).

Conclusions

The computer simulation of the different boundary and initial problem
demonstrates some features of the methods developed. All additive and almost ad-
ditive schemes DFM, VDFM, VLODM have the same accuracy and CPU times.
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The fully implicit scheme accuracy is better than for additive scheme but CPU time
is essentially more and there is a serious problem of parallelelizing this scheme.
The best scheme is a regularized one. The error of the approximation and CPU
time are less than for other methods except the case of the large values of function
decrements. Besides the order of the time approximation is more than the first as it
has been discussed above.

If the spatial part of the function is COS377XC0OSzY and the decrement is

107 the asymptotic stability of the scheme is not satisfied. Really at the end of
evolution the absolute error of the solution is 1.694e-9 for rectangular grid,
0.00426 for scalene grid and 0.00135 for sinusoidal one, if the step is about of
1/10. For N=20, 40 correspondingly the values of errors are 0.00124, 6.094e-4 for
scalene grid. As for other methods the error were less. It may be explained by the
fact that regularization operators are not strictly agreed with the approximation of
the elliptic operator by the support operator method.

Author expresses thank to Pergament A.Kh. for proposed topic of investi-
gation and invaluable assistance during article preparation.
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