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М.Ю. Заславский. Алгоритмы решения параболических уравнений на 

криволинейных сетках. 

 

Аннотация. Рассмотрены различные численные методы для двумер-

ных краевых задач для параболических уравнений. Предполагается, что ко-

эффициенты уравнений разрывны и линии разрывов не совпадают с коорди-

натными. Это приводит к необходимости использования неортогональных 

сеток. Рассмотрены полностью неявная, регуляризованная и аддитивные 

схемы. Специальный метод регуляризации, учитывающий разрывы в коэф-

фициентах, позволяет построить схемы более, чем первого порядка аппрок-

симации по времени, которые легко распараллеливаются. 

 

 

M.Yu. Zaslavsky. Algorithms of solution of parabolic equations on curvilin-

ear grids. 

 

Abstract. The different computational methods for 2D parabolic boundary 

problems have been considered. It is assumed the coefficients of the equations are 

discontinuous and the lines of discontinuity don’t coincide with coordinate ones. It 

results in the necessity of using the non-orthogonal grids. The fully implicit, addi-

tive and regularized schemes have been developed. The specific method of regular-

ization taking into account discontinuity of coefficient allows constructing the 

schemes more than first order of time approximation, which are easily parallelized. 

 

 

 

Contents 
 

1. Introduction  ..............................................................................................  4 

2. Fully implicit scheme 

and support operator method ...................................................................  6 

3. Regularized scheme  ..................................................................................  11 

4. Finite difference flux method ....................................................................  17 

5. Variational difference flux method ...........................................................  19 

6. Variational difference 

locally one-dimensional method  ............................................................  23 

7. Results of calculations ...............................................................................  24 

8. Conclusions ...............................................................................................  28 

Reference .......................................................................................................  28 



 4 

 

Introduction 
 

Now there are many difference schemes for the heat conductivity parabolic 

equations with discontinuous coefficients, if the surfaces and lines of discontinuity 

being not coincident with coordinate ones. The discontinuity of coefficients in a 

heat conduction equation means that normal (to a discontinuity surface) derivatives 

are discontinuous. In this case, attempts of approximating the equations by means 

of the difference schemes without the taking into account the position of disconti-

nuities may reduce the accuracy of approximation. For the best method of describ-

ing the phenomena it is expedient to use grids adapted to the media structure. Be-

sides the schemes should satisfy the requirements of stability, monotonicity and 

conservativity. At the same time because of the usage of multiprocessing systems, 

it needs to provide the possibility of effective parallelezation of the difference 

schemes. But the explicit schemes, most simply parallelized, are not considered 

because of hard limitation of a time-step for schemes stability. 

 In the present work some methods of solution of the posed problem for the 

2D equation are considered 

( ) 0
T

div Q
t


 


,   (1.1) 

where 

( , )Q k x y gradT  ,   (1.2) 

in domain  . It is supposed that the coefficient k  is a piecewise continuous 

function. Boundary conditions may be general. The examined examples corre-

spond to zero boundary conditions of the second type 

0Q

 ,   (1.3) 

where   is the boundary of domain. Further, for simplicity we shall consider 

square domain    0;1 0;1   . 

The cells of examined grids have a form of tetragons, though it should be 

noticed, that the proposed schemes might be generalized easy for grids containing 

triangles. The well-known support operator method has been used for a spatial ap-

proximation of the problem. The feature of this method is a definition of the diver-

gence and gradient difference operators by using the difference analogy of the 

known identity: 

 ;Tdivpd p gradT d Tpd
  

      .   (1.4) 

If the operators of the divergence and gradient are in accordance with the differ-

ence approximation of (1.4), the approximation orders of both operators are 

matched.  
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Let  ; 0p n

 . The equality (1.4) allows a definition of the divergence 

operator if the operator of gradient (or the flux operator Q ) is being determined. It 

is the reason of the method denomination. Really, the support operator method ap-

proximates the system (1.1), (1.2) instead of the approximation of the equation 

( )
T

div kgradT
t





 only. It is analogous to the ideas developed in the known arti-

cle (Glowinski R., Wheeler M.F., 1988). 

Five difference schemes were compared: fully implicit scheme on the basis 

of a of the support operators method (Samarskii A.A., Koldoba A.V., Poveshchen-

ko Yu.A., Tishkin V.V., Favorskii A.P., 1996; Koldoba A.V., Poveshchenko 

Yu.A., Popov Yu.P., 1985), the scheme with regularizator (Samarskii A.A., 1989), 

two modifications for curvilinear grids of the scheme proposed by Yu.B. Rad-

vogin, and also a variant of the locally one-dimensional scheme based on a varia-

tional-difference principle (Goloviznin V.M., Korshunov V.K., Samarskii A.A., 

Chudanov V.V., 1985). The results of comparison in midpoint of the process evo-

lution and in a final are represented in the tables. 

The main aim of the article is to create the effective methods of the 2D and 

3D problems solution for the parabolic equations with piecewise continuous coef-

ficients. There are many methods for rectangular grids but usually the surfaces and 

lines of the coefficients discontinuity don’t coincide with coordinate ones. The 

parabolic equations have standard forms of the balance equations connecting the 

time derivatives of value with the flow divergence. The evident method is fully 

implicit but it results in the solution of the linear system of the large order. One 

possibility is determine the flow components at the intermediate moments of the 

time and following divergent closure of the system. This idea had been realized by 

Radvogin Yu.B. only for rectangular grids. The problem of the mixed derivatives 

for nonrectangular grid had not been discussed in the article. In this work it was 

shown that the contravariant component of flux (DFM) or covariant components 

(VDFM) are sufficient to be calculated. Then using the balance equation for each 

cell the divergence expression may be obtained. The closed equations for the flux 

components may be constructed if the mixed derivatives being omitted. The flux 

components equations are of the order O(1). However, it is sufficient for the final 

approximation of the second order for rectangular grid and of the first order for 

non-orthogonal grid. Similar principles are used for VLODM. It is a sample of the 

additive scheme, i.e. there is no approximation of each stage but only total. 

The method considered is a regularization method based on Samarskii idea 

analogous to preconditioning the algebraic linear system. The difference approxi-

mation of the equations (1.1), (1.2) may be rewritten 

1 2

ˆ
( )T TB B DIV kGRADT


  , where  T̂ T t   ,  T T t , DIV  and 

GRAD  are finite difference approximation of the operators by support operators 

method, 1B  and 2B  are positive one-dimensional operators, described below. It is 

essential the scheme is effective because it does not need to solve the complicated 
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linear algebraic equations, as the elliptic operator is determined on the explicit lay-

er. Besides, this scheme is easily parallelized. 

The calculations for heat conductivity coefficients with different analytical 

properties have been realized for tasks on rectangular and curvilinear grids when 

the analytical solution being known. 

 It is evident the proposed schemes may be generalized on a 3D case. 

 

 

Fully implicit scheme 

and support operator method 

 
Now we describe the most obvious way of approximation: a fully implicit 

scheme and a method of operator ( ( , ) ( ))div k x y grad   approximation. Let's 

mark, that hereinafter the temperature is considered in cell-centers and correspond-

ing fluxes - in cell-edges. This method of discretisation allows the natural approx-

imation of boundary conditions of Neumann type. Besides, it simplifies the con-

struction of difference scheme near the surfaces or lines of coefficients discontinui-

ties, since the fluxes normal to these lines are continuous (it is supposed that lines 

of discontinuities coincide with grid lines). 

The fully implicit scheme has a form 

ˆ
ˆ( )h

T T
L T




   (2.1) 

where T̂  is a value T  on an implicit time-layer, ( )hL   - difference approximation 

of the operator ( ( , ) ( ))div k x y grad   by  the support operator method. 

Support operators method is a version of the finite volume method. The last 

one is based on the known identity ndivQdS Q dl   for a vector 

Q kgradT  . Thus it needs to know components of vector Q  in the same 

points of cell edges, but it is inconvenient, since the values of gradient different 

components are usually determined in different edges. It is offered to average the 

component values by usage of four neighbor bases (in a 2D case). Besides the inte-

gral identity (1.4) will be used instead of the standard formulation of the Gauss–

Ostrogradskii theorem for calculating the divergence if the gradient vector being 

known. The last one allows constructing a difference scheme not on an initial grid, 

but on arbitrary one providing the best approximation. 

The operator ( )grad   was considered as the support operator. Let   and   

be curvilinear coordinates, under level lines passing through cell-centers or their 

corresponding edges, and the distance between cell-centers for coordinates  ;   

coincides with the distance in coordinates  ;x y .  Besides it is supposed, that un-
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der transformation  : , ,f x y    the domain   is mapped into unit square 

(see fig. 2.1). The numbers of a grid points along coordinate lines are designated 

with 
1N  and 

2N  accordingly. Then the covariant components of a flux Q  in local 

basis  ,e e   look like 

1 1 1 1, ,
2 2 2 2

1 1, , ,
2 2

1,
2

i j i j

i j i j

i j

T T
Q k

h

   

 




  ,   (2.2) 

1 1 1 1, ,
2 2 2 2

1 1, , ,
2 2

1 ,
2

i j i j

i j i j

i j

T T
Q k

h

   

 




  ,   (2.3) 

1 1 1 1, ,
2 2 2 2

1,
2

1 1 1 1 1 1, ,
2 2 2 2

(1 )

i j i j

i j

i j i j

k k
k

k k 

   



   


 

,   (2.4) 

1 1 1 1, ,
2 2 2 2

1 ,
2

2 1 1 2 1 1, ,
2 2 2 2

(1 )

i j i j

i j

i j i j

k k
k

k k 

   



   


 

  (2.5) 

1  and 2  are equal to the parts of segment 

   1 1 1 1; ;
2 2 2 2

i j i j      and    1 1 1 1; ;
2 2 2 2

i j i j     , 

lying inside a cell  1 1;
2 2

i i  , 1,
2

i j
h


 and 1 ,

2
i j

h


 are the lengths of these 

segments. 

Fig. 2.1                                                      Fig. 2.2 
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Suppose, that the grid lines are orthogonal to the boundary of the domain 

(Fig. 2.1). Then we have according the boundary conditions (1.3) 

1 2
1 1 1 1,0, , , , ,0 , ,
2 2 2 2

j N j i i N
Q Q Q Q
      

     (2.6) 

For approximating the second term of the left hand part of (1.4) the addi-

tional grid 'M  has been constructed. The edges of the grid 'M  connect the cell 

centers of the grid M . For covering of whole area   we shall add some cells 

formed by segments of boundary and normals to it (see a fig. 2.2, the continuous 

lines bound cells of a grid M , dashed - 'M ). 

Let's consider an internal cell  ;i j  of grid 'M . Its vertices are denoted 

with F, G, H, I. The notation of angles is represented in the fig. 2.3. Then the inner 

product of vectors p  and Q  in the vicinity of vertex F has a form 

    
2

1
; cos

sin
FG FG FI FI FG FI FI FGF

p Q p Q p Q p Q p Q F
F

      (2.7) 

Similarly in vertex G: 

    
2

1
; cos

sin
FG FG GH GH FG GH GH FGG

p Q p Q p Q p Q p Q G
G

      (2.8) 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 

 

Using (2.6), (2.7) and analogous expressions for vertices H and I the quanti-

ty of integral over the cell may be represented 

         ; ; ; ; ;
F G H IF G H I

FGHI

p Q d S p Q S p Q S p Q S p Q     . (2.9) 

Here FS , GS , HS , IS  are some non-negative values, the sum of which 

equals the square of FGHI. Let the vertices F, G, H, I have indexes 

 1 1;
2 2

i j  ,  1 1;
2 2

i j  ,  1 1;
2 2

i j  ,  1 1;
2 2

i j   

respectively. Then the expression (2.9) may be rewritten 
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  , 1 1 1 12 , , , , , , , ,
2 2 2 2

,

;
sin

F
i j i j i j i j i j

i jFGHI

S
p Q d W p Q p Q

F       

         


  1 1 1 1 ,, , , , , , , ,
2 2 2 2

cos
i ji j i j i j i j

p Q p Q F
      

 


1 1 1 12 , , , , , , , ,
2 2 2 2

,sin

G

i j i j i j i j
i j

S
p Q p Q

G       

       

  1 1 1 1 ,, , , , , , , ,
2 2 2 2

cos
i ji j i j i j i j

p Q p Q G
      

 


 

1 1 1 12 , , , , , , , ,
2 2 2 2

,sin

H

i j i j i j i j
i j

S
p Q p Q

H       

       

  1 1 1 1 ,, , , , , , , ,
2 2 2 2

cos
i ji j i j i j i j

p Q p Q H
      

 


 

1 1 1 12 , , , , , , , ,
2 2 2 2

,sin

I

i j i j i j i j
i j

S
p Q p Q

I       

       
 

 1 1 1 1 ,, , , , , , , ,
2 2 2 2

cos i ji j i j i j i j
p Q p Q I
      




  (2.10) 

For boundary cell, but not for an angular one, the sum (2.10) will include on-

ly two terms. For example, for a cell  ;0i  we obtain the following according to 

(2.6): 

  ,0 1 12 , , , ,
2 2

,0

;
sin

H
i i i

iFGHI

S
p Q d W p Q

H  

        


 1 1 ,0, ,0 , ,
2 2

cos
ii i

p Q H
 

 


 

 1 1 1 12 ,0, , , , , ,0 , ,
2 2 2 2

,0

cos
sin

I

ii i i i
i

S
p Q p Q I

I    

         
  (2.11) 

For angular cells there will be only one term, which equals to 0 owing to 

(2.6). 

The integral over domain   ,; i jp Q d W


  , where summation is 

performed over all cells of 'M . 

Let grid vector p  be a difference gradient: 
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1 1 1 1 1 1 1 1, , , ,
2 2 2 2 2 2 2 2

1 1, , , ,
2 2

1 1, ,
2 2

,
i j i j i j i j

i j i j

i j i j

v v v v
p p

h h 

       

 

 

 
  . It is possi-

ble to consider, that vector p  component normal to boundary is equal to 0, i.e. 

1
1 1,0, , ,
2 2

j N j
p p
  

   
2

1 1, ,0 , ,
2 2

i i N
p p
  

 . 

Then 

, 1 1 1 1, ,
2 2 2 2

i j i j i j
W v d

   
  ,   (2.12) 

Where 

1 1 1 1 1 1 1 1 1 1, , , 1, 1, , , , 1 , 1
2 2 2 2 2 2 2 2 2 2

i j i j i j i j i j i j i j i j i j
d l Q l Q l Q l Q   

             
    . 

Here for 0, 0i j   

  1 1 12 ,, , , , ,
2 2 2

,1 1, ,
2 2

1
cos

sin

F

i ji j i j i j
i ji j i j

S
Q Q Q F

l h F



   

 

 
   

 

  1 12 ,, , , ,
2 2

,

cos
sin

G

i ji j i j
i j

S
Q Q G

G   

 
   
 

  1 12 , 1, , , , 1
2 2

, 1

cos
sin

H

i ji j i j
i j

S
Q Q H

H     


 
   
 

 

 1 1 , 12 , , , , 1
2 2

, 1

cos
sin

I
i ji j i j

i j

S
Q Q I

I     


 
   
  

  (2.13) 

  1 1 12 ,, , , , ,
2 2 2

,1 1, ,
2 2

1
cos

sin

F

i ji j i j i j
i ji j i j

S
Q Q Q F

l h F



   

 

 
   

 
 

  1 12 ,, , , ,
2 2

,

cos
sin

I

i ji j i j
i j

S
Q Q I

I   

 
   
 

  1 12 1,, , , 1,
2 2

1,

cos
sin

H

i ji j i j
i j

S
Q Q H

H     


 
   
 

 

  1 12 1,, , , 1,
2 2

1,

cos
sin

G

i ji j i j
i j

S
Q Q G

G     


 
   
  

  (2.14) 

Remark, the sum (2.12) does not include expressions with 

1 2
1 1 1 10, , ,0 ,
2 2 2 2

, , ,
j N j i i N

Q Q Q Q   

   
, that corresponds to boundary conditions 

(1.3). 
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Here 1,
2

i j
l


 and 1 ,

2
i j
l


 are length of some segments. For example, they may 

be the segments connecting centers of gravity of cells  ; 1i j  ,  ;i j  and 

 ;i j ,  1;i j  of grid 'M  accordingly. Then it’s natural to consider the ex-

pression 

1 1,
2 2

1 1,
2 2

1 1,
2 2

( )
i j

i j

i j

d
divQ

V

 

 

 

 ,   (2.15) 

as a difference analogue of the operator ( )div  , where 1 1,
2 2

i j
V

 
 are squares of 

some domains, associated with nodes  1 1;
2 2

i j  . They may be squares of 

a tetragon with vertices in centers of gravity of cells  ; 1i j  ,  ;i j ,  1;i j  

and  1; 1i j   of grid 'M  (it is assumed that for boundary cells these vertices 

coincide with centers of boundary segments, and for angular - with its angle ver-

tex). It is possible to lie 1 1,
2 2

1 2

1
i j

V
N N 

  for simpler variant. In fact it means 

the theorem of Gauss-Ostrogradskii for this domain, and the grid functions 1,
2

i j
Q


 

and 1 ,
2

i j
Q


 are contravariant components of a flux on cell edges of a grid 'M . 

The finite volume method was used in works of Edwards M.G. and Aa-

vatsmark I. for investigation of single-phase and multiphase problems of under-

ground hydrodynamics (M.G. Edwards, C.F. Rogers, 1998; Aavatsmark I., Barkve 

T., O. Boe, T. Mannseth, 1996). They define the divergence using the Gauss 

therem for one cell. The feature of the support operator method is a definition of 

flux Q  from an equality (1.4). It results to the following: the order of the diver-

gence and gradient operators approximations is the same. This method of differ-

ence schemes construction based on reviewing of the system (1.1), (1.2) instead of 

the equation ( )
T

div kgradT
t





, that is similar to work Glowinski R., Wheeler 

M.F., 1988, where the same representation is used for a mixed finite element 

method. 

 

 

The regularized scheme 
 

The following type of scheme is developed as the regularized scheme:  
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ˆ
( )h h

T T
B L T




 ,   (3.1) 

where 
hB  operator is a regularizator (Samarskii A.A., 1989). 

As known, for an absolute stability of the scheme it is sufficient to examine 

2 2

max max2 2
0.5 0.5h

h

B E k E k
x y

 
    

     
    

  (3.2) 

with boundary conditions  

0;1 0;1

0
x y

x y 

 
 

 
  (3.2 ') 

for the heat conductivity equation with a variable coefficient on a rectangular grid 

(Samarskii A.A., 1989). Here E  is a unit operator, 
maxk  is a max value of a heat 

conductivity. The obtained scheme is a scheme of the first order of approximation 

by time. Under drawing an analogy with rectangular grids it is possible to use the 

regularizator of the following form for curvilinear grids 

2 2

max max2 2
0.5 0.5h

h

B E k k E k k  
 

    
     

    
  (3.3), 

with boundary conditions 

0;1 0;1

0
 

  

 
 

 
  (3.3 ') 

where  ;   are curvilinear coordinates. Coordinate lines of the system  ;   

coincide with lines of coordinates  ;  , but the initial grid maps into uniform 

rectangular one in a plane  ;   with steps h  and h  (see fig. 2.1), k  and k  

are factors depending on "irregularity" of a grid and for a rectangular grid equaling 

1. 

However, the regularizator of the type mentioned above gives unsatisfactory 

results of calculations for the discontinuous coefficient of the heat conductivity, as 

it does not provide the necessary order of the approximation in the vicinity of the 

discontinuity line. 

Because of this fact the following form of the regularizator hB  is offered: 

0.5 0.5h

h

B E k k E k k  
   

        
                  

  (3.4) 

with boundary conditions (3.3 '). 

Usually regularized schemes are schemes of the first order of approximation 

by time. The exception are the schemes on rectangular grids being the schemes of 
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the second order of approximation, if ,1 ,2h h hL L L   and operators ,1i hB L  . 

Therefore it is possible to expect that the schemes of the type mentioned above 

with regularized operators similar to main one of the problem near coefficients dis-

continuity lines will be by more precise, than additive schemes described below. 

It is easy to find expressions for factors k  and k , corresponding to ab-

solute stability of the scheme (3.1) with regularizator (3.4), for a concrete grid. Let 

( )nT T n  be a grid function, obtained on n -th time step ( 0..n N ). Under 

stability the following will be understood 

   0 0
ˆ ˆ

; ; ;N N
h xy xy

xyt

T T T T
L T T T T

 

  
    

 
 

   0 0 0 0; ;h xy xy
L T T T T    (*) 

Here is an inner product in the space of grid functions, defined in cells of a 

grid M  (the summation is performed over all cells of a grid M ): 

  1 1 1 1 1 1, , ,
2 2 2 2 2 2

,

;
xy i j i j i j

i j

f g f g V
     

   (3.5) 

as well as 

 
1 1
2 2

1 1 1 1 1 1, , ,
2 2 2 2 2 2, ,

;
n n

xyt i j i j i j
i j n

f g f g V
 

     
  (3.5’) 

It should be noted that it needs to introduce last terms in both parts of (*). It 

is concerned with the fact the expressions in the (*) without terms are not a norms, 

but just as semi-norms. So the left part is a norm in solution space and right part is 

a norm in space of initial data. 

Let's prove, that the satisfaction of the inequality  

0.5 0.5h hB L E   . (3.6) 

is sufficient for stability of the scheme (3.1) (in sense of (*)). 

Really, having multiplied both parts of (3.1) by 
ˆ

2
T T





 (in inner product 

 ;
xy

  ), we have: 

ˆ ˆ ˆ
0 2 ; 2 ;h h

xy xy

T T T T T T
B L T 

  

     
      

   
 

ˆ ˆ ˆ ˆ ˆ
2 ; 2 ;

2 2 2
h h

xy xy

T T T T T T T T T T
B L


 

  

        
         

    
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    
ˆ ˆ

ˆ ˆ2 0.5 ; ;h h h
xy

xy

T T T T
B L L T T T T 

 

  
       

 
 

     
ˆ ˆ

ˆ ˆ2 0.5 ; ; ;h h h h xyxy
xy

T T T T
B L L T T L T T 

 

  
      

 
 

Thus, if (3.6) is fair, then    
ˆ ˆ

ˆ ˆ; ; ;h h xyxy

T T T T
L T T L T T

 

  
    

 
, 

from which (*) immediately follows. 

Besides the inner product  ;
xy

   we shall introduce 

  1 1 1 1, ,
2 2 2 2,

;
i j i j

i j

f g f g h h     
 , 

where the summation is performed over all cells of a grid M . It should be 

marked, that norms induced by inner products  ;
xy

   and  ;


   are equivalent: 

     
, 1 1 , 1 1, ,

2 2 2 2

min max
; ; ;

i j i ji j i j

xy

V V
f f f f f f

h h h h 
   

   

   

Then, 

1 2B B B  ,   (3.8) 

2

1 0.25

h

B E k k k k 
   

      
            

,   (3.9) 

2 0.5

h

B k k k k 
   

      
      

       
.   (3.8) 

and 

 

2

1 1 1 1, ,' 2 2 2 2
2 1,

2,

; 0.5
i j i j

i j
i j

T T
B T T h h k k

h
  




   



   
    
      


 

2

1 1 1 1, ,' 2 2 2 2
1 ,
2

i j i j

i j

T T
k k

h




   



 
 
    

  (3.10) 

Here 
1 1 1 1 1 1 1 1, , , ,' '2 2 2 2 2 2 2 2

1 1, ,
2 21 1 1 1 1 1 1 1, , , ,

2 2 2 2 2 2 2 2

2 2
,

i j i j i j i j

i j i j
i j i j i j i j

k k k k
k k

k k k k

       

 
       

 
 
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For approximation of  0.5 ;
xyh

L T T  it is assigned in (1.4) p gradT  

just as it was done in support operator method. Then the right part of (1.4) becomes 

0 and according to the formulas (2.13), (2.14) 

   0.5 ; 0.5 ;h xy xy
L T T kgradT gradT   

   
2 2

' '

1 1 1 12 , , , ,
2 2 2 2

, ,

0.5
sin

A

i j i j i j i j
i j i j

S
k T k T

A


   

  
   

  


  ' '

1 1 1 1 ,, , , ,
2 2 2 2

cos i ji j i j i j i j
T T k k A

   
  

   
2 2

' '

1 1 1 12 , , , ,
2 2 2 2

,sin

B

i j i j i j i j
i j

S
k T k T

B    

 
    
  

 ' '

1 1 1 1 ,, , , ,
2 2 2 2

cos i ji j i j i j i j
T T k k B

   
  

   
2 2

' '

1 1 1 12 , , , ,
2 2 2 2

,sin

C

i j i j i j i j
i j

S
k T k T

C    

 
    
  

  ' '

1 1 1 1 ,, , , ,
2 2 2 2

cos i ji j i j i j i j
T T k k C

   
  

   
2 2

' '

1 1 1 12 , , , ,
2 2 2 2

,sin

D

i j i j i j i j
i j

S
k T k T

D    

 
    
  

 

  ' '

1 1 1 1 ,, , , ,
2 2 2 2

cos i ji j i j i j i j
T T k k D

   

 


,   (3.11) 

where 
1 1 1 1 1 1 1 1, , , ,' '2 2 2 2 2 2 2 2

1 1, ,
2 21 1, ,

2 2

,
i j i j i j i j

i j i j
i j i j

T T T T
T T

h h

       

 
 

 
  , and 

the summation is performed over all cells of a grid 'M . 

Thus, 

     
2 2

' '

1 2 1 1 1 1, , , ,
2 2 2 2,

0.5 ; 0.25h xy i j i j i j i j
i j

L T T C C k T k T 
   


   


  

   
2 2

' '

1 1 1 1, , , ,
2 2 2 2

i j i j i j i j
k T k T

   


 


,   (3.12) 

where 
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,1 2 2 2 2
, ,, ,

4max max , , ,
sin sin sin sin

CA B D
i j

i j i ji j i j

SS S S
C

A B C D

  
        
        
                  

  

, ,1 1 1 1, , , ,
2 2 2 2

,2
1 1 1 1, , , ,
2 2 2 2

cos cos

1 max , ,
i j i ji j i j i j i j

i j

i j i j i j i j

k k A k k B

C
k k k k

   

   

    
    
    
   






 

   

, ,1 1 1 1, , , ,
2 2 2 2

1 1 1 1, , , ,
2 2 2 2

cos cos

,
i j i ji j i j i j i j

i j i j i j i j

k k C k k D

k k k k

   

   

   
   
   

    





 

 

Since each edge appears twice in the sum (3.12) except the boundary ones, it 

is sufficient to suppose 

21,
1 2

2 ' 2
1 1, ,
2 2

,max
i j

i j i j

i j

k
C h

k C
h h k h




 



 



  (3.13) 

2
1 ,

1 2
,2 ' 2

1 1, ,
2 2

max
i j

i j

i j i j

k hC
k C

h h k h



 



 



  (3.14) 

for satisfaction of    2 ; 0.5 ;h xy
B T T L T T


   

Let's assume 1 1,
2 2

1 2

1
i j

V h h
N N

  
  . Then both introduced inner 

products coincide and it is necessary to prove 1 0.5B E  

2

1 1 20.25B E k k L L   , where 1

h

L k
 

  
   

  
, 

2

h

L k
 

  
     

 with boundary conditions (1.3). Since both operators iL  are 

non-negative determined (with respect to inner product  ;


  , which coincides 

with  ;
xy

   in a considered case), all their eigenvalues 
j

i , corresponding to eigen-
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functions 
j

i , are non-negative. Consider the case k const . Since all grid func-

tions are decomposed by basis 1 2

kl k l   : 

,

kl

kl

k l

T T  , then 

         1 1 2

,

; ; ; ; 0.5 ;k l kl

kl

k l

BT T T T T T T T T T
   

      . 

Thus, we have proved, if having selected regularizing factors according to 

the formulas (3.13) and (3.14) the scheme (3.1) will be absolutely stable. As sever-

al tests without analytical solution have shown it will be also stable for variable k . 

In other cases the regularizator (3.3) should be used. 

It should be noted, that for the considered class of problems the scheme (3.1) 

with 1 1,
2 2

i j
V

 
 equal to squares of tetragons with vertices in center of gravity of 

cells  ; 1i j  ,  ;i j ,  1;i j  and  1; 1i j   of grids 'M , was also abso-

lutely stable (with some k  and k ). Moreover, the scheme (3.1) with regulariza-

tor of the form 

0.5 0.5h

h

B E k k E k k  
   

         
                  

  (3.15) 

with boundary conditions 

0;1 0;1

0
 

 
 

 
 

 
  (3.15') 

was absolutely stable for some k  and k . 

Let's remark, that the scheme (3.1) with regularizator (3.4) or (3.15) is eco-

nomic, since the corresponding system of linear equations may be easily inverted 

by two sweep methods. 

 

 

Difference flux method 
 

Flux method is understood as the scheme of following sort: at the first step 

(predictor) the fluxes on edges of cells are calculated on "a intermediate time layer 

using the equations for each component of a vector Q . Usually they are difference 

approximations of the equation for a flux 
1

( )
Q

grad divQ
k t





 by some methods. 

The second step (corrector) is a divergent closure due to initial equation. 

Let's remind the scheme proposed by Yu.B. Radvogin for a heat conductivi-

ty equation with variable coefficient on a rectangular uniform grid. 

Predictor 
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 
11,
2

1 1 1 1 121, 1, 2, 1, ,
2 2 2 2 2

2
2

i jx x x x x

i j i j i j i j i j

x

k
Q Q Q Q Q

h

  

        
      (4.1) 

 
1 , 1
2

1 1 1 1 12, 1 , 1 , 2 , 1 ,
2 2 2 2 2

2
2

i jy y y y y

i j i j i j i j i j

y

k
Q Q Q Q Q

h

  

        
      (4.2) 

Corrector 

   1 1 1 1 1 1 1 1, , 1, , , 1 ,
2 2 2 2 2 2 2 2

ˆ x x y y

i j i j i j i j i j i j
x y

T T Q Q Q Q
h h

 
         

    
 

(4.3) 

Here xh  and yh  are grid steps, 1,
2

x

i j
Q


 and 1 ,

2

y

i j
Q


 are fluxes normal to the 

cell edges. If 2   the scheme is absolutely stable, i.e. the scheme with surpas-

sing definition of fluxes is stable. 

On a step of predictor we effectively calculate components of fluxes normal 

to the cell edges referred to intermediate time layer. It should be noted, that each 

equation of (4.1) and (4.2) approximates equation for a flux with zero order, i.e. it 

is supposed that for each layer of cells the flux through its lateral boundaries is 

equal to zero. On a step of corrector using these values we calculate values of tem-

perature for an implicit time layer. 

The natural generalizing for curvilinear grids of the scheme proposed by 

Yu.B. Radvogin looks like the following: 

predictor

 11,
2

1 1, 1, , 1,
2 2

11,
2

2

i j

i j i j

i j

k
Q Q

h 

  

   

 

  

 

   
3 1 1 1, ,

2 2 2 2
i j i j

divQ divQ
   

 
  
 

 

(4.4) 

 

1 , 1
2

1 1, , 1 , , 1
2 2

1 , 1
2

2

i j

i j i j

i j

k
Q Q

h 

  

   

 

  

 

   
31 1 1, ,

2 2 2 2
i j i j

divQ divQ
   

 
  
 

 

(4.5) 

Here divQ  is defined by support operators method for each layer along di-

rections   and    under the following assumption. It is supposed that flux along 

the same direction in other layers and flux along other direction are equal to 0. 

Corrector 
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 
1 1 1 1, ,
2 2 2 2

ˆ

,
i j i j

h

T T
L Q Q 



   



  (4.6) 

The operator hL  is defined by a support operator method: using contravari-

ant components of a flux we calculate the covariant ones by a method depicted 

above. The equations (4.4) and (4.5) also may be solved effectively. 

 

 

Variational difference flux method 
 

Let the operator ( )grad   be employed to both parts of (1.1) and then out-

come be multiplied by ( , )k x y . Then due to (1.2) the equation for flux is obtained 

1
( ) 0

Q
graddiv Q

k t


 


  (5.1) 

Discretising in time with the help of the implicit scheme (  ), we have 

1
( ) 0

Q Q
graddiv Q

k 


    (5.2) 

Multiplying (5.2) by an arbitrary variation Q  and integrating over arbitrary 

domain G  we obtain due to boundary conditions (1.3), if boundary fluxes being 

equal to zero: 

21 1
( ( ) ) 0
2

G

Q Q
Q divQ d

k
 



  
   

  
 .   (5.3) 

Thus, functional 

 
2

21 1
( ) ( )

2 2
G

Q Q
Q divQ d

k 

 
 

    
 
 

   (5.4) 

reaches its stationary value on a solution of the equations (1.1) and (1.2) with 

boundary conditions (1.3). 

Let the curvilinear coordinates  ;   in domain   be introduced by the 

same way as in the third item. For a definiteness we suppose that a Jacobian 

 

 

,
0

,

x y
J

 


 


. Designating N  and N  number of cells along directions   

and   respectively, the expressions in (5.4) may be rewritten in local contravari-

ant base of a curvilinear coordinate system  ;  . 



 20 

The orts of contravariant base look like 

1 1
; , ;

y x y x
n n

l l
 

    

     
       

      
,   (5.5) 

where 

2 22 2

,
x y x y

l l 
   

         
          

          
 are Lame coeffi-

cients of a curvilinear coordinate system. 

Since 

1 1
,x yx x y y

Q l Q l Q Q l Q l Q
J J

   

   
   

      
        

      
, 

where Q
 and Q

 are contravariant components of flux then having made substi-

tution ,Q Q Q Q        we obtain 

   
2 2

2 x yQ Q Q  

   
2 2

2 2

2
2( ) /

l l x x y y
Q Q Q Q l l

J

     

 
   

    
    

    
,   (5.6) 

   1x y l Q l QQ Q
divQ

x y J

 

 

 

   
    
    
 

.   (5.7) 

As well as in a difference flux method, we suppose that for each layer of 

cells the flux through its boundary is equal to zero. Let's consider the approxima-

tion of a functional (5.4), having taken into account of any layer of cells along   

or   as G  (see fig. 5.1). 

 

For a layer 1
2

j   along   we have: 

2

1 21 1,
2 2

1 1 1,1 12 2 2,0 1 1 2 2,
2 2

1
( )

2 2

N
i j

j i j
i ji i j

Q Q

Q divQ S
k






 

  
   

 
  

   
 
  

 ,   (5.8) 

where 
2

2 2 2 2

1 1 1 1, , , ,1 1 2 2 2 2,
1 12 2 ,
2 2

1
i j i j

i j
i j

Q Q h l h l
S

     
 

 

  
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   
2 2

1 1 1 11, 1, , ,
2 2 2 2

1

2 i j i j i j i j
Q Q Q Q   

     

 
    

 
  (5.9) 

   1 1 1 1, 1, 1, , , ,1 1 2 2 2 2,
1 12 2 ,
2 2

1
i j i j i j i j

i j
i j

divQ h l Q h l Q
S

 

       
 

 

    (5.10) 

 1 1 1 1, , , , 1 , ,
2 2 2 2

0.5
i j i j i j

h l h l h l        
    (5.11) 

   
2 2

1 , 1 , , 1 , 1, , ,
2 2

i j i j i j i ji j i j
h l x x y y L    

       (5.12) 

   
2 2

1 1, , 1, , 1, , ,
2 2

i j i j i j i ji j i j
h l x x y y L    

       (5.13) 

 

 

Fig. 5.1 

 

Then functional 1
2

( )
j

Q


  may be represented as 

 
1 2

1 1 1 1 1, 1, 1,
2 2 2 2 20

1
( )

2

N

j i j i j i j
i

Q G Q Q


 


      


 
    




 
2

1 1, ,
2 2

i j i j
Q Q 

 


  


 

 1 1 1 1 1 1, 1, 1, , ,
2 2 2 2 2 2

i j i j i j i j i j
P L Q L Q 

       
  ,   (5.14) 

where 
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1 1,
2 2

1 1,
2 2

1

2i j

i j

P
S 

 

 ,   (5.15) 

  2 2 2 2

1 1 1 11, , , 1 ,
2 2 2 2

1 1,
2 2

1 1 1 1, ,
2 2 2 2

1

2 4

i j i j i j i j

i j

i j i j

L L L L
G

k S

     

 

   

 
 .   (5.16) 

The difference analogue of the equation (5.1) follows from a condition of a 

minimum of a functional (5.8): 

1,
2

( )
0

i j

Q

Q







 or 

  1 1 1 1 1 1, , , ,
2 2 2 2 2 2

i j i j i j i j
G G Q Q 

     
    

 1 1 1 1 1 1 1, , 1, 1, , ,
2 2 2 2 2 2 2

2
i j i j i j i j i j i j

P L L Q L Q 

        
     (5.17) 

 1 1 1 1 1 1 1, , , , 1, 1,
2 2 2 2 2 2 2

2
i j i j i j i j i j i j

P L L Q L Q 

        
   

Using boundary conditions 1 10, ,
2 2

0
j N j

Q Q


 

 
   the equation is solved 

by sweep method. 

For a layer 1
2

i   along   the reasonings are similar, therefore we list on-

ly finite outcome - difference equation: 

  1 1 1 1 1 1, , , ,
2 2 2 2 2 2

i j i j i j i j
G G Q Q 

     
    

 1 1 1 1 1 1 1, , , 1 , 1 , ,
2 2 2 2 2 2 2

2
i j i j i j i j i j i j

P L L Q L Q 

        
     (5.18) 

 1 1 1 1 1 1 1, , , , , 1 , 1
2 2 2 2 2 2 2

2
i j i j i j i j i j i j

P L L Q L Q 

        
   

and boundary conditions 1 1,0 ,
2 2

0
i i N

Q Q


 

 
  . 

For divergent closure we use the initial equation (1.1) and formula (5.7): 


1 1 1 1, ,
2 2 2 2

1 11, 1,
2 2

1 1,
2 2

ˆ
1i j i j

i j i j

i j

T T
L Q

S





   

   

 


   

1 1 1 1 1 1, , , 1 , 1 , ,
2 2 2 2 2 2

i j i j i j i j i j i j
L Q L Q L Q  

       
   .   (5.19) 
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The variational locally one-dimensional method 
 

The developed scheme is very similar with previous one. Let's specify their 

differences. In a flux method using known distribution of temperature the fluxes on 

an intermediate time layer are calculated, and then divergent closure is performed. 

In the given scheme using known temperature covariant component of a flux only 

along one direction (for example, along  ) is calculated, then the temperature on 

an intermediate time layer is obtained under supposition that the fluxes along   

are equal to zero. Then using the new distribution of temperature on an intermedi-

ate time layer covariant component of a flux along   is calculated. Finally, the 

temperature on an implicit time layer is obtained under assumption that of a com-

ponent of the flux along   is zero. Since the calculations coincide with one de-

scribed above we represent only final formulas – the difference equations: 

  1 1 1 1 1 1, , , ,
2 2 2 2 2 2

i j i j i j i j
G G Q Q 

     
    

 1 1 1 1 1 1 1, , 1, 1, , ,
2 2 2 2 2 2 2

2
i j i j i j i j i j i j

P L L Q L Q 

        
     (6.1) 

 1 1 1 1 1 1 1, , , , 1, 1,
2 2 2 2 2 2 2

2
i j i j i j i j i j i j

P L L Q L Q 

        
   

 
1 1 1 1, ,
2 2 2 2

1 1 1 11, 1, , ,
2 2 2 2

1 1,
2 2

1i j i j

i j i j i j i j

i j

T T
L Q L Q

S

 



   

     

 


    (6.2) 

 

 

  1 1 1 1 1 1, , , ,
2 2 2 2 2 2

i j i j i j i j
G G Q Q 

     
    

 1 1 1 1 1 1 1, , , 1 , 1 , ,
2 2 2 2 2 2 2

2
i j i j i j i j i j i j

P L L Q L Q 

        
     (6.3) 

 1 1 1 1 1 1 1, , , , , 1 , 1
2 2 2 2 2 2 2

2
i j i j i j i j i j i j

P L L Q L Q 

        
   

 
1 1 1 1, ,
2 2 2 2

1 1 1 1, 1 , 1 , ,
2 2 2 2

1 1,
2 2

ˆ
1i j i j

i j i j i j i j

i j

T T
L Q L Q

S

 



   

     

 


    (6.4) 
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Calculation results 
 

All five algorithms were tested on a rectangular grid, scalene grid (see fig. 

7.1) and sine grid (see fig. 7.2). The square   was divided into 10х10, 20х20 and 

40х40 of cells. The exact solutions were the following 

1.  
2

cos( )tT e y  , 1k   

2.  
29 cos(3 )tT e y  , 1k   

3.  
210 cos(3 )cos( )tT e y x   , 1k   

4.  

0

0

0

1

cos , 0.5

1
cos

2
cos , 0.5

1
cos

2

t

t

e y y
k

T
k

e y y
k

k























 







, 
1, 0.5

0.1, 0.5

y
k

y


 


, 

where   is obtained from the equation 

 0 1

0 1

1 1
sin

2
k k

k k

  
   

 
 

 1 0

0 1

1 1
sin 0

2
k k

k k

  
    

 
 

  (7.1) 

Besides, the problem with sources have been tested too. Instead of (1.1) the 

following equation have been considered  
T

divQ f
t


 


.  At the same time the 

regularized and fully implicit schemes have been developed. These schemes were 

also tested on solution 

5. 
2 2 2sin( ) (1 ) , 1, cos( )(2 12 12 )T t x x k f t x x       
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Fig. 7.1   Fig. 7.2 

 

 

 

Table 7.1 

 

 
The middle of calculation Final moment 

Rectang. Scalene Sine Rectang. Scalene Sine 

10 

Implicit 0.002543 0.005791 0.017498 0.004267 0.004786 0.005831 

Regul. 0.001028 0.005610 0.018306 0.001701 0.002891 0.004672 

DFM 0.003288 0.009470 0.044702 0.005555 0.006121 0.007731 

VDFM 0.003288 0.006604 0.015847 0.005555 0.005988 0.006746 

VLODM 0.003288 0.006745 0.017656 0.005555 0.006006 0.006412 

20 

Implicit 0.001802 0.002757 0.003224 0.003002 0.003170 0.002974 

Regul. 0.000255 0.002479 0.002564 0.000419 0.001269 0.001628 

DFM 0.002562 0.014380 0.068315 0.004299 0.004519 0.008980 

VDFM 0.002562 0.003858 0.009687 0.004299 0.004412 0.004330 

VLODM 0.002562 0.003945 0.010538 0.004299 0.004419 0.004205 

40 

Implicit 0.001614 0.001661 0.001674 0.002684 0.002732 0.002675 

Regul. 5.910e-5 0.001393 0.001048 9.692e-5 0.001078 0.001036 

DFM 0.002378 0.037927 0.043497 0.003983 0.005954 0.006813 

VDFM 0.002378 0.003501 0.003585 0.003983 0.003988 0.003924 

VLODM 0.002378 0.003427 0.003743 0.003983 0.003990 0.003912 
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Table 7.2 

 

Table 7.3 

 

 
The middle of calculation Final moment 

Rectang. Scalene Sine Rectang. Scalene Sine 

10 

Implicit 0.060256 0.084513 0.052579 6.954е-9 0.003246 7.405е-4 

Regul. 0.035828 0.066245 0.034633 1.694e-9 0.004266 0.001353 

DFM 0.076859 0.099951 0.093450 1.642е-8 0.003478 7.715е-4 

VDFM 0.076859 0.100001 0.064092 1.642е-8 0.003300 0.001186 

VLODM 0.076859 0.100644 0.062796 1.642е-8 0.003302 0.001289 

20 

Implicit 0.042323 0.049574 0.039917 2.493е-9 7.776е-4 9.130е-5 

Regul. 0.016587 0.024491 0.021972 4.006e-10 0.001244 4.014е-4 

DFM 0.059831 0.069960 0.087101 6.660е-9 9.922е-4 1.112е-4 

VDFM 0.059831 0.066459 0.058264 6.660е-9 8.126е-4 6.367е-4 

VLODM 0.059831 0.066603 0.058629 6.660е-9 8.135е-4 6.438е-4 

40 

Implicit 0.037857 0.039757 0.037575 1.895е-9 1.930е-4 4.612е-6 

Regul. 0.011800 0.015915 0.017438 2.436e-10 6.094е-4 1.101е-4 

DFM 0.055590 0.062290 0.072428 5.273е-9 4.033е-4 5.492е-6 

VDFM 0.055590 0.057125 0.055641 5.273е-9 2.220е-4 1.999е-4 

VLODM 0.055590 0.057186 0.055720 5.273е-9 2.223е-4 2.004е-4 

 
The middle of calculation Final moment 

Rectang. Scalene Sine Rectang. Scalene Sine 

10 

Implicit 0.058951 0.080214 0.038918 9.32е-10 0.002992 2.058е-4 

Regul. 0.033464 0.060647 0.042225 1.762e-10 0.004628 2.669е-5 

DFM 0.058421 0.077163 0.055781 9.03е-10 0.003042 1.950е-4 

VDFM 0.058421 0.079921 0.045288 9.03е-10 0.003015 2.455е-4 

VLODM 0.066577 0.087797 0.048211 1.468е-9 0.003015 2.640е-4 

20 

Implicit 0.043829 0.050063 0.040376 3.47е-10 7.128е-4 1.048е-5 

Regul. 0.017012 0.024025 0.020200 4.493e-11 0.001601 3.104е-5 

DFM 0.043922 0.051174 0.065077 3.49е-10 7.568е-4 2.731е-5 

VDFM 0.043922 0.050462 0.045016 3.49е-10 7.251е-4 3.991е-5 

VLODM 0.052266 0.058096 0.050214 5.93е-10 7.254е-4 4.490е-5 

40 

Implicit 0.040019 0.041671 0.039675 2.68е-10 1.760е-4 4.102е-7 

Regul. 0.012873 0.016171 0.015776 2.893e-11 8.474е-4 7.318е-6 

DFM 0.040273 0.048669 0.055690 2.72е-10 2.191е-4 6.596е-6 

VDFM 0.040273 0.042710 0.042085 2.72е-10 1.856е-4 9.758е-6 

VLODM 0.048662 0.050290 0.050019 4.69е-10 1.864е-4 1.131е-5 
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Table 7.4 

 

Table 7.5 

 

The results of calculations are represented in tables 7.1…7.5 according to 

number of the test (1…5). Final time for tests 1…4 was 0.25, for the test 5 was 
2


. 

Numbers of steps by time are 100 and 600 respectively. Factors k  and k  are 

supposed to be equal to 1.5 in the scheme with regularizator (3.15). 

 

 

Conclusions 
 

The computer simulation of the different boundary and initial problem 

demonstrates some features of the methods developed. All additive and almost ad-

ditive schemes DFM, VDFM, VLODM have the same accuracy and CPU times. 

 
The middle of calculation Final moment 

Rectang. Scalene Sine Rectang. Scalene Sine 

10 

Implicit 0.029916 0.139758 0.111295 0.068440 0.132269 0.068473 

Regul. 0.027471 0.143325 0.117483 0.062569 0.126339 0.071540 

DFM 0.031644 0.139261 0.118225 0.072636 0.136601 0.066644 

VDFM 0.031644 0.143370 0.119056 0.072636 0.137619 0.070704 

VLODM 0.031644 0.144451 0.117742 0.072636 0.137898 0.071240 

20 

Implicit 0.010815 0.152431 0.024321 0.022945 0.056930 0.016478 

Regul. 0.008049 0.153958 0.021091 0.017029 0.051391 0.012137 

DFM 0.012768 0.147452 0.068678 0.027176 0.060852 0.021627 

VDFM 0.012768 0.155467 0.025705 0.027176 0.061600 0.021214 

VLODM 0.012768 0.157788 0.025298 0.027176 0.061783 0.021195 

40 

Implicit 0.005784 0.097919 0.006320 0.012025 0.028871 0.011572 

Regul. 0.002941 0.096378 0.003688 0.006122 0.023593 0.006318 

DFM 0.007790 0.092611 0.042937 0.016247 0.032853 0.017442 

VDFM 0.007790 0.098255 0.008891 0.016247 0.033321 0.015941 

VLODM 0.007790 0.100245 0.008740 0.016247 0.033407 0.015942 

 
The middle of calculation Final moment 

Rectang. Scalene Sine Rectang. Scalene Sine 

10 
Implicit 8.242е-5 8.480е-5 6.975е-4 0.010368 0.010438 0.014873 

Regul. 2.162e-5 2.398e-5 4.494e-5 3.519е-4 3.905е-4 0.001466 

20 
Implicit 2.250е-5 2.959е-5 8.245е-5 0.002562 0.002585 0.002981 

Regul. 2.452е-5 2.536e-5 2.656e-5 9.644e-5 1.422е-4 2.441е-4 

40 
Implicit 4.942е-6 9.133е-6 6.943е-6 6.071е-4 6.142е-4 6.127е-4 

Regul. 2.552e-5 2.574e-5 2.532e-5 6.182e-5 7.687e-5 7.351e-5 
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The fully implicit scheme accuracy is better than for additive scheme but CPU time 

is essentially more and there is a serious problem of parallelelizing this scheme. 

The best scheme is a regularized one. The error of the approximation and CPU 

time are less than for other methods except the case of the large values of function 

decrements. Besides the order of the time approximation is more than the first as it 

has been discussed above. 

If the spatial part of the function is cos3 cosx y   and the decrement is 

210  the asymptotic stability of the scheme is not satisfied. Really at the end of 

evolution the absolute error of the solution is 1.694e-9 for rectangular grid, 

0.00426 for scalene grid and 0.00135 for sinusoidal one, if the step is about of 

1/10. For N=20, 40 correspondingly the values of errors are 0.00124, 6.094e-4 for 

scalene grid. As for other methods the error were less. It may be explained by the 

fact that regularization operators are not strictly agreed with the approximation of 

the elliptic operator by the support operator method. 
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